| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import pandas as pd |
| |
| import pyspark.pandas as ps |
| from pyspark.pandas.exceptions import PandasNotImplementedError |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils |
| |
| |
| class AsOfMixin: |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| {"a": [10.0, 20.0, 30.0, 40.0, 50.0], "b": [None, None, None, None, 500]}, |
| index=pd.DatetimeIndex( |
| [ |
| "2018-02-27 09:01:00", |
| "2018-02-27 09:02:00", |
| "2018-02-27 09:03:00", |
| "2018-02-27 09:04:00", |
| "2018-02-27 09:05:00", |
| ] |
| ), |
| ) |
| |
| @property |
| def psdf(self): |
| return ps.from_pandas(self.pdf) |
| |
| def test_disabled(self): |
| with self.assertRaises(PandasNotImplementedError): |
| self.psdf.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) |
| |
| def test_fallback(self): |
| ps.set_option("compute.pandas_fallback", True) |
| |
| self.assert_eq( |
| self.pdf.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])), |
| self.psdf.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])), |
| ) |
| self.assert_eq( |
| self.pdf.asof( |
| pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"]), |
| subset=["a"], |
| ), |
| self.psdf.asof( |
| pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"]), |
| subset=["a"], |
| ), |
| ) |
| |
| # test with schema infered from partial dataset, len(pdf)==5 |
| ps.set_option("compute.shortcut_limit", 2) |
| self.assert_eq( |
| self.pdf.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])), |
| self.psdf.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])), |
| ) |
| self.assert_eq( |
| self.pdf.asof( |
| pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"]), |
| subset=["a"], |
| ), |
| self.psdf.asof( |
| pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"]), |
| subset=["a"], |
| ), |
| ) |
| |
| ps.reset_option("compute.shortcut_limit") |
| ps.reset_option("compute.pandas_fallback") |
| |
| |
| class AsFreqTests( |
| AsOfMixin, |
| PandasOnSparkTestCase, |
| TestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.frame.test_asof import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |