| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| import random |
| import warnings |
| from functools import reduce |
| from html import escape as html_escape |
| |
| from pyspark import copy_func, since, _NoValue |
| from pyspark.rdd import RDD, _load_from_socket, _local_iterator_from_socket |
| from pyspark.serializers import BatchedSerializer, PickleSerializer, \ |
| UTF8Deserializer |
| from pyspark.storagelevel import StorageLevel |
| from pyspark.traceback_utils import SCCallSiteSync |
| from pyspark.sql.types import _parse_datatype_json_string |
| from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column |
| from pyspark.sql.readwriter import DataFrameWriter, DataFrameWriterV2 |
| from pyspark.sql.streaming import DataStreamWriter |
| from pyspark.sql.types import StructType, StructField, StringType, IntegerType |
| from pyspark.sql.pandas.conversion import PandasConversionMixin |
| from pyspark.sql.pandas.map_ops import PandasMapOpsMixin |
| |
| __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] |
| |
| |
| class DataFrame(PandasMapOpsMixin, PandasConversionMixin): |
| """A distributed collection of data grouped into named columns. |
| |
| A :class:`DataFrame` is equivalent to a relational table in Spark SQL, |
| and can be created using various functions in :class:`SparkSession`:: |
| |
| people = spark.read.parquet("...") |
| |
| Once created, it can be manipulated using the various domain-specific-language |
| (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. |
| |
| To select a column from the :class:`DataFrame`, use the apply method:: |
| |
| ageCol = people.age |
| |
| A more concrete example:: |
| |
| # To create DataFrame using SparkSession |
| people = spark.read.parquet("...") |
| department = spark.read.parquet("...") |
| |
| people.filter(people.age > 30).join(department, people.deptId == department.id) \\ |
| .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) |
| |
| .. versionadded:: 1.3.0 |
| """ |
| |
| def __init__(self, jdf, sql_ctx): |
| self._jdf = jdf |
| self.sql_ctx = sql_ctx |
| self._sc = sql_ctx and sql_ctx._sc |
| self.is_cached = False |
| self._schema = None # initialized lazily |
| self._lazy_rdd = None |
| # Check whether _repr_html is supported or not, we use it to avoid calling _jdf twice |
| # by __repr__ and _repr_html_ while eager evaluation opened. |
| self._support_repr_html = False |
| |
| @property |
| @since(1.3) |
| def rdd(self): |
| """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. |
| """ |
| if self._lazy_rdd is None: |
| jrdd = self._jdf.javaToPython() |
| self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) |
| return self._lazy_rdd |
| |
| @property |
| @since("1.3.1") |
| def na(self): |
| """Returns a :class:`DataFrameNaFunctions` for handling missing values. |
| """ |
| return DataFrameNaFunctions(self) |
| |
| @property |
| @since(1.4) |
| def stat(self): |
| """Returns a :class:`DataFrameStatFunctions` for statistic functions. |
| """ |
| return DataFrameStatFunctions(self) |
| |
| def toJSON(self, use_unicode=True): |
| """Converts a :class:`DataFrame` into a :class:`RDD` of string. |
| |
| Each row is turned into a JSON document as one element in the returned RDD. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.toJSON().first() |
| '{"age":2,"name":"Alice"}' |
| """ |
| rdd = self._jdf.toJSON() |
| return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) |
| |
| def registerTempTable(self, name): |
| """Registers this DataFrame as a temporary table using the given name. |
| |
| The lifetime of this temporary table is tied to the :class:`SparkSession` |
| that was used to create this :class:`DataFrame`. |
| |
| .. versionadded:: 1.3.0 |
| |
| .. deprecated:: 2.0.0 |
| Use :meth:`DataFrame.createOrReplaceTempView` instead. |
| |
| Examples |
| -------- |
| >>> df.registerTempTable("people") |
| >>> df2 = spark.sql("select * from people") |
| >>> sorted(df.collect()) == sorted(df2.collect()) |
| True |
| >>> spark.catalog.dropTempView("people") |
| """ |
| warnings.warn( |
| "Deprecated in 2.0, use createOrReplaceTempView instead.", DeprecationWarning) |
| self._jdf.createOrReplaceTempView(name) |
| |
| def createTempView(self, name): |
| """Creates a local temporary view with this :class:`DataFrame`. |
| |
| The lifetime of this temporary table is tied to the :class:`SparkSession` |
| that was used to create this :class:`DataFrame`. |
| throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the |
| catalog. |
| |
| .. versionadded:: 2.0.0 |
| |
| Examples |
| -------- |
| >>> df.createTempView("people") |
| >>> df2 = spark.sql("select * from people") |
| >>> sorted(df.collect()) == sorted(df2.collect()) |
| True |
| >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL |
| Traceback (most recent call last): |
| ... |
| AnalysisException: u"Temporary table 'people' already exists;" |
| >>> spark.catalog.dropTempView("people") |
| |
| """ |
| self._jdf.createTempView(name) |
| |
| def createOrReplaceTempView(self, name): |
| """Creates or replaces a local temporary view with this :class:`DataFrame`. |
| |
| The lifetime of this temporary table is tied to the :class:`SparkSession` |
| that was used to create this :class:`DataFrame`. |
| |
| .. versionadded:: 2.0.0 |
| |
| Examples |
| -------- |
| >>> df.createOrReplaceTempView("people") |
| >>> df2 = df.filter(df.age > 3) |
| >>> df2.createOrReplaceTempView("people") |
| >>> df3 = spark.sql("select * from people") |
| >>> sorted(df3.collect()) == sorted(df2.collect()) |
| True |
| >>> spark.catalog.dropTempView("people") |
| |
| """ |
| self._jdf.createOrReplaceTempView(name) |
| |
| def createGlobalTempView(self, name): |
| """Creates a global temporary view with this :class:`DataFrame`. |
| |
| The lifetime of this temporary view is tied to this Spark application. |
| throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the |
| catalog. |
| |
| .. versionadded:: 2.1.0 |
| |
| Examples |
| -------- |
| >>> df.createGlobalTempView("people") |
| >>> df2 = spark.sql("select * from global_temp.people") |
| >>> sorted(df.collect()) == sorted(df2.collect()) |
| True |
| >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL |
| Traceback (most recent call last): |
| ... |
| AnalysisException: u"Temporary table 'people' already exists;" |
| >>> spark.catalog.dropGlobalTempView("people") |
| |
| """ |
| self._jdf.createGlobalTempView(name) |
| |
| def createOrReplaceGlobalTempView(self, name): |
| """Creates or replaces a global temporary view using the given name. |
| |
| The lifetime of this temporary view is tied to this Spark application. |
| |
| .. versionadded:: 2.2.0 |
| |
| Examples |
| -------- |
| >>> df.createOrReplaceGlobalTempView("people") |
| >>> df2 = df.filter(df.age > 3) |
| >>> df2.createOrReplaceGlobalTempView("people") |
| >>> df3 = spark.sql("select * from global_temp.people") |
| >>> sorted(df3.collect()) == sorted(df2.collect()) |
| True |
| >>> spark.catalog.dropGlobalTempView("people") |
| |
| """ |
| self._jdf.createOrReplaceGlobalTempView(name) |
| |
| @property |
| def write(self): |
| """ |
| Interface for saving the content of the non-streaming :class:`DataFrame` out into external |
| storage. |
| |
| .. versionadded:: 1.4.0 |
| |
| Returns |
| ------- |
| :class:`DataFrameWriter` |
| """ |
| return DataFrameWriter(self) |
| |
| @property |
| def writeStream(self): |
| """ |
| Interface for saving the content of the streaming :class:`DataFrame` out into external |
| storage. |
| |
| .. versionadded:: 2.0.0 |
| |
| Notes |
| ----- |
| This API is evolving. |
| |
| Returns |
| ------- |
| :class:`DataStreamWriter` |
| """ |
| return DataStreamWriter(self) |
| |
| @property |
| def schema(self): |
| """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.schema |
| StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) |
| """ |
| if self._schema is None: |
| try: |
| self._schema = _parse_datatype_json_string(self._jdf.schema().json()) |
| except AttributeError as e: |
| raise Exception( |
| "Unable to parse datatype from schema. %s" % e) |
| return self._schema |
| |
| def printSchema(self): |
| """Prints out the schema in the tree format. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.printSchema() |
| root |
| |-- age: integer (nullable = true) |
| |-- name: string (nullable = true) |
| <BLANKLINE> |
| """ |
| print(self._jdf.schema().treeString()) |
| |
| def explain(self, extended=None, mode=None): |
| """Prints the (logical and physical) plans to the console for debugging purpose. |
| |
| .. versionadded:: 1.3.0 |
| |
| parameters |
| ---------- |
| extended : bool, optional |
| default ``False``. If ``False``, prints only the physical plan. |
| When this is a string without specifying the ``mode``, it works as the mode is |
| specified. |
| mode : str, optional |
| specifies the expected output format of plans. |
| |
| * ``simple``: Print only a physical plan. |
| * ``extended``: Print both logical and physical plans. |
| * ``codegen``: Print a physical plan and generated codes if they are available. |
| * ``cost``: Print a logical plan and statistics if they are available. |
| * ``formatted``: Split explain output into two sections: a physical plan outline \ |
| and node details. |
| |
| .. versionchanged:: 3.0.0 |
| Added optional argument `mode` to specify the expected output format of plans. |
| |
| Examples |
| -------- |
| >>> df.explain() |
| == Physical Plan == |
| *(1) Scan ExistingRDD[age#0,name#1] |
| |
| >>> df.explain(True) |
| == Parsed Logical Plan == |
| ... |
| == Analyzed Logical Plan == |
| ... |
| == Optimized Logical Plan == |
| ... |
| == Physical Plan == |
| ... |
| |
| >>> df.explain(mode="formatted") |
| == Physical Plan == |
| * Scan ExistingRDD (1) |
| (1) Scan ExistingRDD [codegen id : 1] |
| Output [2]: [age#0, name#1] |
| ... |
| |
| >>> df.explain("cost") |
| == Optimized Logical Plan == |
| ...Statistics... |
| ... |
| """ |
| |
| if extended is not None and mode is not None: |
| raise Exception("extended and mode should not be set together.") |
| |
| # For the no argument case: df.explain() |
| is_no_argument = extended is None and mode is None |
| |
| # For the cases below: |
| # explain(True) |
| # explain(extended=False) |
| is_extended_case = isinstance(extended, bool) and mode is None |
| |
| # For the case when extended is mode: |
| # df.explain("formatted") |
| is_extended_as_mode = isinstance(extended, str) and mode is None |
| |
| # For the mode specified: |
| # df.explain(mode="formatted") |
| is_mode_case = extended is None and isinstance(mode, str) |
| |
| if not (is_no_argument or is_extended_case or is_extended_as_mode or is_mode_case): |
| argtypes = [ |
| str(type(arg)) for arg in [extended, mode] if arg is not None] |
| raise TypeError( |
| "extended (optional) and mode (optional) should be a string " |
| "and bool; however, got [%s]." % ", ".join(argtypes)) |
| |
| # Sets an explain mode depending on a given argument |
| if is_no_argument: |
| explain_mode = "simple" |
| elif is_extended_case: |
| explain_mode = "extended" if extended else "simple" |
| elif is_mode_case: |
| explain_mode = mode |
| elif is_extended_as_mode: |
| explain_mode = extended |
| |
| print(self._sc._jvm.PythonSQLUtils.explainString(self._jdf.queryExecution(), explain_mode)) |
| |
| def exceptAll(self, other): |
| """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but |
| not in another :class:`DataFrame` while preserving duplicates. |
| |
| This is equivalent to `EXCEPT ALL` in SQL. |
| As standard in SQL, this function resolves columns by position (not by name). |
| |
| .. versionadded:: 2.4.0 |
| |
| Examples |
| -------- |
| >>> df1 = spark.createDataFrame( |
| ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) |
| >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) |
| |
| >>> df1.exceptAll(df2).show() |
| +---+---+ |
| | C1| C2| |
| +---+---+ |
| | a| 1| |
| | a| 1| |
| | a| 2| |
| | c| 4| |
| +---+---+ |
| |
| """ |
| return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx) |
| |
| @since(1.3) |
| def isLocal(self): |
| """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally |
| (without any Spark executors). |
| """ |
| return self._jdf.isLocal() |
| |
| @property |
| def isStreaming(self): |
| """Returns ``True`` if this :class:`Dataset` contains one or more sources that continuously |
| return data as it arrives. A :class:`Dataset` that reads data from a streaming source |
| must be executed as a :class:`StreamingQuery` using the :func:`start` method in |
| :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or |
| :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming |
| source present. |
| |
| .. versionadded:: 2.0.0 |
| |
| Notes |
| ----- |
| This API is evolving. |
| """ |
| return self._jdf.isStreaming() |
| |
| def show(self, n=20, truncate=True, vertical=False): |
| """Prints the first ``n`` rows to the console. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| n : int, optional |
| Number of rows to show. |
| truncate : bool, optional |
| If set to ``True``, truncate strings longer than 20 chars by default. |
| If set to a number greater than one, truncates long strings to length ``truncate`` |
| and align cells right. |
| vertical : bool, optional |
| If set to ``True``, print output rows vertically (one line |
| per column value). |
| |
| Examples |
| -------- |
| >>> df |
| DataFrame[age: int, name: string] |
| >>> df.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| >>> df.show(truncate=3) |
| +---+----+ |
| |age|name| |
| +---+----+ |
| | 2| Ali| |
| | 5| Bob| |
| +---+----+ |
| >>> df.show(vertical=True) |
| -RECORD 0----- |
| age | 2 |
| name | Alice |
| -RECORD 1----- |
| age | 5 |
| name | Bob |
| """ |
| if isinstance(truncate, bool) and truncate: |
| print(self._jdf.showString(n, 20, vertical)) |
| else: |
| print(self._jdf.showString(n, int(truncate), vertical)) |
| |
| def __repr__(self): |
| if not self._support_repr_html and self.sql_ctx._conf.isReplEagerEvalEnabled(): |
| vertical = False |
| return self._jdf.showString( |
| self.sql_ctx._conf.replEagerEvalMaxNumRows(), |
| self.sql_ctx._conf.replEagerEvalTruncate(), vertical) |
| else: |
| return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) |
| |
| def _repr_html_(self): |
| """Returns a :class:`DataFrame` with html code when you enabled eager evaluation |
| by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are |
| using support eager evaluation with HTML. |
| """ |
| if not self._support_repr_html: |
| self._support_repr_html = True |
| if self.sql_ctx._conf.isReplEagerEvalEnabled(): |
| max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) |
| sock_info = self._jdf.getRowsToPython( |
| max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) |
| rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) |
| head = rows[0] |
| row_data = rows[1:] |
| has_more_data = len(row_data) > max_num_rows |
| row_data = row_data[:max_num_rows] |
| |
| html = "<table border='1'>\n" |
| # generate table head |
| html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: html_escape(x), head)) |
| # generate table rows |
| for row in row_data: |
| html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( |
| map(lambda x: html_escape(x), row)) |
| html += "</table>\n" |
| if has_more_data: |
| html += "only showing top %d %s\n" % ( |
| max_num_rows, "row" if max_num_rows == 1 else "rows") |
| return html |
| else: |
| return None |
| |
| def checkpoint(self, eager=True): |
| """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the |
| logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms |
| where the plan may grow exponentially. It will be saved to files inside the checkpoint |
| directory set with :meth:`SparkContext.setCheckpointDir`. |
| |
| .. versionadded:: 2.1.0 |
| |
| Parameters |
| ---------- |
| eager : bool, optional |
| Whether to checkpoint this :class:`DataFrame` immediately |
| |
| Notes |
| ----- |
| This API is experimental. |
| """ |
| jdf = self._jdf.checkpoint(eager) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def localCheckpoint(self, eager=True): |
| """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to |
| truncate the logical plan of this :class:`DataFrame`, which is especially useful in |
| iterative algorithms where the plan may grow exponentially. Local checkpoints are |
| stored in the executors using the caching subsystem and therefore they are not reliable. |
| |
| .. versionadded:: 2.3.0 |
| |
| Parameters |
| ---------- |
| eager : bool, optional |
| Whether to checkpoint this :class:`DataFrame` immediately |
| |
| Notes |
| ----- |
| This API is experimental. |
| """ |
| jdf = self._jdf.localCheckpoint(eager) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def withWatermark(self, eventTime, delayThreshold): |
| """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point |
| in time before which we assume no more late data is going to arrive. |
| |
| Spark will use this watermark for several purposes: |
| - To know when a given time window aggregation can be finalized and thus can be emitted |
| when using output modes that do not allow updates. |
| |
| - To minimize the amount of state that we need to keep for on-going aggregations. |
| |
| The current watermark is computed by looking at the `MAX(eventTime)` seen across |
| all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost |
| of coordinating this value across partitions, the actual watermark used is only guaranteed |
| to be at least `delayThreshold` behind the actual event time. In some cases we may still |
| process records that arrive more than `delayThreshold` late. |
| |
| .. versionadded:: 2.1.0 |
| |
| Parameters |
| ---------- |
| eventTime : str or :class:`Column` |
| the name of the column that contains the event time of the row. |
| delayThreshold : str |
| the minimum delay to wait to data to arrive late, relative to the |
| latest record that has been processed in the form of an interval |
| (e.g. "1 minute" or "5 hours"). |
| |
| Notes |
| ----- |
| This API is evolving. |
| |
| >>> from pyspark.sql.functions import timestamp_seconds |
| >>> sdf.select( |
| ... 'name', |
| ... timestamp_seconds(sdf.time).alias('time')).withWatermark('time', '10 minutes') |
| DataFrame[name: string, time: timestamp] |
| """ |
| if not eventTime or type(eventTime) is not str: |
| raise TypeError("eventTime should be provided as a string") |
| if not delayThreshold or type(delayThreshold) is not str: |
| raise TypeError("delayThreshold should be provided as a string interval") |
| jdf = self._jdf.withWatermark(eventTime, delayThreshold) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def hint(self, name, *parameters): |
| """Specifies some hint on the current :class:`DataFrame`. |
| |
| .. versionadded:: 2.2.0 |
| |
| Parameters |
| ---------- |
| name : str |
| A name of the hint. |
| parameters : str, list, float or int |
| Optional parameters. |
| |
| Returns |
| ------- |
| :class:`DataFrame` |
| |
| Examples |
| -------- |
| >>> df.join(df2.hint("broadcast"), "name").show() |
| +----+---+------+ |
| |name|age|height| |
| +----+---+------+ |
| | Bob| 5| 85| |
| +----+---+------+ |
| """ |
| if len(parameters) == 1 and isinstance(parameters[0], list): |
| parameters = parameters[0] |
| |
| if not isinstance(name, str): |
| raise TypeError("name should be provided as str, got {0}".format(type(name))) |
| |
| allowed_types = (str, list, float, int) |
| for p in parameters: |
| if not isinstance(p, allowed_types): |
| raise TypeError( |
| "all parameters should be in {0}, got {1} of type {2}".format( |
| allowed_types, p, type(p))) |
| |
| jdf = self._jdf.hint(name, self._jseq(parameters)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def count(self): |
| """Returns the number of rows in this :class:`DataFrame`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.count() |
| 2 |
| """ |
| return int(self._jdf.count()) |
| |
| def collect(self): |
| """Returns all the records as a list of :class:`Row`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.collect() |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| """ |
| with SCCallSiteSync(self._sc) as css: |
| sock_info = self._jdf.collectToPython() |
| return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) |
| |
| def toLocalIterator(self, prefetchPartitions=False): |
| """ |
| Returns an iterator that contains all of the rows in this :class:`DataFrame`. |
| The iterator will consume as much memory as the largest partition in this |
| :class:`DataFrame`. With prefetch it may consume up to the memory of the 2 largest |
| partitions. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| prefetchPartitions : bool, optional |
| If Spark should pre-fetch the next partition before it is needed. |
| |
| Examples |
| -------- |
| >>> list(df.toLocalIterator()) |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| """ |
| with SCCallSiteSync(self._sc) as css: |
| sock_info = self._jdf.toPythonIterator(prefetchPartitions) |
| return _local_iterator_from_socket(sock_info, BatchedSerializer(PickleSerializer())) |
| |
| def limit(self, num): |
| """Limits the result count to the number specified. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.limit(1).collect() |
| [Row(age=2, name='Alice')] |
| >>> df.limit(0).collect() |
| [] |
| """ |
| jdf = self._jdf.limit(num) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def take(self, num): |
| """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.take(2) |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| """ |
| return self.limit(num).collect() |
| |
| def tail(self, num): |
| """ |
| Returns the last ``num`` rows as a :class:`list` of :class:`Row`. |
| |
| Running tail requires moving data into the application's driver process, and doing so with |
| a very large ``num`` can crash the driver process with OutOfMemoryError. |
| |
| .. versionadded:: 3.0.0 |
| |
| Examples |
| -------- |
| >>> df.tail(1) |
| [Row(age=5, name='Bob')] |
| """ |
| with SCCallSiteSync(self._sc): |
| sock_info = self._jdf.tailToPython(num) |
| return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) |
| |
| def foreach(self, f): |
| """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. |
| |
| This is a shorthand for ``df.rdd.foreach()``. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> def f(person): |
| ... print(person.name) |
| >>> df.foreach(f) |
| """ |
| self.rdd.foreach(f) |
| |
| def foreachPartition(self, f): |
| """Applies the ``f`` function to each partition of this :class:`DataFrame`. |
| |
| This a shorthand for ``df.rdd.foreachPartition()``. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> def f(people): |
| ... for person in people: |
| ... print(person.name) |
| >>> df.foreachPartition(f) |
| """ |
| self.rdd.foreachPartition(f) |
| |
| def cache(self): |
| """Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK`). |
| |
| .. versionadded:: 1.3.0 |
| |
| Notes |
| ----- |
| The default storage level has changed to `MEMORY_AND_DISK` to match Scala in 2.0. |
| """ |
| self.is_cached = True |
| self._jdf.cache() |
| return self |
| |
| def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK_DESER): |
| """Sets the storage level to persist the contents of the :class:`DataFrame` across |
| operations after the first time it is computed. This can only be used to assign |
| a new storage level if the :class:`DataFrame` does not have a storage level set yet. |
| If no storage level is specified defaults to (`MEMORY_AND_DISK_DESER`) |
| |
| .. versionadded:: 1.3.0 |
| |
| Notes |
| ----- |
| The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. |
| """ |
| self.is_cached = True |
| javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) |
| self._jdf.persist(javaStorageLevel) |
| return self |
| |
| @property |
| def storageLevel(self): |
| """Get the :class:`DataFrame`'s current storage level. |
| |
| .. versionadded:: 2.1.0 |
| |
| Examples |
| -------- |
| >>> df.storageLevel |
| StorageLevel(False, False, False, False, 1) |
| >>> df.cache().storageLevel |
| StorageLevel(True, True, False, True, 1) |
| >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel |
| StorageLevel(True, False, False, False, 2) |
| """ |
| java_storage_level = self._jdf.storageLevel() |
| storage_level = StorageLevel(java_storage_level.useDisk(), |
| java_storage_level.useMemory(), |
| java_storage_level.useOffHeap(), |
| java_storage_level.deserialized(), |
| java_storage_level.replication()) |
| return storage_level |
| |
| def unpersist(self, blocking=False): |
| """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from |
| memory and disk. |
| |
| .. versionadded:: 1.3.0 |
| |
| Notes |
| ----- |
| `blocking` default has changed to ``False`` to match Scala in 2.0. |
| """ |
| self.is_cached = False |
| self._jdf.unpersist(blocking) |
| return self |
| |
| def coalesce(self, numPartitions): |
| """ |
| Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. |
| |
| Similar to coalesce defined on an :class:`RDD`, this operation results in a |
| narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, |
| there will not be a shuffle, instead each of the 100 new partitions will |
| claim 10 of the current partitions. If a larger number of partitions is requested, |
| it will stay at the current number of partitions. |
| |
| However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, |
| this may result in your computation taking place on fewer nodes than |
| you like (e.g. one node in the case of numPartitions = 1). To avoid this, |
| you can call repartition(). This will add a shuffle step, but means the |
| current upstream partitions will be executed in parallel (per whatever |
| the current partitioning is). |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| numPartitions : int |
| specify the target number of partitions |
| |
| Examples |
| -------- |
| >>> df.coalesce(1).rdd.getNumPartitions() |
| 1 |
| """ |
| return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) |
| |
| def repartition(self, numPartitions, *cols): |
| """ |
| Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The |
| resulting :class:`DataFrame` is hash partitioned. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| numPartitions : int |
| can be an int to specify the target number of partitions or a Column. |
| If it is a Column, it will be used as the first partitioning column. If not specified, |
| the default number of partitions is used. |
| cols : str or :class:`Column` |
| partitioning columns. |
| |
| .. versionchanged:: 1.6 |
| Added optional arguments to specify the partitioning columns. Also made numPartitions |
| optional if partitioning columns are specified. |
| |
| Examples |
| -------- |
| >>> df.repartition(10).rdd.getNumPartitions() |
| 10 |
| >>> data = df.union(df).repartition("age") |
| >>> data.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 5| Bob| |
| | 5| Bob| |
| | 2|Alice| |
| | 2|Alice| |
| +---+-----+ |
| >>> data = data.repartition(7, "age") |
| >>> data.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| >>> data.rdd.getNumPartitions() |
| 7 |
| >>> data = data.repartition("name", "age") |
| >>> data.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 5| Bob| |
| | 5| Bob| |
| | 2|Alice| |
| | 2|Alice| |
| +---+-----+ |
| """ |
| if isinstance(numPartitions, int): |
| if len(cols) == 0: |
| return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) |
| else: |
| return DataFrame( |
| self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) |
| elif isinstance(numPartitions, (str, Column)): |
| cols = (numPartitions, ) + cols |
| return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) |
| else: |
| raise TypeError("numPartitions should be an int or Column") |
| |
| def repartitionByRange(self, numPartitions, *cols): |
| """ |
| Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The |
| resulting :class:`DataFrame` is range partitioned. |
| |
| At least one partition-by expression must be specified. |
| When no explicit sort order is specified, "ascending nulls first" is assumed. |
| |
| .. versionadded:: 2.4.0 |
| |
| Parameters |
| ---------- |
| numPartitions : int |
| can be an int to specify the target number of partitions or a Column. |
| If it is a Column, it will be used as the first partitioning column. If not specified, |
| the default number of partitions is used. |
| cols : str or :class:`Column` |
| partitioning columns. |
| |
| Notes |
| ----- |
| Due to performance reasons this method uses sampling to estimate the ranges. |
| Hence, the output may not be consistent, since sampling can return different values. |
| The sample size can be controlled by the config |
| `spark.sql.execution.rangeExchange.sampleSizePerPartition`. |
| |
| Examples |
| -------- |
| >>> df.repartitionByRange(2, "age").rdd.getNumPartitions() |
| 2 |
| >>> df.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| >>> df.repartitionByRange(1, "age").rdd.getNumPartitions() |
| 1 |
| >>> data = df.repartitionByRange("age") |
| >>> df.show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| """ |
| if isinstance(numPartitions, int): |
| if len(cols) == 0: |
| return ValueError("At least one partition-by expression must be specified.") |
| else: |
| return DataFrame( |
| self._jdf.repartitionByRange(numPartitions, self._jcols(*cols)), self.sql_ctx) |
| elif isinstance(numPartitions, (str, Column)): |
| cols = (numPartitions,) + cols |
| return DataFrame(self._jdf.repartitionByRange(self._jcols(*cols)), self.sql_ctx) |
| else: |
| raise TypeError("numPartitions should be an int, string or Column") |
| |
| def distinct(self): |
| """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.distinct().count() |
| 2 |
| """ |
| return DataFrame(self._jdf.distinct(), self.sql_ctx) |
| |
| def sample(self, withReplacement=None, fraction=None, seed=None): |
| """Returns a sampled subset of this :class:`DataFrame`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| withReplacement : bool, optional |
| Sample with replacement or not (default ``False``). |
| fraction : float, optional |
| Fraction of rows to generate, range [0.0, 1.0]. |
| seed : int, optional |
| Seed for sampling (default a random seed). |
| |
| Notes |
| ----- |
| This is not guaranteed to provide exactly the fraction specified of the total |
| count of the given :class:`DataFrame`. |
| |
| `fraction` is required and, `withReplacement` and `seed` are optional. |
| |
| Examples |
| -------- |
| >>> df = spark.range(10) |
| >>> df.sample(0.5, 3).count() |
| 7 |
| >>> df.sample(fraction=0.5, seed=3).count() |
| 7 |
| >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() |
| 1 |
| >>> df.sample(1.0).count() |
| 10 |
| >>> df.sample(fraction=1.0).count() |
| 10 |
| >>> df.sample(False, fraction=1.0).count() |
| 10 |
| """ |
| |
| # For the cases below: |
| # sample(True, 0.5 [, seed]) |
| # sample(True, fraction=0.5 [, seed]) |
| # sample(withReplacement=False, fraction=0.5 [, seed]) |
| is_withReplacement_set = \ |
| type(withReplacement) == bool and isinstance(fraction, float) |
| |
| # For the case below: |
| # sample(faction=0.5 [, seed]) |
| is_withReplacement_omitted_kwargs = \ |
| withReplacement is None and isinstance(fraction, float) |
| |
| # For the case below: |
| # sample(0.5 [, seed]) |
| is_withReplacement_omitted_args = isinstance(withReplacement, float) |
| |
| if not (is_withReplacement_set |
| or is_withReplacement_omitted_kwargs |
| or is_withReplacement_omitted_args): |
| argtypes = [ |
| str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] |
| raise TypeError( |
| "withReplacement (optional), fraction (required) and seed (optional)" |
| " should be a bool, float and number; however, " |
| "got [%s]." % ", ".join(argtypes)) |
| |
| if is_withReplacement_omitted_args: |
| if fraction is not None: |
| seed = fraction |
| fraction = withReplacement |
| withReplacement = None |
| |
| seed = int(seed) if seed is not None else None |
| args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] |
| jdf = self._jdf.sample(*args) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def sampleBy(self, col, fractions, seed=None): |
| """ |
| Returns a stratified sample without replacement based on the |
| fraction given on each stratum. |
| |
| .. versionadded:: 1.5.0 |
| |
| Parameters |
| ---------- |
| col : :class:`Column` or str |
| column that defines strata |
| |
| .. versionchanged:: 3.0 |
| Added sampling by a column of :class:`Column` |
| fractions : dict |
| sampling fraction for each stratum. If a stratum is not |
| specified, we treat its fraction as zero. |
| seed : int, optional |
| random seed |
| |
| Returns |
| ------- |
| a new :class:`DataFrame` that represents the stratified sample |
| |
| Examples |
| -------- |
| >>> from pyspark.sql.functions import col |
| >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) |
| >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) |
| >>> sampled.groupBy("key").count().orderBy("key").show() |
| +---+-----+ |
| |key|count| |
| +---+-----+ |
| | 0| 3| |
| | 1| 6| |
| +---+-----+ |
| >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() |
| 33 |
| """ |
| if isinstance(col, str): |
| col = Column(col) |
| elif not isinstance(col, Column): |
| raise ValueError("col must be a string or a column, but got %r" % type(col)) |
| if not isinstance(fractions, dict): |
| raise ValueError("fractions must be a dict but got %r" % type(fractions)) |
| for k, v in fractions.items(): |
| if not isinstance(k, (float, int, str)): |
| raise ValueError("key must be float, int, or string, but got %r" % type(k)) |
| fractions[k] = float(v) |
| col = col._jc |
| seed = seed if seed is not None else random.randint(0, sys.maxsize) |
| return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) |
| |
| def randomSplit(self, weights, seed=None): |
| """Randomly splits this :class:`DataFrame` with the provided weights. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| weights : list |
| list of doubles as weights with which to split the :class:`DataFrame`. |
| Weights will be normalized if they don't sum up to 1.0. |
| seed : int, optional |
| The seed for sampling. |
| |
| Examples |
| -------- |
| >>> splits = df4.randomSplit([1.0, 2.0], 24) |
| >>> splits[0].count() |
| 2 |
| |
| >>> splits[1].count() |
| 2 |
| """ |
| for w in weights: |
| if w < 0.0: |
| raise ValueError("Weights must be positive. Found weight value: %s" % w) |
| seed = seed if seed is not None else random.randint(0, sys.maxsize) |
| rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), int(seed)) |
| return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] |
| |
| @property |
| def dtypes(self): |
| """Returns all column names and their data types as a list. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.dtypes |
| [('age', 'int'), ('name', 'string')] |
| """ |
| return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] |
| |
| @property |
| def columns(self): |
| """Returns all column names as a list. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.columns |
| ['age', 'name'] |
| """ |
| return [f.name for f in self.schema.fields] |
| |
| def colRegex(self, colName): |
| """ |
| Selects column based on the column name specified as a regex and returns it |
| as :class:`Column`. |
| |
| .. versionadded:: 2.3.0 |
| |
| Parameters |
| ---------- |
| colName : str |
| string, column name specified as a regex. |
| |
| Examples |
| -------- |
| >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) |
| >>> df.select(df.colRegex("`(Col1)?+.+`")).show() |
| +----+ |
| |Col2| |
| +----+ |
| | 1| |
| | 2| |
| | 3| |
| +----+ |
| """ |
| if not isinstance(colName, str): |
| raise ValueError("colName should be provided as string") |
| jc = self._jdf.colRegex(colName) |
| return Column(jc) |
| |
| def alias(self, alias): |
| """Returns a new :class:`DataFrame` with an alias set. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| alias : str |
| an alias name to be set for the :class:`DataFrame`. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql.functions import * |
| >>> df_as1 = df.alias("df_as1") |
| >>> df_as2 = df.alias("df_as2") |
| >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') |
| >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age") \ |
| .sort(desc("df_as1.name")).collect() |
| [Row(name='Bob', name='Bob', age=5), Row(name='Alice', name='Alice', age=2)] |
| """ |
| assert isinstance(alias, str), "alias should be a string" |
| return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) |
| |
| def crossJoin(self, other): |
| """Returns the cartesian product with another :class:`DataFrame`. |
| |
| .. versionadded:: 2.1.0 |
| |
| Parameters |
| ---------- |
| other : :class:`DataFrame` |
| Right side of the cartesian product. |
| |
| Examples |
| -------- |
| >>> df.select("age", "name").collect() |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| >>> df2.select("name", "height").collect() |
| [Row(name='Tom', height=80), Row(name='Bob', height=85)] |
| >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() |
| [Row(age=2, name='Alice', height=80), Row(age=2, name='Alice', height=85), |
| Row(age=5, name='Bob', height=80), Row(age=5, name='Bob', height=85)] |
| """ |
| |
| jdf = self._jdf.crossJoin(other._jdf) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def join(self, other, on=None, how=None): |
| """Joins with another :class:`DataFrame`, using the given join expression. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| other : :class:`DataFrame` |
| Right side of the join |
| on : str, list or :class:`Column`, optional |
| a string for the join column name, a list of column names, |
| a join expression (Column), or a list of Columns. |
| If `on` is a string or a list of strings indicating the name of the join column(s), |
| the column(s) must exist on both sides, and this performs an equi-join. |
| how : str, optional |
| default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, |
| ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, |
| ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, |
| ``anti``, ``leftanti`` and ``left_anti``. |
| |
| Examples |
| -------- |
| The following performs a full outer join between ``df1`` and ``df2``. |
| |
| >>> from pyspark.sql.functions import desc |
| >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height) \ |
| .sort(desc("name")).collect() |
| [Row(name='Bob', height=85), Row(name='Alice', height=None), Row(name=None, height=80)] |
| |
| >>> df.join(df2, 'name', 'outer').select('name', 'height').sort(desc("name")).collect() |
| [Row(name='Tom', height=80), Row(name='Bob', height=85), Row(name='Alice', height=None)] |
| |
| >>> cond = [df.name == df3.name, df.age == df3.age] |
| >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() |
| [Row(name='Alice', age=2), Row(name='Bob', age=5)] |
| |
| >>> df.join(df2, 'name').select(df.name, df2.height).collect() |
| [Row(name='Bob', height=85)] |
| |
| >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() |
| [Row(name='Bob', age=5)] |
| """ |
| |
| if on is not None and not isinstance(on, list): |
| on = [on] |
| |
| if on is not None: |
| if isinstance(on[0], str): |
| on = self._jseq(on) |
| else: |
| assert isinstance(on[0], Column), "on should be Column or list of Column" |
| on = reduce(lambda x, y: x.__and__(y), on) |
| on = on._jc |
| |
| if on is None and how is None: |
| jdf = self._jdf.join(other._jdf) |
| else: |
| if how is None: |
| how = "inner" |
| if on is None: |
| on = self._jseq([]) |
| assert isinstance(how, str), "how should be a string" |
| jdf = self._jdf.join(other._jdf, on, how) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def sortWithinPartitions(self, *cols, **kwargs): |
| """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). |
| |
| .. versionadded:: 1.6.0 |
| |
| Parameters |
| ---------- |
| cols : str, list or :class:`Column`, optional |
| list of :class:`Column` or column names to sort by. |
| |
| Other Parameters |
| ---------------- |
| ascending : bool or list, optional |
| boolean or list of boolean (default ``True``). |
| Sort ascending vs. descending. Specify list for multiple sort orders. |
| If a list is specified, length of the list must equal length of the `cols`. |
| |
| Examples |
| -------- |
| >>> df.sortWithinPartitions("age", ascending=False).show() |
| +---+-----+ |
| |age| name| |
| +---+-----+ |
| | 2|Alice| |
| | 5| Bob| |
| +---+-----+ |
| """ |
| jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def sort(self, *cols, **kwargs): |
| """Returns a new :class:`DataFrame` sorted by the specified column(s). |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| cols : str, list, or :class:`Column`, optional |
| list of :class:`Column` or column names to sort by. |
| |
| Other Parameters |
| ---------------- |
| ascending : bool or list, optional |
| boolean or list of boolean (default ``True``). |
| Sort ascending vs. descending. Specify list for multiple sort orders. |
| If a list is specified, length of the list must equal length of the `cols`. |
| |
| Examples |
| -------- |
| >>> df.sort(df.age.desc()).collect() |
| [Row(age=5, name='Bob'), Row(age=2, name='Alice')] |
| >>> df.sort("age", ascending=False).collect() |
| [Row(age=5, name='Bob'), Row(age=2, name='Alice')] |
| >>> df.orderBy(df.age.desc()).collect() |
| [Row(age=5, name='Bob'), Row(age=2, name='Alice')] |
| >>> from pyspark.sql.functions import * |
| >>> df.sort(asc("age")).collect() |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| >>> df.orderBy(desc("age"), "name").collect() |
| [Row(age=5, name='Bob'), Row(age=2, name='Alice')] |
| >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() |
| [Row(age=5, name='Bob'), Row(age=2, name='Alice')] |
| """ |
| jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| orderBy = sort |
| |
| def _jseq(self, cols, converter=None): |
| """Return a JVM Seq of Columns from a list of Column or names""" |
| return _to_seq(self.sql_ctx._sc, cols, converter) |
| |
| def _jmap(self, jm): |
| """Return a JVM Scala Map from a dict""" |
| return _to_scala_map(self.sql_ctx._sc, jm) |
| |
| def _jcols(self, *cols): |
| """Return a JVM Seq of Columns from a list of Column or column names |
| |
| If `cols` has only one list in it, cols[0] will be used as the list. |
| """ |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| return self._jseq(cols, _to_java_column) |
| |
| def _sort_cols(self, cols, kwargs): |
| """ Return a JVM Seq of Columns that describes the sort order |
| """ |
| if not cols: |
| raise ValueError("should sort by at least one column") |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| jcols = [_to_java_column(c) for c in cols] |
| ascending = kwargs.get('ascending', True) |
| if isinstance(ascending, (bool, int)): |
| if not ascending: |
| jcols = [jc.desc() for jc in jcols] |
| elif isinstance(ascending, list): |
| jcols = [jc if asc else jc.desc() |
| for asc, jc in zip(ascending, jcols)] |
| else: |
| raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) |
| return self._jseq(jcols) |
| |
| def describe(self, *cols): |
| """Computes basic statistics for numeric and string columns. |
| |
| .. versionadded:: 1.3.1 |
| |
| This include count, mean, stddev, min, and max. If no columns are |
| given, this function computes statistics for all numerical or string columns. |
| |
| Notes |
| ----- |
| This function is meant for exploratory data analysis, as we make no |
| guarantee about the backward compatibility of the schema of the resulting |
| :class:`DataFrame`. |
| |
| Use summary for expanded statistics and control over which statistics to compute. |
| |
| Examples |
| -------- |
| >>> df.describe(['age']).show() |
| +-------+------------------+ |
| |summary| age| |
| +-------+------------------+ |
| | count| 2| |
| | mean| 3.5| |
| | stddev|2.1213203435596424| |
| | min| 2| |
| | max| 5| |
| +-------+------------------+ |
| >>> df.describe().show() |
| +-------+------------------+-----+ |
| |summary| age| name| |
| +-------+------------------+-----+ |
| | count| 2| 2| |
| | mean| 3.5| null| |
| | stddev|2.1213203435596424| null| |
| | min| 2|Alice| |
| | max| 5| Bob| |
| +-------+------------------+-----+ |
| |
| See Also |
| -------- |
| DataFrame.summary |
| """ |
| if len(cols) == 1 and isinstance(cols[0], list): |
| cols = cols[0] |
| jdf = self._jdf.describe(self._jseq(cols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def summary(self, *statistics): |
| """Computes specified statistics for numeric and string columns. Available statistics are: |
| - count |
| - mean |
| - stddev |
| - min |
| - max |
| - arbitrary approximate percentiles specified as a percentage (e.g., 75%) |
| |
| If no statistics are given, this function computes count, mean, stddev, min, |
| approximate quartiles (percentiles at 25%, 50%, and 75%), and max. |
| |
| .. versionadded:: 2.3.0 |
| |
| Notes |
| ----- |
| This function is meant for exploratory data analysis, as we make no |
| guarantee about the backward compatibility of the schema of the resulting |
| :class:`DataFrame`. |
| |
| Examples |
| -------- |
| >>> df.summary().show() |
| +-------+------------------+-----+ |
| |summary| age| name| |
| +-------+------------------+-----+ |
| | count| 2| 2| |
| | mean| 3.5| null| |
| | stddev|2.1213203435596424| null| |
| | min| 2|Alice| |
| | 25%| 2| null| |
| | 50%| 2| null| |
| | 75%| 5| null| |
| | max| 5| Bob| |
| +-------+------------------+-----+ |
| |
| >>> df.summary("count", "min", "25%", "75%", "max").show() |
| +-------+---+-----+ |
| |summary|age| name| |
| +-------+---+-----+ |
| | count| 2| 2| |
| | min| 2|Alice| |
| | 25%| 2| null| |
| | 75%| 5| null| |
| | max| 5| Bob| |
| +-------+---+-----+ |
| |
| To do a summary for specific columns first select them: |
| |
| >>> df.select("age", "name").summary("count").show() |
| +-------+---+----+ |
| |summary|age|name| |
| +-------+---+----+ |
| | count| 2| 2| |
| +-------+---+----+ |
| |
| See Also |
| -------- |
| DataFrame.display |
| """ |
| if len(statistics) == 1 and isinstance(statistics[0], list): |
| statistics = statistics[0] |
| jdf = self._jdf.summary(self._jseq(statistics)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def head(self, n=None): |
| """Returns the first ``n`` rows. |
| |
| .. versionadded:: 1.3.0 |
| |
| Notes |
| ----- |
| This method should only be used if the resulting array is expected |
| to be small, as all the data is loaded into the driver's memory. |
| |
| Parameters |
| ---------- |
| n : int, optional |
| default 1. Number of rows to return. |
| |
| Returns |
| ------- |
| If n is greater than 1, return a list of :class:`Row`. |
| If n is 1, return a single Row. |
| |
| Examples |
| -------- |
| >>> df.head() |
| Row(age=2, name='Alice') |
| >>> df.head(1) |
| [Row(age=2, name='Alice')] |
| """ |
| if n is None: |
| rs = self.head(1) |
| return rs[0] if rs else None |
| return self.take(n) |
| |
| def first(self): |
| """Returns the first row as a :class:`Row`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.first() |
| Row(age=2, name='Alice') |
| """ |
| return self.head() |
| |
| def __getitem__(self, item): |
| """Returns the column as a :class:`Column`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.select(df['age']).collect() |
| [Row(age=2), Row(age=5)] |
| >>> df[ ["name", "age"]].collect() |
| [Row(name='Alice', age=2), Row(name='Bob', age=5)] |
| >>> df[ df.age > 3 ].collect() |
| [Row(age=5, name='Bob')] |
| >>> df[df[0] > 3].collect() |
| [Row(age=5, name='Bob')] |
| """ |
| if isinstance(item, str): |
| jc = self._jdf.apply(item) |
| return Column(jc) |
| elif isinstance(item, Column): |
| return self.filter(item) |
| elif isinstance(item, (list, tuple)): |
| return self.select(*item) |
| elif isinstance(item, int): |
| jc = self._jdf.apply(self.columns[item]) |
| return Column(jc) |
| else: |
| raise TypeError("unexpected item type: %s" % type(item)) |
| |
| def __getattr__(self, name): |
| """Returns the :class:`Column` denoted by ``name``. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.select(df.age).collect() |
| [Row(age=2), Row(age=5)] |
| """ |
| if name not in self.columns: |
| raise AttributeError( |
| "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) |
| jc = self._jdf.apply(name) |
| return Column(jc) |
| |
| def select(self, *cols): |
| """Projects a set of expressions and returns a new :class:`DataFrame`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| cols : str, :class:`Column`, or list |
| column names (string) or expressions (:class:`Column`). |
| If one of the column names is '*', that column is expanded to include all columns |
| in the current :class:`DataFrame`. |
| |
| Examples |
| -------- |
| >>> df.select('*').collect() |
| [Row(age=2, name='Alice'), Row(age=5, name='Bob')] |
| >>> df.select('name', 'age').collect() |
| [Row(name='Alice', age=2), Row(name='Bob', age=5)] |
| >>> df.select(df.name, (df.age + 10).alias('age')).collect() |
| [Row(name='Alice', age=12), Row(name='Bob', age=15)] |
| """ |
| jdf = self._jdf.select(self._jcols(*cols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def selectExpr(self, *expr): |
| """Projects a set of SQL expressions and returns a new :class:`DataFrame`. |
| |
| This is a variant of :func:`select` that accepts SQL expressions. |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.selectExpr("age * 2", "abs(age)").collect() |
| [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] |
| """ |
| if len(expr) == 1 and isinstance(expr[0], list): |
| expr = expr[0] |
| jdf = self._jdf.selectExpr(self._jseq(expr)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def filter(self, condition): |
| """Filters rows using the given condition. |
| |
| :func:`where` is an alias for :func:`filter`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| condition : :class:`Column` or str |
| a :class:`Column` of :class:`types.BooleanType` |
| or a string of SQL expression. |
| |
| Examples |
| -------- |
| >>> df.filter(df.age > 3).collect() |
| [Row(age=5, name='Bob')] |
| >>> df.where(df.age == 2).collect() |
| [Row(age=2, name='Alice')] |
| |
| >>> df.filter("age > 3").collect() |
| [Row(age=5, name='Bob')] |
| >>> df.where("age = 2").collect() |
| [Row(age=2, name='Alice')] |
| """ |
| if isinstance(condition, str): |
| jdf = self._jdf.filter(condition) |
| elif isinstance(condition, Column): |
| jdf = self._jdf.filter(condition._jc) |
| else: |
| raise TypeError("condition should be string or Column") |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def groupBy(self, *cols): |
| """Groups the :class:`DataFrame` using the specified columns, |
| so we can run aggregation on them. See :class:`GroupedData` |
| for all the available aggregate functions. |
| |
| :func:`groupby` is an alias for :func:`groupBy`. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| cols : list, str or :class:`Column` |
| columns to group by. |
| Each element should be a column name (string) or an expression (:class:`Column`). |
| |
| Examples |
| -------- |
| >>> df.groupBy().avg().collect() |
| [Row(avg(age)=3.5)] |
| >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) |
| [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] |
| >>> sorted(df.groupBy(df.name).avg().collect()) |
| [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] |
| >>> sorted(df.groupBy(['name', df.age]).count().collect()) |
| [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)] |
| """ |
| jgd = self._jdf.groupBy(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self) |
| |
| def rollup(self, *cols): |
| """ |
| Create a multi-dimensional rollup for the current :class:`DataFrame` using |
| the specified columns, so we can run aggregation on them. |
| |
| .. versionadded:: 1.4.0 |
| |
| Examples |
| -------- |
| >>> df.rollup("name", df.age).count().orderBy("name", "age").show() |
| +-----+----+-----+ |
| | name| age|count| |
| +-----+----+-----+ |
| | null|null| 2| |
| |Alice|null| 1| |
| |Alice| 2| 1| |
| | Bob|null| 1| |
| | Bob| 5| 1| |
| +-----+----+-----+ |
| """ |
| jgd = self._jdf.rollup(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self) |
| |
| def cube(self, *cols): |
| """ |
| Create a multi-dimensional cube for the current :class:`DataFrame` using |
| the specified columns, so we can run aggregations on them. |
| |
| .. versionadded:: 1.4.0 |
| |
| Examples |
| -------- |
| >>> df.cube("name", df.age).count().orderBy("name", "age").show() |
| +-----+----+-----+ |
| | name| age|count| |
| +-----+----+-----+ |
| | null|null| 2| |
| | null| 2| 1| |
| | null| 5| 1| |
| |Alice|null| 1| |
| |Alice| 2| 1| |
| | Bob|null| 1| |
| | Bob| 5| 1| |
| +-----+----+-----+ |
| """ |
| jgd = self._jdf.cube(self._jcols(*cols)) |
| from pyspark.sql.group import GroupedData |
| return GroupedData(jgd, self) |
| |
| def agg(self, *exprs): |
| """ Aggregate on the entire :class:`DataFrame` without groups |
| (shorthand for ``df.groupBy().agg()``). |
| |
| .. versionadded:: 1.3.0 |
| |
| Examples |
| -------- |
| >>> df.agg({"age": "max"}).collect() |
| [Row(max(age)=5)] |
| >>> from pyspark.sql import functions as F |
| >>> df.agg(F.min(df.age)).collect() |
| [Row(min(age)=2)] |
| """ |
| return self.groupBy().agg(*exprs) |
| |
| @since(2.0) |
| def union(self, other): |
| """ Return a new :class:`DataFrame` containing union of rows in this and another |
| :class:`DataFrame`. |
| |
| This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union |
| (that does deduplication of elements), use this function followed by :func:`distinct`. |
| |
| Also as standard in SQL, this function resolves columns by position (not by name). |
| """ |
| return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) |
| |
| @since(1.3) |
| def unionAll(self, other): |
| """ Return a new :class:`DataFrame` containing union of rows in this and another |
| :class:`DataFrame`. |
| |
| This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union |
| (that does deduplication of elements), use this function followed by :func:`distinct`. |
| |
| Also as standard in SQL, this function resolves columns by position (not by name). |
| """ |
| return self.union(other) |
| |
| def unionByName(self, other, allowMissingColumns=False): |
| """ Returns a new :class:`DataFrame` containing union of rows in this and another |
| :class:`DataFrame`. |
| |
| This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set |
| union (that does deduplication of elements), use this function followed by :func:`distinct`. |
| |
| .. versionadded:: 2.3.0 |
| |
| Examples |
| -------- |
| The difference between this function and :func:`union` is that this function |
| resolves columns by name (not by position): |
| |
| >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) |
| >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) |
| >>> df1.unionByName(df2).show() |
| +----+----+----+ |
| |col0|col1|col2| |
| +----+----+----+ |
| | 1| 2| 3| |
| | 6| 4| 5| |
| +----+----+----+ |
| |
| When the parameter `allowMissingColumns` is ``True``, the set of column names |
| in this and other :class:`DataFrame` can differ; missing columns will be filled with null. |
| Further, the missing columns of this :class:`DataFrame` will be added at the end |
| in the schema of the union result: |
| |
| >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) |
| >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col3"]) |
| >>> df1.unionByName(df2, allowMissingColumns=True).show() |
| +----+----+----+----+ |
| |col0|col1|col2|col3| |
| +----+----+----+----+ |
| | 1| 2| 3|null| |
| |null| 4| 5| 6| |
| +----+----+----+----+ |
| |
| .. versionchanged:: 3.1.0 |
| Added optional argument `allowMissingColumns` to specify whether to allow |
| missing columns. |
| """ |
| return DataFrame(self._jdf.unionByName(other._jdf, allowMissingColumns), self.sql_ctx) |
| |
| @since(1.3) |
| def intersect(self, other): |
| """ Return a new :class:`DataFrame` containing rows only in |
| both this :class:`DataFrame` and another :class:`DataFrame`. |
| |
| This is equivalent to `INTERSECT` in SQL. |
| """ |
| return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) |
| |
| def intersectAll(self, other): |
| """ Return a new :class:`DataFrame` containing rows in both this :class:`DataFrame` |
| and another :class:`DataFrame` while preserving duplicates. |
| |
| This is equivalent to `INTERSECT ALL` in SQL. As standard in SQL, this function |
| resolves columns by position (not by name). |
| |
| .. versionadded:: 2.4.0 |
| |
| Examples |
| -------- |
| >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) |
| >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) |
| |
| >>> df1.intersectAll(df2).sort("C1", "C2").show() |
| +---+---+ |
| | C1| C2| |
| +---+---+ |
| | a| 1| |
| | a| 1| |
| | b| 3| |
| +---+---+ |
| |
| """ |
| return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx) |
| |
| @since(1.3) |
| def subtract(self, other): |
| """ Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` |
| but not in another :class:`DataFrame`. |
| |
| This is equivalent to `EXCEPT DISTINCT` in SQL. |
| |
| """ |
| return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) |
| |
| def dropDuplicates(self, subset=None): |
| """Return a new :class:`DataFrame` with duplicate rows removed, |
| optionally only considering certain columns. |
| |
| For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming |
| :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop |
| duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can |
| be and system will accordingly limit the state. In addition, too late data older than |
| watermark will be dropped to avoid any possibility of duplicates. |
| |
| :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. |
| |
| .. versionadded:: 1.4.0 |
| |
| Examples |
| -------- |
| >>> from pyspark.sql import Row |
| >>> df = sc.parallelize([ \\ |
| ... Row(name='Alice', age=5, height=80), \\ |
| ... Row(name='Alice', age=5, height=80), \\ |
| ... Row(name='Alice', age=10, height=80)]).toDF() |
| >>> df.dropDuplicates().show() |
| +-----+---+------+ |
| | name|age|height| |
| +-----+---+------+ |
| |Alice| 5| 80| |
| |Alice| 10| 80| |
| +-----+---+------+ |
| |
| >>> df.dropDuplicates(['name', 'height']).show() |
| +-----+---+------+ |
| | name|age|height| |
| +-----+---+------+ |
| |Alice| 5| 80| |
| +-----+---+------+ |
| """ |
| if subset is None: |
| jdf = self._jdf.dropDuplicates() |
| else: |
| jdf = self._jdf.dropDuplicates(self._jseq(subset)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def dropna(self, how='any', thresh=None, subset=None): |
| """Returns a new :class:`DataFrame` omitting rows with null values. |
| :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. |
| |
| .. versionadded:: 1.3.1 |
| |
| Parameters |
| ---------- |
| how : str, optional |
| 'any' or 'all'. |
| If 'any', drop a row if it contains any nulls. |
| If 'all', drop a row only if all its values are null. |
| thresh: int, optional |
| default None |
| If specified, drop rows that have less than `thresh` non-null values. |
| This overwrites the `how` parameter. |
| subset : str, tuple or list, optional |
| optional list of column names to consider. |
| |
| Examples |
| -------- |
| >>> df4.na.drop().show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 10| 80|Alice| |
| +---+------+-----+ |
| """ |
| if how is not None and how not in ['any', 'all']: |
| raise ValueError("how ('" + how + "') should be 'any' or 'all'") |
| |
| if subset is None: |
| subset = self.columns |
| elif isinstance(subset, str): |
| subset = [subset] |
| elif not isinstance(subset, (list, tuple)): |
| raise ValueError("subset should be a list or tuple of column names") |
| |
| if thresh is None: |
| thresh = len(subset) if how == 'any' else 1 |
| |
| return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) |
| |
| def fillna(self, value, subset=None): |
| """Replace null values, alias for ``na.fill()``. |
| :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. |
| |
| .. versionadded:: 1.3.1 |
| |
| Parameters |
| ---------- |
| value : int, float, string, bool or dict |
| Value to replace null values with. |
| If the value is a dict, then `subset` is ignored and `value` must be a mapping |
| from column name (string) to replacement value. The replacement value must be |
| an int, float, boolean, or string. |
| subset : str, tuple or list, optional |
| optional list of column names to consider. |
| Columns specified in subset that do not have matching data type are ignored. |
| For example, if `value` is a string, and subset contains a non-string column, |
| then the non-string column is simply ignored. |
| |
| Examples |
| -------- |
| >>> df4.na.fill(50).show() |
| +---+------+-----+ |
| |age|height| name| |
| +---+------+-----+ |
| | 10| 80|Alice| |
| | 5| 50| Bob| |
| | 50| 50| Tom| |
| | 50| 50| null| |
| +---+------+-----+ |
| |
| >>> df5.na.fill(False).show() |
| +----+-------+-----+ |
| | age| name| spy| |
| +----+-------+-----+ |
| | 10| Alice|false| |
| | 5| Bob|false| |
| |null|Mallory| true| |
| +----+-------+-----+ |
| |
| >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() |
| +---+------+-------+ |
| |age|height| name| |
| +---+------+-------+ |
| | 10| 80| Alice| |
| | 5| null| Bob| |
| | 50| null| Tom| |
| | 50| null|unknown| |
| +---+------+-------+ |
| """ |
| if not isinstance(value, (float, int, str, bool, dict)): |
| raise ValueError("value should be a float, int, string, bool or dict") |
| |
| # Note that bool validates isinstance(int), but we don't want to |
| # convert bools to floats |
| |
| if not isinstance(value, bool) and isinstance(value, int): |
| value = float(value) |
| |
| if isinstance(value, dict): |
| return DataFrame(self._jdf.na().fill(value), self.sql_ctx) |
| elif subset is None: |
| return DataFrame(self._jdf.na().fill(value), self.sql_ctx) |
| else: |
| if isinstance(subset, str): |
| subset = [subset] |
| elif not isinstance(subset, (list, tuple)): |
| raise ValueError("subset should be a list or tuple of column names") |
| |
| return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) |
| |
| def replace(self, to_replace, value=_NoValue, subset=None): |
| """Returns a new :class:`DataFrame` replacing a value with another value. |
| :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are |
| aliases of each other. |
| Values to_replace and value must have the same type and can only be numerics, booleans, |
| or strings. Value can have None. When replacing, the new value will be cast |
| to the type of the existing column. |
| For numeric replacements all values to be replaced should have unique |
| floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) |
| and arbitrary replacement will be used. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| to_replace : bool, int, float, string, list or dict |
| Value to be replaced. |
| If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` |
| must be a mapping between a value and a replacement. |
| value : bool, int, float, string or None, optional |
| The replacement value must be a bool, int, float, string or None. If `value` is a |
| list, `value` should be of the same length and type as `to_replace`. |
| If `value` is a scalar and `to_replace` is a sequence, then `value` is |
| used as a replacement for each item in `to_replace`. |
| subset : list, optional |
| optional list of column names to consider. |
| Columns specified in subset that do not have matching data type are ignored. |
| For example, if `value` is a string, and subset contains a non-string column, |
| then the non-string column is simply ignored. |
| |
| Examples |
| -------- |
| >>> df4.na.replace(10, 20).show() |
| +----+------+-----+ |
| | age|height| name| |
| +----+------+-----+ |
| | 20| 80|Alice| |
| | 5| null| Bob| |
| |null| null| Tom| |
| |null| null| null| |
| +----+------+-----+ |
| |
| >>> df4.na.replace('Alice', None).show() |
| +----+------+----+ |
| | age|height|name| |
| +----+------+----+ |
| | 10| 80|null| |
| | 5| null| Bob| |
| |null| null| Tom| |
| |null| null|null| |
| +----+------+----+ |
| |
| >>> df4.na.replace({'Alice': None}).show() |
| +----+------+----+ |
| | age|height|name| |
| +----+------+----+ |
| | 10| 80|null| |
| | 5| null| Bob| |
| |null| null| Tom| |
| |null| null|null| |
| +----+------+----+ |
| |
| >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() |
| +----+------+----+ |
| | age|height|name| |
| +----+------+----+ |
| | 10| 80| A| |
| | 5| null| B| |
| |null| null| Tom| |
| |null| null|null| |
| +----+------+----+ |
| """ |
| if value is _NoValue: |
| if isinstance(to_replace, dict): |
| value = None |
| else: |
| raise TypeError("value argument is required when to_replace is not a dictionary.") |
| |
| # Helper functions |
| def all_of(types): |
| """Given a type or tuple of types and a sequence of xs |
| check if each x is instance of type(s) |
| |
| >>> all_of(bool)([True, False]) |
| True |
| >>> all_of(str)(["a", 1]) |
| False |
| """ |
| def all_of_(xs): |
| return all(isinstance(x, types) for x in xs) |
| return all_of_ |
| |
| all_of_bool = all_of(bool) |
| all_of_str = all_of(str) |
| all_of_numeric = all_of((float, int)) |
| |
| # Validate input types |
| valid_types = (bool, float, int, str, list, tuple) |
| if not isinstance(to_replace, valid_types + (dict, )): |
| raise ValueError( |
| "to_replace should be a bool, float, int, string, list, tuple, or dict. " |
| "Got {0}".format(type(to_replace))) |
| |
| if not isinstance(value, valid_types) and value is not None \ |
| and not isinstance(to_replace, dict): |
| raise ValueError("If to_replace is not a dict, value should be " |
| "a bool, float, int, string, list, tuple or None. " |
| "Got {0}".format(type(value))) |
| |
| if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): |
| if len(to_replace) != len(value): |
| raise ValueError("to_replace and value lists should be of the same length. " |
| "Got {0} and {1}".format(len(to_replace), len(value))) |
| |
| if not (subset is None or isinstance(subset, (list, tuple, str))): |
| raise ValueError("subset should be a list or tuple of column names, " |
| "column name or None. Got {0}".format(type(subset))) |
| |
| # Reshape input arguments if necessary |
| if isinstance(to_replace, (float, int, str)): |
| to_replace = [to_replace] |
| |
| if isinstance(to_replace, dict): |
| rep_dict = to_replace |
| if value is not None: |
| warnings.warn("to_replace is a dict and value is not None. value will be ignored.") |
| else: |
| if isinstance(value, (float, int, str)) or value is None: |
| value = [value for _ in range(len(to_replace))] |
| rep_dict = dict(zip(to_replace, value)) |
| |
| if isinstance(subset, str): |
| subset = [subset] |
| |
| # Verify we were not passed in mixed type generics. |
| if not any(all_of_type(rep_dict.keys()) |
| and all_of_type(x for x in rep_dict.values() if x is not None) |
| for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): |
| raise ValueError("Mixed type replacements are not supported") |
| |
| if subset is None: |
| return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) |
| else: |
| return DataFrame( |
| self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) |
| |
| def approxQuantile(self, col, probabilities, relativeError): |
| """ |
| Calculates the approximate quantiles of numerical columns of a |
| :class:`DataFrame`. |
| |
| The result of this algorithm has the following deterministic bound: |
| If the :class:`DataFrame` has N elements and if we request the quantile at |
| probability `p` up to error `err`, then the algorithm will return |
| a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is |
| close to (p * N). More precisely, |
| |
| floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). |
| |
| This method implements a variation of the Greenwald-Khanna |
| algorithm (with some speed optimizations). The algorithm was first |
| present in [[https://doi.org/10.1145/375663.375670 |
| Space-efficient Online Computation of Quantile Summaries]] |
| by Greenwald and Khanna. |
| |
| Note that null values will be ignored in numerical columns before calculation. |
| For columns only containing null values, an empty list is returned. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| col: str, tuple or list |
| Can be a single column name, or a list of names for multiple columns. |
| |
| .. versionchanged:: 2.2 |
| Added support for multiple columns. |
| probabilities : list or tuple |
| a list of quantile probabilities |
| Each number must belong to [0, 1]. |
| For example 0 is the minimum, 0.5 is the median, 1 is the maximum. |
| relativeError : float |
| The relative target precision to achieve |
| (>= 0). If set to zero, the exact quantiles are computed, which |
| could be very expensive. Note that values greater than 1 are |
| accepted but give the same result as 1. |
| |
| Returns |
| ------- |
| list |
| the approximate quantiles at the given probabilities. If |
| the input `col` is a string, the output is a list of floats. If the |
| input `col` is a list or tuple of strings, the output is also a |
| list, but each element in it is a list of floats, i.e., the output |
| is a list of list of floats. |
| """ |
| |
| if not isinstance(col, (str, list, tuple)): |
| raise ValueError("col should be a string, list or tuple, but got %r" % type(col)) |
| |
| isStr = isinstance(col, str) |
| |
| if isinstance(col, tuple): |
| col = list(col) |
| elif isStr: |
| col = [col] |
| |
| for c in col: |
| if not isinstance(c, str): |
| raise ValueError("columns should be strings, but got %r" % type(c)) |
| col = _to_list(self._sc, col) |
| |
| if not isinstance(probabilities, (list, tuple)): |
| raise ValueError("probabilities should be a list or tuple") |
| if isinstance(probabilities, tuple): |
| probabilities = list(probabilities) |
| for p in probabilities: |
| if not isinstance(p, (float, int)) or p < 0 or p > 1: |
| raise ValueError("probabilities should be numerical (float, int) in [0,1].") |
| probabilities = _to_list(self._sc, probabilities) |
| |
| if not isinstance(relativeError, (float, int)) or relativeError < 0: |
| raise ValueError("relativeError should be numerical (float, int) >= 0.") |
| relativeError = float(relativeError) |
| |
| jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) |
| jaq_list = [list(j) for j in jaq] |
| return jaq_list[0] if isStr else jaq_list |
| |
| def corr(self, col1, col2, method=None): |
| """ |
| Calculates the correlation of two columns of a :class:`DataFrame` as a double value. |
| Currently only supports the Pearson Correlation Coefficient. |
| :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| col1 : str |
| The name of the first column |
| col2 : str |
| The name of the second column |
| method : str, optional |
| The correlation method. Currently only supports "pearson" |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| if not method: |
| method = "pearson" |
| if not method == "pearson": |
| raise ValueError("Currently only the calculation of the Pearson Correlation " + |
| "coefficient is supported.") |
| return self._jdf.stat().corr(col1, col2, method) |
| |
| def cov(self, col1, col2): |
| """ |
| Calculate the sample covariance for the given columns, specified by their names, as a |
| double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| col1 : str |
| The name of the first column |
| col2 : str |
| The name of the second column |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| return self._jdf.stat().cov(col1, col2) |
| |
| def crosstab(self, col1, col2): |
| """ |
| Computes a pair-wise frequency table of the given columns. Also known as a contingency |
| table. The number of distinct values for each column should be less than 1e4. At most 1e6 |
| non-zero pair frequencies will be returned. |
| The first column of each row will be the distinct values of `col1` and the column names |
| will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. |
| Pairs that have no occurrences will have zero as their counts. |
| :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| col1 : str |
| The name of the first column. Distinct items will make the first item of |
| each row. |
| col2 : str |
| The name of the second column. Distinct items will make the column names |
| of the :class:`DataFrame`. |
| """ |
| if not isinstance(col1, str): |
| raise ValueError("col1 should be a string.") |
| if not isinstance(col2, str): |
| raise ValueError("col2 should be a string.") |
| return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) |
| |
| def freqItems(self, cols, support=None): |
| """ |
| Finding frequent items for columns, possibly with false positives. Using the |
| frequent element count algorithm described in |
| "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". |
| :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| cols : list or tuple |
| Names of the columns to calculate frequent items for as a list or tuple of |
| strings. |
| support : float, optional |
| The frequency with which to consider an item 'frequent'. Default is 1%. |
| The support must be greater than 1e-4. |
| |
| Notes |
| ----- |
| This function is meant for exploratory data analysis, as we make no |
| guarantee about the backward compatibility of the schema of the resulting |
| :class:`DataFrame`. |
| """ |
| if isinstance(cols, tuple): |
| cols = list(cols) |
| if not isinstance(cols, list): |
| raise ValueError("cols must be a list or tuple of column names as strings.") |
| if not support: |
| support = 0.01 |
| return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) |
| |
| def withColumn(self, colName, col): |
| """ |
| Returns a new :class:`DataFrame` by adding a column or replacing the |
| existing column that has the same name. |
| |
| The column expression must be an expression over this :class:`DataFrame`; attempting to add |
| a column from some other :class:`DataFrame` will raise an error. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| colName : str |
| string, name of the new column. |
| col : :class:`Column` |
| a :class:`Column` expression for the new column. |
| |
| Notes |
| ----- |
| This method introduces a projection internally. Therefore, calling it multiple |
| times, for instance, via loops in order to add multiple columns can generate big |
| plans which can cause performance issues and even `StackOverflowException`. |
| To avoid this, use :func:`select` with the multiple columns at once. |
| |
| Examples |
| -------- |
| >>> df.withColumn('age2', df.age + 2).collect() |
| [Row(age=2, name='Alice', age2=4), Row(age=5, name='Bob', age2=7)] |
| |
| """ |
| assert isinstance(col, Column), "col should be Column" |
| return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) |
| |
| def withColumnRenamed(self, existing, new): |
| """Returns a new :class:`DataFrame` by renaming an existing column. |
| This is a no-op if schema doesn't contain the given column name. |
| |
| .. versionadded:: 1.3.0 |
| |
| Parameters |
| ---------- |
| existing : str |
| string, name of the existing column to rename. |
| new : str |
| string, new name of the column. |
| |
| Examples |
| -------- |
| >>> df.withColumnRenamed('age', 'age2').collect() |
| [Row(age2=2, name='Alice'), Row(age2=5, name='Bob')] |
| """ |
| return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) |
| |
| def drop(self, *cols): |
| """Returns a new :class:`DataFrame` that drops the specified column. |
| This is a no-op if schema doesn't contain the given column name(s). |
| |
| .. versionadded:: 1.4.0 |
| |
| Parameters |
| ---------- |
| cols: str or :class:`Column` |
| a name of the column, or the :class:`Column` to drop |
| |
| Examples |
| -------- |
| >>> df.drop('age').collect() |
| [Row(name='Alice'), Row(name='Bob')] |
| |
| >>> df.drop(df.age).collect() |
| [Row(name='Alice'), Row(name='Bob')] |
| |
| >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() |
| [Row(age=5, height=85, name='Bob')] |
| |
| >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() |
| [Row(age=5, name='Bob', height=85)] |
| |
| >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() |
| [Row(name='Bob')] |
| """ |
| if len(cols) == 1: |
| col = cols[0] |
| if isinstance(col, str): |
| jdf = self._jdf.drop(col) |
| elif isinstance(col, Column): |
| jdf = self._jdf.drop(col._jc) |
| else: |
| raise TypeError("col should be a string or a Column") |
| else: |
| for col in cols: |
| if not isinstance(col, str): |
| raise TypeError("each col in the param list should be a string") |
| jdf = self._jdf.drop(self._jseq(cols)) |
| |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def toDF(self, *cols): |
| """Returns a new :class:`DataFrame` that with new specified column names |
| |
| Parameters |
| ---------- |
| cols : str |
| new column names |
| |
| Examples |
| -------- |
| >>> df.toDF('f1', 'f2').collect() |
| [Row(f1=2, f2='Alice'), Row(f1=5, f2='Bob')] |
| """ |
| jdf = self._jdf.toDF(self._jseq(cols)) |
| return DataFrame(jdf, self.sql_ctx) |
| |
| def transform(self, func): |
| """Returns a new :class:`DataFrame`. Concise syntax for chaining custom transformations. |
| |
| .. versionadded:: 3.0.0 |
| |
| Parameters |
| ---------- |
| func : function |
| a function that takes and returns a :class:`DataFrame`. |
| |
| Examples |
| -------- |
| >>> from pyspark.sql.functions import col |
| >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) |
| >>> def cast_all_to_int(input_df): |
| ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) |
| >>> def sort_columns_asc(input_df): |
| ... return input_df.select(*sorted(input_df.columns)) |
| >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() |
| +-----+---+ |
| |float|int| |
| +-----+---+ |
| | 1| 1| |
| | 2| 2| |
| +-----+---+ |
| """ |
| result = func(self) |
| assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ |
| "should have been DataFrame." % type(result) |
| return result |
| |
| def sameSemantics(self, other): |
| """ |
| Returns `True` when the logical query plans inside both :class:`DataFrame`\\s are equal and |
| therefore return same results. |
| |
| .. versionadded:: 3.1.0 |
| |
| Notes |
| ----- |
| The equality comparison here is simplified by tolerating the cosmetic differences |
| such as attribute names. |
| |
| This API can compare both :class:`DataFrame`\\s very fast but can still return |
| `False` on the :class:`DataFrame` that return the same results, for instance, from |
| different plans. Such false negative semantic can be useful when caching as an example. |
| |
| This API is a developer API. |
| |
| Examples |
| -------- |
| >>> df1 = spark.range(10) |
| >>> df2 = spark.range(10) |
| >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id * 2)) |
| True |
| >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id + 2)) |
| False |
| >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col0", df2.id * 2)) |
| True |
| """ |
| if not isinstance(other, DataFrame): |
| raise ValueError("other parameter should be of DataFrame; however, got %s" |
| % type(other)) |
| return self._jdf.sameSemantics(other._jdf) |
| |
| def semanticHash(self): |
| """ |
| Returns a hash code of the logical query plan against this :class:`DataFrame`. |
| |
| .. versionadded:: 3.1.0 |
| |
| Notes |
| ----- |
| Unlike the standard hash code, the hash is calculated against the query plan |
| simplified by tolerating the cosmetic differences such as attribute names. |
| |
| This API is a developer API. |
| |
| Examples |
| -------- |
| >>> spark.range(10).selectExpr("id as col0").semanticHash() # doctest: +SKIP |
| 1855039936 |
| >>> spark.range(10).selectExpr("id as col1").semanticHash() # doctest: +SKIP |
| 1855039936 |
| """ |
| return self._jdf.semanticHash() |
| |
| def inputFiles(self): |
| """ |
| Returns a best-effort snapshot of the files that compose this :class:`DataFrame`. |
| This method simply asks each constituent BaseRelation for its respective files and |
| takes the union of all results. Depending on the source relations, this may not find |
| all input files. Duplicates are removed. |
| |
| .. versionadded:: 3.1.0 |
| |
| Examples |
| -------- |
| >>> df = spark.read.load("examples/src/main/resources/people.json", format="json") |
| >>> len(df.inputFiles()) |
| 1 |
| """ |
| return list(self._jdf.inputFiles()) |
| |
| where = copy_func( |
| filter, |
| sinceversion=1.3, |
| doc=":func:`where` is an alias for :func:`filter`.") |
| |
| # Two aliases below were added for pandas compatibility many years ago. |
| # There are too many differences compared to pandas and we cannot just |
| # make it "compatible" by adding aliases. Therefore, we stop adding such |
| # aliases as of Spark 3.0. Two methods below remain just |
| # for legacy users currently. |
| groupby = copy_func( |
| groupBy, |
| sinceversion=1.4, |
| doc=":func:`groupby` is an alias for :func:`groupBy`.") |
| |
| drop_duplicates = copy_func( |
| dropDuplicates, |
| sinceversion=1.4, |
| doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") |
| |
| def writeTo(self, table): |
| """ |
| Create a write configuration builder for v2 sources. |
| |
| This builder is used to configure and execute write operations. |
| |
| For example, to append or create or replace existing tables. |
| |
| .. versionadded:: 3.1.0 |
| |
| Examples |
| -------- |
| >>> df.writeTo("catalog.db.table").append() # doctest: +SKIP |
| >>> df.writeTo( # doctest: +SKIP |
| ... "catalog.db.table" |
| ... ).partitionedBy("col").createOrReplace() |
| """ |
| return DataFrameWriterV2(self, table) |
| |
| |
| def _to_scala_map(sc, jm): |
| """ |
| Convert a dict into a JVM Map. |
| """ |
| return sc._jvm.PythonUtils.toScalaMap(jm) |
| |
| |
| class DataFrameNaFunctions(object): |
| """Functionality for working with missing data in :class:`DataFrame`. |
| |
| .. versionadded:: 1.4 |
| """ |
| |
| def __init__(self, df): |
| self.df = df |
| |
| def drop(self, how='any', thresh=None, subset=None): |
| return self.df.dropna(how=how, thresh=thresh, subset=subset) |
| |
| drop.__doc__ = DataFrame.dropna.__doc__ |
| |
| def fill(self, value, subset=None): |
| return self.df.fillna(value=value, subset=subset) |
| |
| fill.__doc__ = DataFrame.fillna.__doc__ |
| |
| def replace(self, to_replace, value=_NoValue, subset=None): |
| return self.df.replace(to_replace, value, subset) |
| |
| replace.__doc__ = DataFrame.replace.__doc__ |
| |
| |
| class DataFrameStatFunctions(object): |
| """Functionality for statistic functions with :class:`DataFrame`. |
| |
| .. versionadded:: 1.4 |
| """ |
| |
| def __init__(self, df): |
| self.df = df |
| |
| def approxQuantile(self, col, probabilities, relativeError): |
| return self.df.approxQuantile(col, probabilities, relativeError) |
| |
| approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ |
| |
| def corr(self, col1, col2, method=None): |
| return self.df.corr(col1, col2, method) |
| |
| corr.__doc__ = DataFrame.corr.__doc__ |
| |
| def cov(self, col1, col2): |
| return self.df.cov(col1, col2) |
| |
| cov.__doc__ = DataFrame.cov.__doc__ |
| |
| def crosstab(self, col1, col2): |
| return self.df.crosstab(col1, col2) |
| |
| crosstab.__doc__ = DataFrame.crosstab.__doc__ |
| |
| def freqItems(self, cols, support=None): |
| return self.df.freqItems(cols, support) |
| |
| freqItems.__doc__ = DataFrame.freqItems.__doc__ |
| |
| def sampleBy(self, col, fractions, seed=None): |
| return self.df.sampleBy(col, fractions, seed) |
| |
| sampleBy.__doc__ = DataFrame.sampleBy.__doc__ |
| |
| |
| def _test(): |
| import doctest |
| from pyspark.context import SparkContext |
| from pyspark.sql import Row, SQLContext, SparkSession |
| import pyspark.sql.dataframe |
| globs = pyspark.sql.dataframe.__dict__.copy() |
| sc = SparkContext('local[4]', 'PythonTest') |
| globs['sc'] = sc |
| globs['sqlContext'] = SQLContext(sc) |
| globs['spark'] = SparkSession(sc) |
| globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ |
| .toDF(StructType([StructField('age', IntegerType()), |
| StructField('name', StringType())])) |
| globs['df2'] = sc.parallelize([Row(height=80, name='Tom'), Row(height=85, name='Bob')]).toDF() |
| globs['df3'] = sc.parallelize([Row(age=2, name='Alice'), |
| Row(age=5, name='Bob')]).toDF() |
| globs['df4'] = sc.parallelize([Row(age=10, height=80, name='Alice'), |
| Row(age=5, height=None, name='Bob'), |
| Row(age=None, height=None, name='Tom'), |
| Row(age=None, height=None, name=None)]).toDF() |
| globs['df5'] = sc.parallelize([Row(age=10, name='Alice', spy=False), |
| Row(age=5, name='Bob', spy=None), |
| Row(age=None, name='Mallory', spy=True)]).toDF() |
| globs['sdf'] = sc.parallelize([Row(name='Tom', time=1479441846), |
| Row(name='Bob', time=1479442946)]).toDF() |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.dataframe, globs=globs, |
| optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) |
| globs['sc'].stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |