| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class FrameCorrMixin: |
| def test_dataframe_corr(self): |
| pdf = pd.DataFrame( |
| index=[ |
| "".join( |
| np.random.choice( |
| list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"), 10 |
| ) |
| ) |
| for _ in range(30) |
| ], |
| columns=list("ABCD"), |
| dtype="float64", |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid method"): |
| psdf.corr("std") |
| with self.assertRaisesRegex(TypeError, "Invalid min_periods type"): |
| psdf.corr(min_periods="3") |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| (psdf + 1).corr(method=method, min_periods=2), |
| (pdf + 1).corr(method=method, min_periods=2), |
| check_exact=False, |
| ) |
| |
| # multi-index columns |
| columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Z", "D")]) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| (psdf + 1).corr(method=method, min_periods=2), |
| (pdf + 1).corr(method=method, min_periods=2), |
| check_exact=False, |
| ) |
| |
| # test with identical values |
| pdf = pd.DataFrame( |
| { |
| "a": [0, 1, 1, 1, 0], |
| "b": [2, 2, -1, 1, np.nan], |
| "c": [3, 3, 3, 3, 3], |
| "d": [np.nan, np.nan, np.nan, np.nan, np.nan], |
| } |
| ) |
| psdf = ps.from_pandas(pdf) |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq(psdf.corr(method=method), pdf.corr(method=method), check_exact=False) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=1), |
| pdf.corr(method=method, min_periods=1), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.corr(method=method, min_periods=3), |
| pdf.corr(method=method, min_periods=3), |
| check_exact=False, |
| ) |
| |
| def test_series_corr(self): |
| pdf = pd.DataFrame( |
| index=[ |
| "".join( |
| np.random.choice( |
| list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"), 10 |
| ) |
| ) |
| for _ in range(30) |
| ], |
| columns=list("ABCD"), |
| dtype="float64", |
| ) |
| pser1 = pdf.A |
| pser2 = pdf.B |
| psdf = ps.from_pandas(pdf) |
| psser1 = psdf.A |
| psser2 = psdf.B |
| |
| with self.assertRaisesRegex(ValueError, "Invalid method"): |
| psser1.corr(psser2, method="std") |
| with self.assertRaisesRegex(TypeError, "Invalid min_periods type"): |
| psser1.corr(psser2, min_periods="3") |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| self.assert_eq( |
| psser1.corr(psser2, method=method), |
| pser1.corr(pser2, method=method), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=1), |
| pser1.corr(pser2, method=method, min_periods=1), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=3), |
| pser1.corr(pser2, method=method, min_periods=3), |
| almost=True, |
| ) |
| self.assert_eq( |
| (psser1 + 1).corr(psser2 - 2, method=method, min_periods=2), |
| (pser1 + 1).corr(pser2 - 2, method=method, min_periods=2), |
| almost=True, |
| ) |
| |
| # different anchors |
| psser1 = ps.from_pandas(pser1) |
| psser2 = ps.from_pandas(pser2) |
| |
| with ps.option_context("compute.ops_on_diff_frames", False): |
| with self.assertRaisesRegex(ValueError, "Cannot combine the series or dataframe"): |
| psser1.corr(psser2) |
| |
| for method in ["pearson", "spearman", "kendall"]: |
| with ps.option_context("compute.ops_on_diff_frames", True): |
| self.assert_eq( |
| psser1.corr(psser2, method=method), |
| pser1.corr(pser2, method=method), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=1), |
| pser1.corr(pser2, method=method, min_periods=1), |
| almost=True, |
| ) |
| self.assert_eq( |
| psser1.corr(psser2, method=method, min_periods=3), |
| pser1.corr(pser2, method=method, min_periods=3), |
| almost=True, |
| ) |
| self.assert_eq( |
| (psser1 + 1).corr(psser2 - 2, method=method, min_periods=2), |
| (pser1 + 1).corr(pser2 - 2, method=method, min_periods=2), |
| almost=True, |
| ) |
| |
| def test_cov_corr_meta(self): |
| # Disable arrow execution since corr() is using UDT internally which is not supported. |
| with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): |
| pdf = pd.DataFrame( |
| { |
| "a": np.array([1, 2, 3], dtype="i1"), |
| "b": np.array([1, 2, 3], dtype="i2"), |
| "c": np.array([1, 2, 3], dtype="i4"), |
| "d": np.array([1, 2, 3]), |
| "e": np.array([1.0, 2.0, 3.0], dtype="f4"), |
| "f": np.array([1.0, 2.0, 3.0]), |
| "g": np.array([True, False, True]), |
| "h": np.array(list("abc")), |
| }, |
| index=pd.Index([1, 2, 3], name="myindex"), |
| ) |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf.corr(), pdf.corr(numeric_only=True), check_exact=False) |
| |
| |
| class FrameCorrTests( |
| FrameCorrMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_corr import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |