|  |  | 
|  | <!DOCTYPE html> | 
|  | <!--[if lt IE 7]>      <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> | 
|  | <!--[if IE 7]>         <html class="no-js lt-ie9 lt-ie8"> <![endif]--> | 
|  | <!--[if IE 8]>         <html class="no-js lt-ie9"> <![endif]--> | 
|  | <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> | 
|  | <head> | 
|  | <meta charset="utf-8"> | 
|  | <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> | 
|  | <meta name="viewport" content="width=device-width, initial-scale=1.0"> | 
|  |  | 
|  | <title>Naive Bayes - RDD-based API - Spark 3.5.0 Documentation</title> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <link rel="stylesheet" href="css/bootstrap.min.css"> | 
|  | <link rel="preconnect" href="https://fonts.googleapis.com"> | 
|  | <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> | 
|  | <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> | 
|  | <link href="css/custom.css" rel="stylesheet"> | 
|  | <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> | 
|  |  | 
|  | <link rel="stylesheet" href="css/pygments-default.css"> | 
|  | <link rel="stylesheet" href="css/docsearch.min.css" /> | 
|  | <link rel="stylesheet" href="css/docsearch.css"> | 
|  |  | 
|  | <!-- Matomo --> | 
|  | <script type="text/javascript"> | 
|  | var _paq = window._paq = window._paq || []; | 
|  | /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ | 
|  | _paq.push(["disableCookies"]); | 
|  | _paq.push(['trackPageView']); | 
|  | _paq.push(['enableLinkTracking']); | 
|  | (function() { | 
|  | var u="https://analytics.apache.org/"; | 
|  | _paq.push(['setTrackerUrl', u+'matomo.php']); | 
|  | _paq.push(['setSiteId', '40']); | 
|  | var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; | 
|  | g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); | 
|  | })(); | 
|  | </script> | 
|  | <!-- End Matomo Code --> | 
|  | </head> | 
|  | <body class="global"> | 
|  | <!--[if lt IE 7]> | 
|  | <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> | 
|  | <![endif]--> | 
|  |  | 
|  | <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> | 
|  |  | 
|  | <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> | 
|  | <div class="navbar-brand"><a href="index.html"> | 
|  | <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.0</span> | 
|  | </div> | 
|  | <button class="navbar-toggler" type="button" data-toggle="collapse" | 
|  | data-target="#navbarCollapse" aria-controls="navbarCollapse" | 
|  | aria-expanded="false" aria-label="Toggle navigation"> | 
|  | <span class="navbar-toggler-icon"></span> | 
|  | </button> | 
|  | <div class="collapse navbar-collapse" id="navbarCollapse"> | 
|  | <ul class="navbar-nav me-auto"> | 
|  | <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> | 
|  | <a class="dropdown-item" href="quick-start.html">Quick Start</a> | 
|  | <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> | 
|  | <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> | 
|  | <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> | 
|  | <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> | 
|  | <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> | 
|  | <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> | 
|  | <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> | 
|  | <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> | 
|  | <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> | 
|  | <a class="dropdown-item" href="api/java/index.html">Java</a> | 
|  | <a class="dropdown-item" href="api/python/index.html">Python</a> | 
|  | <a class="dropdown-item" href="api/R/index.html">R</a> | 
|  | <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarDeploying"> | 
|  | <a class="dropdown-item" href="cluster-overview.html">Overview</a> | 
|  | <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> | 
|  | <div class="dropdown-divider"></div> | 
|  | <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> | 
|  | <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> | 
|  | <a class="dropdown-item" href="running-on-yarn.html">YARN</a> | 
|  | <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarMore"> | 
|  | <a class="dropdown-item" href="configuration.html">Configuration</a> | 
|  | <a class="dropdown-item" href="monitoring.html">Monitoring</a> | 
|  | <a class="dropdown-item" href="tuning.html">Tuning Guide</a> | 
|  | <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> | 
|  | <a class="dropdown-item" href="security.html">Security</a> | 
|  | <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> | 
|  | <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> | 
|  | <div class="dropdown-divider"></div> | 
|  | <a class="dropdown-item" href="building-spark.html">Building Spark</a> | 
|  | <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> | 
|  | <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <input type="text" id="docsearch-input" placeholder="Search the docs…"> | 
|  | </li> | 
|  | </ul> | 
|  | <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.0</span></span>--> | 
|  | </div> | 
|  | </nav> | 
|  |  | 
|  |  | 
|  |  | 
|  | <div class="container"> | 
|  |  | 
|  |  | 
|  |  | 
|  | <div class="left-menu-wrapper"> | 
|  | <div class="left-menu"> | 
|  | <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> | 
|  |  | 
|  | <ul> | 
|  |  | 
|  | <li> | 
|  | <a href="ml-statistics.html"> | 
|  |  | 
|  | Basic statistics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-datasource.html"> | 
|  |  | 
|  | Data sources | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-pipeline.html"> | 
|  |  | 
|  | Pipelines | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-features.html"> | 
|  |  | 
|  | Extracting, transforming and selecting features | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-classification-regression.html"> | 
|  |  | 
|  | Classification and Regression | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-clustering.html"> | 
|  |  | 
|  | Clustering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-collaborative-filtering.html"> | 
|  |  | 
|  | Collaborative filtering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-frequent-pattern-mining.html"> | 
|  |  | 
|  | Frequent Pattern Mining | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-tuning.html"> | 
|  |  | 
|  | Model selection and tuning | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-advanced.html"> | 
|  |  | 
|  | Advanced topics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | </ul> | 
|  |  | 
|  | <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> | 
|  |  | 
|  | <ul> | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-data-types.html"> | 
|  |  | 
|  | Data types | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-statistics.html"> | 
|  |  | 
|  | Basic statistics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-classification-regression.html"> | 
|  |  | 
|  | Classification and regression | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-collaborative-filtering.html"> | 
|  |  | 
|  | Collaborative filtering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-clustering.html"> | 
|  |  | 
|  | Clustering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-dimensionality-reduction.html"> | 
|  |  | 
|  | Dimensionality reduction | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-feature-extraction.html"> | 
|  |  | 
|  | Feature extraction and transformation | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-frequent-pattern-mining.html"> | 
|  |  | 
|  | Frequent pattern mining | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-evaluation-metrics.html"> | 
|  |  | 
|  | Evaluation metrics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-pmml-model-export.html"> | 
|  |  | 
|  | PMML model export | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-optimization.html"> | 
|  |  | 
|  | Optimization (developer) | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | </ul> | 
|  |  | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  | <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> | 
|  | <label for="nav-trigger"></label> | 
|  | <div class="content-with-sidebar mr-3" id="content"> | 
|  |  | 
|  | <h1 class="title">Naive Bayes - RDD-based API</h1> | 
|  |  | 
|  |  | 
|  | <p><a href="http://en.wikipedia.org/wiki/Naive_Bayes_classifier">Naive Bayes</a> is a simple | 
|  | multiclass classification algorithm with the assumption of independence between | 
|  | every pair of features. Naive Bayes can be trained very efficiently. Within a | 
|  | single pass to the training data, it computes the conditional probability | 
|  | distribution of each feature given label, and then it applies Bayes’ theorem to | 
|  | compute the conditional probability distribution of label given an observation | 
|  | and use it for prediction.</p> | 
|  |  | 
|  | <p><code class="language-plaintext highlighter-rouge">spark.mllib</code> supports <a href="http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Multinomial_naive_Bayes">multinomial naive | 
|  | Bayes</a> | 
|  | and <a href="http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html">Bernoulli naive Bayes</a>. | 
|  | These models are typically used for <a href="http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html">document classification</a>. | 
|  | Within that context, each observation is a document and each | 
|  | feature represents a term whose value is the frequency of the term (in multinomial naive Bayes) or | 
|  | a zero or one indicating whether the term was found in the document (in Bernoulli naive Bayes). | 
|  | Feature values must be nonnegative. The model type is selected with an optional parameter | 
|  | “multinomial” or “bernoulli” with “multinomial” as the default. | 
|  | <a href="http://en.wikipedia.org/wiki/Lidstone_smoothing">Additive smoothing</a> can be used by | 
|  | setting the parameter $\lambda$ (default to $1.0$). For document classification, the input feature | 
|  | vectors are usually sparse, and sparse vectors should be supplied as input to take advantage of | 
|  | sparsity. Since the training data is only used once, it is not necessary to cache it.</p> | 
|  |  | 
|  | <h2 id="examples">Examples</h2> | 
|  |  | 
|  | <div class="codetabs"> | 
|  |  | 
|  | <div data-lang="python"> | 
|  |  | 
|  | <p><a href="api/python/reference/api/pyspark.mllib.classification.NaiveBayes.html">NaiveBayes</a> implements multinomial | 
|  | naive Bayes. It takes an RDD of | 
|  | <a href="api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html">LabeledPoint</a> and an optionally | 
|  | smoothing parameter <code class="language-plaintext highlighter-rouge">lambda</code> as input, and output a | 
|  | <a href="api/python/reference/api/pyspark.mllib.classification.NaiveBayesModel.html">NaiveBayesModel</a>, which can be | 
|  | used for evaluation and prediction.</p> | 
|  |  | 
|  | <p>Note that the Python API does not yet support model save/load but will in the future.</p> | 
|  |  | 
|  | <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.classification.NaiveBayes.html"><code class="language-plaintext highlighter-rouge">NaiveBayes</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.classification.NaiveBayesModel.html"><code class="language-plaintext highlighter-rouge">NaiveBayesModel</code> Python docs</a> for more details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.classification</span> <span class="kn">import</span> <span class="n">NaiveBayes</span><span class="p">,</span> <span class="n">NaiveBayesModel</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span> | 
|  |  | 
|  |  | 
|  |  | 
|  | <span class="c1"># Load and parse the data file. | 
|  | </span><span class="n">data</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="p">.</span><span class="n">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># Split data approximately into training (60%) and test (40%) | 
|  | </span><span class="n">training</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">])</span> | 
|  |  | 
|  | <span class="c1"># Train a naive Bayes model. | 
|  | </span><span class="n">model</span> <span class="o">=</span> <span class="n">NaiveBayes</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">training</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># Make prediction and test accuracy. | 
|  | </span><span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">:</span> <span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">p</span><span class="p">.</span><span class="n">features</span><span class="p">),</span> <span class="n">p</span><span class="p">.</span><span class="n">label</span><span class="p">))</span> | 
|  | <span class="n">accuracy</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">*</span> <span class="n">predictionAndLabel</span><span class="p">.</span><span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">pl</span><span class="p">:</span> <span class="n">pl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="n">pl</span><span class="p">[</span><span class="mi">1</span><span class="p">]).</span><span class="n">count</span><span class="p">()</span> <span class="o">/</span> <span class="n">test</span><span class="p">.</span><span class="n">count</span><span class="p">()</span> | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">'model accuracy {}'</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="n">accuracy</span><span class="p">))</span> | 
|  |  | 
|  | <span class="c1"># Save and load model | 
|  | </span><span class="n">output_dir</span> <span class="o">=</span> <span class="s">'target/tmp/myNaiveBayesModel'</span> | 
|  | <span class="n">shutil</span><span class="p">.</span><span class="n">rmtree</span><span class="p">(</span><span class="n">output_dir</span><span class="p">,</span> <span class="n">ignore_errors</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> | 
|  | <span class="n">model</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">output_dir</span><span class="p">)</span> | 
|  | <span class="n">sameModel</span> <span class="o">=</span> <span class="n">NaiveBayesModel</span><span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">output_dir</span><span class="p">)</span> | 
|  | <span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">:</span> <span class="p">(</span><span class="n">sameModel</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">p</span><span class="p">.</span><span class="n">features</span><span class="p">),</span> <span class="n">p</span><span class="p">.</span><span class="n">label</span><span class="p">))</span> | 
|  | <span class="n">accuracy</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">*</span> <span class="n">predictionAndLabel</span><span class="p">.</span><span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">pl</span><span class="p">:</span> <span class="n">pl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="n">pl</span><span class="p">[</span><span class="mi">1</span><span class="p">]).</span><span class="n">count</span><span class="p">()</span> <span class="o">/</span> <span class="n">test</span><span class="p">.</span><span class="n">count</span><span class="p">()</span> | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">'sameModel accuracy {}'</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="n">accuracy</span><span class="p">))</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/python/mllib/naive_bayes_example.py" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="scala"> | 
|  |  | 
|  | <p><a href="api/scala/org/apache/spark/mllib/classification/NaiveBayes$.html">NaiveBayes</a> implements | 
|  | multinomial naive Bayes. It takes an RDD of | 
|  | <a href="api/scala/org/apache/spark/mllib/regression/LabeledPoint.html">LabeledPoint</a> and an optional | 
|  | smoothing parameter <code class="language-plaintext highlighter-rouge">lambda</code> as input, an optional model type parameter (default is “multinomial”), and outputs a | 
|  | <a href="api/scala/org/apache/spark/mllib/classification/NaiveBayesModel.html">NaiveBayesModel</a>, which | 
|  | can be used for evaluation and prediction.</p> | 
|  |  | 
|  | <p>Refer to the <a href="api/scala/org/apache/spark/mllib/classification/NaiveBayes$.html"><code class="language-plaintext highlighter-rouge">NaiveBayes</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/classification/NaiveBayesModel.html"><code class="language-plaintext highlighter-rouge">NaiveBayesModel</code> Scala docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.classification.</span><span class="o">{</span><span class="nc">NaiveBayes</span><span class="o">,</span> <span class="nc">NaiveBayesModel</span><span class="o">}</span> | 
|  | <span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span> | 
|  |  | 
|  | <span class="c1">// Load and parse the data file.</span> | 
|  | <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">MLUtils</span><span class="o">.</span><span class="py">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span> | 
|  |  | 
|  | <span class="c1">// Split data into training (60%) and test (40%).</span> | 
|  | <span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">training</span><span class="o">,</span> <span class="n">test</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">))</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">NaiveBayes</span><span class="o">.</span><span class="py">train</span><span class="o">(</span><span class="n">training</span><span class="o">,</span> <span class="n">lambda</span> <span class="k">=</span> <span class="mf">1.0</span><span class="o">,</span> <span class="n">modelType</span> <span class="k">=</span> <span class="s">"multinomial"</span><span class="o">)</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">predictionAndLabel</span> <span class="k">=</span> <span class="nv">test</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">p</span> <span class="k">=></span> <span class="o">(</span><span class="nv">model</span><span class="o">.</span><span class="py">predict</span><span class="o">(</span><span class="nv">p</span><span class="o">.</span><span class="py">features</span><span class="o">),</span> <span class="nv">p</span><span class="o">.</span><span class="py">label</span><span class="o">))</span> | 
|  | <span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="mf">1.0</span> <span class="o">*</span> <span class="nv">predictionAndLabel</span><span class="o">.</span><span class="py">filter</span><span class="o">(</span><span class="n">x</span> <span class="k">=></span> <span class="nv">x</span><span class="o">.</span><span class="py">_1</span> <span class="o">==</span> <span class="nv">x</span><span class="o">.</span><span class="py">_2</span><span class="o">).</span><span class="py">count</span><span class="o">()</span> <span class="o">/</span> <span class="nv">test</span><span class="o">.</span><span class="py">count</span><span class="o">()</span> | 
|  |  | 
|  | <span class="c1">// Save and load model</span> | 
|  | <span class="nv">model</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myNaiveBayesModel"</span><span class="o">)</span> | 
|  | <span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">NaiveBayesModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myNaiveBayesModel"</span><span class="o">)</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/NaiveBayesExample.scala" in the Spark repo.</small></div> | 
|  | </div> | 
|  | <div data-lang="java"> | 
|  |  | 
|  | <p><a href="api/java/org/apache/spark/mllib/classification/NaiveBayes.html">NaiveBayes</a> implements | 
|  | multinomial naive Bayes. It takes a Scala RDD of | 
|  | <a href="api/java/org/apache/spark/mllib/regression/LabeledPoint.html">LabeledPoint</a> and an | 
|  | optionally smoothing parameter <code class="language-plaintext highlighter-rouge">lambda</code> as input, and output a | 
|  | <a href="api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html">NaiveBayesModel</a>, which | 
|  | can be used for evaluation and prediction.</p> | 
|  |  | 
|  | <p>Refer to the <a href="api/java/org/apache/spark/mllib/classification/NaiveBayes.html"><code class="language-plaintext highlighter-rouge">NaiveBayes</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html"><code class="language-plaintext highlighter-rouge">NaiveBayesModel</code> Java docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.classification.NaiveBayes</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.classification.NaiveBayesModel</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span> | 
|  |  | 
|  | <span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">;</span> | 
|  | <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">></span> <span class="n">inputData</span> <span class="o">=</span> <span class="nc">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="n">path</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">();</span> | 
|  | <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">>[]</span> <span class="n">tmp</span> <span class="o">=</span> <span class="n">inputData</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">});</span> | 
|  | <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">></span> <span class="n">training</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span> <span class="c1">// training set</span> | 
|  | <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">></span> <span class="n">test</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span> <span class="c1">// test set</span> | 
|  | <span class="nc">NaiveBayesModel</span> <span class="n">model</span> <span class="o">=</span> <span class="nc">NaiveBayes</span><span class="o">.</span><span class="na">train</span><span class="o">(</span><span class="n">training</span><span class="o">.</span><span class="na">rdd</span><span class="o">(),</span> <span class="mf">1.0</span><span class="o">);</span> | 
|  | <span class="nc">JavaPairRDD</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">></span> <span class="n">predictionAndLabel</span> <span class="o">=</span> | 
|  | <span class="n">test</span><span class="o">.</span><span class="na">mapToPair</span><span class="o">(</span><span class="n">p</span> <span class="o">-></span> <span class="k">new</span> <span class="nc">Tuple2</span><span class="o"><>(</span><span class="n">model</span><span class="o">.</span><span class="na">predict</span><span class="o">(</span><span class="n">p</span><span class="o">.</span><span class="na">features</span><span class="o">()),</span> <span class="n">p</span><span class="o">.</span><span class="na">label</span><span class="o">()));</span> | 
|  | <span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> | 
|  | <span class="n">predictionAndLabel</span><span class="o">.</span><span class="na">filter</span><span class="o">(</span><span class="n">pl</span> <span class="o">-></span> <span class="n">pl</span><span class="o">.</span><span class="na">_1</span><span class="o">().</span><span class="na">equals</span><span class="o">(</span><span class="n">pl</span><span class="o">.</span><span class="na">_2</span><span class="o">())).</span><span class="na">count</span><span class="o">()</span> <span class="o">/</span> <span class="o">(</span><span class="kt">double</span><span class="o">)</span> <span class="n">test</span><span class="o">.</span><span class="na">count</span><span class="o">();</span> | 
|  |  | 
|  | <span class="c1">// Save and load model</span> | 
|  | <span class="n">model</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myNaiveBayesModel"</span><span class="o">);</span> | 
|  | <span class="nc">NaiveBayesModel</span> <span class="n">sameModel</span> <span class="o">=</span> <span class="nc">NaiveBayesModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myNaiveBayesModel"</span><span class="o">);</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaNaiveBayesExample.java" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- /container --> | 
|  | </div> | 
|  |  | 
|  | <script src="js/vendor/jquery-3.5.1.min.js"></script> | 
|  | <script src="js/vendor/bootstrap.bundle.min.js"></script> | 
|  |  | 
|  | <script src="js/vendor/anchor.min.js"></script> | 
|  | <script src="js/main.js"></script> | 
|  |  | 
|  | <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> | 
|  | <script type="text/javascript"> | 
|  | // DocSearch is entirely free and automated. DocSearch is built in two parts: | 
|  | // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link | 
|  | //    in your website and extract content from every page it traverses. It then pushes this | 
|  | //    content to an Algolia index. | 
|  | // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index | 
|  | //    to your search input and display its results in a dropdown UI. If you want to find more | 
|  | //    details on how works DocSearch, check the docs of DocSearch. | 
|  | docsearch({ | 
|  | apiKey: 'd62f962a82bc9abb53471cb7b89da35e', | 
|  | appId: 'RAI69RXRSK', | 
|  | indexName: 'apache_spark', | 
|  | inputSelector: '#docsearch-input', | 
|  | enhancedSearchInput: true, | 
|  | algoliaOptions: { | 
|  | 'facetFilters': ["version:3.5.0"] | 
|  | }, | 
|  | debug: false // Set debug to true if you want to inspect the dropdown | 
|  | }); | 
|  |  | 
|  | </script> | 
|  |  | 
|  | <!-- MathJax Section --> | 
|  | <script type="text/x-mathjax-config"> | 
|  | MathJax.Hub.Config({ | 
|  | TeX: { equationNumbers: { autoNumber: "AMS" } } | 
|  | }); | 
|  | </script> | 
|  | <script> | 
|  | // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. | 
|  | // We could use "//cdn.mathjax...", but that won't support "file://". | 
|  | (function(d, script) { | 
|  | script = d.createElement('script'); | 
|  | script.type = 'text/javascript'; | 
|  | script.async = true; | 
|  | script.onload = function(){ | 
|  | MathJax.Hub.Config({ | 
|  | tex2jax: { | 
|  | inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], | 
|  | displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], | 
|  | processEscapes: true, | 
|  | skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] | 
|  | } | 
|  | }); | 
|  | }; | 
|  | script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + | 
|  | 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + | 
|  | '?config=TeX-AMS-MML_HTMLorMML'; | 
|  | d.getElementsByTagName('head')[0].appendChild(script); | 
|  | }(document)); | 
|  | </script> | 
|  | </body> | 
|  | </html> |