|  | 
 | <!DOCTYPE html> | 
 | <!--[if lt IE 7]>      <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> | 
 | <!--[if IE 7]>         <html class="no-js lt-ie9 lt-ie8"> <![endif]--> | 
 | <!--[if IE 8]>         <html class="no-js lt-ie9"> <![endif]--> | 
 | <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> | 
 |     <head> | 
 |         <meta charset="utf-8"> | 
 |         <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> | 
 |         <meta name="viewport" content="width=device-width, initial-scale=1.0"> | 
 |  | 
 |         <title>Data sources - Spark 3.5.0 Documentation</title> | 
 |          | 
 |  | 
 |          | 
 |  | 
 |  | 
 |         <link rel="stylesheet" href="css/bootstrap.min.css"> | 
 |         <link rel="preconnect" href="https://fonts.googleapis.com"> | 
 |         <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> | 
 |         <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> | 
 |         <link href="css/custom.css" rel="stylesheet"> | 
 |         <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> | 
 |  | 
 |         <link rel="stylesheet" href="css/pygments-default.css"> | 
 |         <link rel="stylesheet" href="css/docsearch.min.css" /> | 
 |         <link rel="stylesheet" href="css/docsearch.css"> | 
 |  | 
 |     <!-- Matomo --> | 
 |     <script type="text/javascript"> | 
 |         var _paq = window._paq = window._paq || []; | 
 |         /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ | 
 |         _paq.push(["disableCookies"]); | 
 |         _paq.push(['trackPageView']); | 
 |         _paq.push(['enableLinkTracking']); | 
 |         (function() { | 
 |             var u="https://analytics.apache.org/"; | 
 |             _paq.push(['setTrackerUrl', u+'matomo.php']); | 
 |             _paq.push(['setSiteId', '40']); | 
 |             var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; | 
 |             g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); | 
 |         })(); | 
 |     </script> | 
 |     <!-- End Matomo Code --> | 
 |     </head> | 
 |     <body class="global"> | 
 |         <!--[if lt IE 7]> | 
 |             <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> | 
 |         <![endif]--> | 
 |  | 
 |         <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> | 
 |  | 
 |         <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> | 
 |             <div class="navbar-brand"><a href="index.html"> | 
 |                 <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.0</span> | 
 |             </div> | 
 |             <button class="navbar-toggler" type="button" data-toggle="collapse" | 
 |                     data-target="#navbarCollapse" aria-controls="navbarCollapse" | 
 |                     aria-expanded="false" aria-label="Toggle navigation"> | 
 |                 <span class="navbar-toggler-icon"></span> | 
 |             </button> | 
 |             <div class="collapse navbar-collapse" id="navbarCollapse"> | 
 |                 <ul class="navbar-nav me-auto"> | 
 |                     <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> | 
 |  | 
 |                     <li class="nav-item dropdown"> | 
 |                         <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> | 
 |                         <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> | 
 |                             <a class="dropdown-item" href="quick-start.html">Quick Start</a> | 
 |                             <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> | 
 |                             <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> | 
 |                             <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> | 
 |                             <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> | 
 |                             <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> | 
 |                             <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> | 
 |                             <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> | 
 |                             <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> | 
 |                         </div> | 
 |                     </li> | 
 |  | 
 |                     <li class="nav-item dropdown"> | 
 |                         <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> | 
 |                         <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> | 
 |                             <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> | 
 |                             <a class="dropdown-item" href="api/java/index.html">Java</a> | 
 |                             <a class="dropdown-item" href="api/python/index.html">Python</a> | 
 |                             <a class="dropdown-item" href="api/R/index.html">R</a> | 
 |                             <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> | 
 |                         </div> | 
 |                     </li> | 
 |  | 
 |                     <li class="nav-item dropdown"> | 
 |                         <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> | 
 |                         <div class="dropdown-menu" aria-labelledby="navbarDeploying"> | 
 |                             <a class="dropdown-item" href="cluster-overview.html">Overview</a> | 
 |                             <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> | 
 |                             <div class="dropdown-divider"></div> | 
 |                             <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> | 
 |                             <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> | 
 |                             <a class="dropdown-item" href="running-on-yarn.html">YARN</a> | 
 |                             <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> | 
 |                         </div> | 
 |                     </li> | 
 |  | 
 |                     <li class="nav-item dropdown"> | 
 |                         <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> | 
 |                         <div class="dropdown-menu" aria-labelledby="navbarMore"> | 
 |                             <a class="dropdown-item" href="configuration.html">Configuration</a> | 
 |                             <a class="dropdown-item" href="monitoring.html">Monitoring</a> | 
 |                             <a class="dropdown-item" href="tuning.html">Tuning Guide</a> | 
 |                             <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> | 
 |                             <a class="dropdown-item" href="security.html">Security</a> | 
 |                             <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> | 
 |                             <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> | 
 |                             <div class="dropdown-divider"></div> | 
 |                             <a class="dropdown-item" href="building-spark.html">Building Spark</a> | 
 |                             <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> | 
 |                             <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> | 
 |                         </div> | 
 |                     </li> | 
 |  | 
 |                     <li class="nav-item"> | 
 |                         <input type="text" id="docsearch-input" placeholder="Search the docs…"> | 
 |                     </li> | 
 |                 </ul> | 
 |                 <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.0</span></span>--> | 
 |             </div> | 
 |         </nav> | 
 |  | 
 |          | 
 |  | 
 |         <div class="container"> | 
 |  | 
 |              | 
 |                  | 
 |                     <div class="left-menu-wrapper"> | 
 |     <div class="left-menu"> | 
 |         <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> | 
 |          | 
 | <ul> | 
 |  | 
 |     <li> | 
 |         <a href="ml-statistics.html"> | 
 |              | 
 |                 Basic statistics | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-datasource.html"> | 
 |              | 
 |                 Data sources | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-pipeline.html"> | 
 |              | 
 |                 Pipelines | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-features.html"> | 
 |              | 
 |                 Extracting, transforming and selecting features | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-classification-regression.html"> | 
 |              | 
 |                 Classification and Regression | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-clustering.html"> | 
 |              | 
 |                 Clustering | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-collaborative-filtering.html"> | 
 |              | 
 |                 Collaborative filtering | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-frequent-pattern-mining.html"> | 
 |              | 
 |                 Frequent Pattern Mining | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-tuning.html"> | 
 |              | 
 |                 Model selection and tuning | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="ml-advanced.html"> | 
 |              | 
 |                 Advanced topics | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 | </ul> | 
 |  | 
 |         <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> | 
 |          | 
 | <ul> | 
 |  | 
 |     <li> | 
 |         <a href="mllib-data-types.html"> | 
 |              | 
 |                 Data types | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-statistics.html"> | 
 |              | 
 |                 Basic statistics | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-classification-regression.html"> | 
 |              | 
 |                 Classification and regression | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-collaborative-filtering.html"> | 
 |              | 
 |                 Collaborative filtering | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-clustering.html"> | 
 |              | 
 |                 Clustering | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-dimensionality-reduction.html"> | 
 |              | 
 |                 Dimensionality reduction | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-feature-extraction.html"> | 
 |              | 
 |                 Feature extraction and transformation | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-frequent-pattern-mining.html"> | 
 |              | 
 |                 Frequent pattern mining | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-evaluation-metrics.html"> | 
 |              | 
 |                 Evaluation metrics | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-pmml-model-export.html"> | 
 |              | 
 |                 PMML model export | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 |     <li> | 
 |         <a href="mllib-optimization.html"> | 
 |              | 
 |                 Optimization (developer) | 
 |              | 
 |         </a> | 
 |     </li> | 
 |      | 
 |      | 
 |  | 
 | </ul> | 
 |  | 
 |     </div> | 
 | </div> | 
 |                  | 
 |                 <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> | 
 |                 <label for="nav-trigger"></label> | 
 |                 <div class="content-with-sidebar mr-3" id="content"> | 
 |                      | 
 |                         <h1 class="title">Data sources</h1> | 
 |                      | 
 |  | 
 |                     <p>In this section, we introduce how to use data source in ML to load data. | 
 | Besides some general data sources such as Parquet, CSV, JSON and JDBC, we also provide some specific data sources for ML.</p> | 
 |  | 
 | <p><strong>Table of Contents</strong></p> | 
 |  | 
 | <ul id="markdown-toc"> | 
 |   <li><a href="#image-data-source" id="markdown-toc-image-data-source">Image data source</a></li> | 
 |   <li><a href="#libsvm-data-source" id="markdown-toc-libsvm-data-source">LIBSVM data source</a></li> | 
 | </ul> | 
 |  | 
 | <h2 id="image-data-source">Image data source</h2> | 
 |  | 
 | <p>This image data source is used to load image files from a directory, it can load compressed image (jpeg, png, etc.) into raw image representation via <code class="language-plaintext highlighter-rouge">ImageIO</code> in Java library. | 
 | The loaded DataFrame has one <code class="language-plaintext highlighter-rouge">StructType</code> column: “image”, containing image data stored as image schema. | 
 | The schema of the <code class="language-plaintext highlighter-rouge">image</code> column is:</p> | 
 | <ul> | 
 |   <li>origin: <code class="language-plaintext highlighter-rouge">StringType</code> (represents the file path of the image)</li> | 
 |   <li>height: <code class="language-plaintext highlighter-rouge">IntegerType</code> (height of the image)</li> | 
 |   <li>width: <code class="language-plaintext highlighter-rouge">IntegerType</code> (width of the image)</li> | 
 |   <li>nChannels: <code class="language-plaintext highlighter-rouge">IntegerType</code> (number of image channels)</li> | 
 |   <li>mode: <code class="language-plaintext highlighter-rouge">IntegerType</code> (OpenCV-compatible type)</li> | 
 |   <li>data: <code class="language-plaintext highlighter-rouge">BinaryType</code> (Image bytes in OpenCV-compatible order: row-wise BGR in most cases)</li> | 
 | </ul> | 
 |  | 
 | <div class="codetabs"> | 
 |  | 
 | <div data-lang="python"> | 
 |     <p>In PySpark we provide Spark SQL data source API for loading image data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"image"</span><span class="p">).</span><span class="n">option</span><span class="p">(</span><span class="s">"dropInvalid"</span><span class="p">,</span> <span class="bp">True</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/images/origin/kittens"</span><span class="p">)</span> | 
 | <span class="o">>>></span> <span class="n">df</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"image.origin"</span><span class="p">,</span> <span class="s">"image.width"</span><span class="p">,</span> <span class="s">"image.height"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span> | 
 | <span class="o">|</span><span class="n">origin</span>                                                                 <span class="o">|</span><span class="n">width</span><span class="o">|</span><span class="n">height</span><span class="o">|</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span> | 
 | <span class="o">|</span><span class="nb">file</span><span class="p">:</span><span class="o">///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="mf">54893.j</span><span class="n">pg</span>               <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">311</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="nb">file</span><span class="p">:</span><span class="o">///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="n">DP802813</span><span class="p">.</span><span class="n">jpg</span>            <span class="o">|</span><span class="mi">199</span>  <span class="o">|</span><span class="mi">313</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="nb">file</span><span class="p">:</span><span class="o">///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="mf">29.5</span><span class="p">.</span><span class="n">a_b_EGDP022204</span><span class="p">.</span><span class="n">jpg</span> <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">200</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="nb">file</span><span class="p">:</span><span class="o">///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="n">DP153539</span><span class="p">.</span><span class="n">jpg</span>            <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">296</span>   <span class="o">|</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="scala"> | 
 |     <p><a href="api/scala/org/apache/spark/ml/source/image/ImageDataSource.html"><code class="language-plaintext highlighter-rouge">ImageDataSource</code></a> | 
 | implements a Spark SQL data source API for loading image data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">val</span> <span class="nv">df</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"image"</span><span class="o">).</span><span class="py">option</span><span class="o">(</span><span class="s">"dropInvalid"</span><span class="o">,</span> <span class="kc">true</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/images/origin/kittens"</span><span class="o">)</span> | 
 | <span class="n">df</span><span class="k">:</span> <span class="kt">org.apache.spark.sql.DataFrame</span> <span class="o">=</span> <span class="o">[</span><span class="kt">image:</span> <span class="kt">struct<origin:</span> <span class="kt">string</span>, <span class="kt">height:</span> <span class="kt">int</span> <span class="kt">...</span> <span class="err">4</span> <span class="kt">more</span> <span class="kt">fields></span><span class="o">]</span> | 
 |  | 
 | <span class="n">scala</span><span class="o">></span> <span class="nv">df</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"image.origin"</span><span class="o">,</span> <span class="s">"image.width"</span><span class="o">,</span> <span class="s">"image.height"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="n">truncate</span><span class="k">=</span><span class="kc">false</span><span class="o">)</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span> | 
 | <span class="o">|</span><span class="n">origin</span>                                                                 <span class="o">|</span><span class="n">width</span><span class="o">|</span><span class="n">height</span><span class="o">|</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span> | 
 | <span class="o">|</span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="mf">54893.</span><span class="n">jpg</span>               <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">311</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="nv">DP802813</span><span class="o">.</span><span class="py">jpg</span>            <span class="o">|</span><span class="mi">199</span>  <span class="o">|</span><span class="mi">313</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="mf">29.5</span><span class="o">.</span><span class="py">a_b_EGDP022204</span><span class="o">.</span><span class="py">jpg</span> <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">200</span>   <span class="o">|</span> | 
 | <span class="o">|</span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="nv">DP153539</span><span class="o">.</span><span class="py">jpg</span>            <span class="o">|</span><span class="mi">300</span>  <span class="o">|</span><span class="mi">296</span>   <span class="o">|</span> | 
 | <span class="o">+-----------------------------------------------------------------------+-----+------+</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="java"> | 
 |     <p><a href="api/java/org/apache/spark/ml/source/image/ImageDataSource.html"><code class="language-plaintext highlighter-rouge">ImageDataSource</code></a> | 
 | implements Spark SQL data source API for loading image data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">imagesDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"image"</span><span class="o">).</span><span class="na">option</span><span class="o">(</span><span class="s">"dropInvalid"</span><span class="o">,</span> <span class="kc">true</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/images/origin/kittens"</span><span class="o">);</span> | 
 | <span class="n">imageDF</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"image.origin"</span><span class="o">,</span> <span class="s">"image.width"</span><span class="o">,</span> <span class="s">"image.height"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span> | 
 | <span class="cm">/* | 
 | Will output: | 
 | +-----------------------------------------------------------------------+-----+------+ | 
 | |origin                                                                 |width|height| | 
 | +-----------------------------------------------------------------------+-----+------+ | 
 | |file:///spark/data/mllib/images/origin/kittens/54893.jpg               |300  |311   | | 
 | |file:///spark/data/mllib/images/origin/kittens/DP802813.jpg            |199  |313   | | 
 | |file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300  |200   | | 
 | |file:///spark/data/mllib/images/origin/kittens/DP153539.jpg            |300  |296   | | 
 | +-----------------------------------------------------------------------+-----+------+ | 
 | */</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="r"> | 
 |     <p>In SparkR we provide Spark SQL data source API for loading image data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-r" data-lang="r"><span class="o">></span><span class="w"> </span><span class="n">df</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/images/origin/kittens"</span><span class="p">,</span><span class="w"> </span><span class="s2">"image"</span><span class="p">)</span><span class="w"> | 
 | </span><span class="o">></span><span class="w"> </span><span class="n">head</span><span class="p">(</span><span class="n">select</span><span class="p">(</span><span class="n">df</span><span class="p">,</span><span class="w"> </span><span class="n">df</span><span class="o">$</span><span class="n">image.origin</span><span class="p">,</span><span class="w"> </span><span class="n">df</span><span class="o">$</span><span class="n">image.width</span><span class="p">,</span><span class="w"> </span><span class="n">df</span><span class="o">$</span><span class="n">image.height</span><span class="p">))</span><span class="w"> | 
 |  | 
 | </span><span class="m">1</span><span class="w">               </span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="m">54893</span><span class="n">.jpg</span><span class="w"> | 
 | </span><span class="m">2</span><span class="w">            </span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="n">DP802813.jpg</span><span class="w"> | 
 | </span><span class="m">3</span><span class="w"> </span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="m">29.5</span><span class="n">.a_b_EGDP022204.jpg</span><span class="w"> | 
 | </span><span class="m">4</span><span class="w">            </span><span class="n">file</span><span class="o">:///</span><span class="n">spark</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">mllib</span><span class="o">/</span><span class="n">images</span><span class="o">/</span><span class="n">origin</span><span class="o">/</span><span class="n">kittens</span><span class="o">/</span><span class="n">DP153539.jpg</span><span class="w"> | 
 |   </span><span class="n">width</span><span class="w"> </span><span class="n">height</span><span class="w"> | 
 | </span><span class="m">1</span><span class="w">   </span><span class="m">300</span><span class="w">    </span><span class="m">311</span><span class="w"> | 
 | </span><span class="m">2</span><span class="w">   </span><span class="m">199</span><span class="w">    </span><span class="m">313</span><span class="w"> | 
 | </span><span class="m">3</span><span class="w">   </span><span class="m">300</span><span class="w">    </span><span class="m">200</span><span class="w"> | 
 | </span><span class="m">4</span><span class="w">   </span><span class="m">300</span><span class="w">    </span><span class="m">296</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 |  | 
 | </div> | 
 |  | 
 | <h2 id="libsvm-data-source">LIBSVM data source</h2> | 
 |  | 
 | <p>This <code class="language-plaintext highlighter-rouge">LIBSVM</code> data source is used to load ‘libsvm’ type files from a directory. | 
 | The loaded DataFrame has two columns: label containing labels stored as doubles and features containing feature vectors stored as Vectors. | 
 | The schemas of the columns are:</p> | 
 | <ul> | 
 |   <li>label: <code class="language-plaintext highlighter-rouge">DoubleType</code> (represents the instance label)</li> | 
 |   <li>features: <code class="language-plaintext highlighter-rouge">VectorUDT</code> (represents the feature vector)</li> | 
 | </ul> | 
 |  | 
 | <div class="codetabs"> | 
 |  | 
 | <div data-lang="python"> | 
 |     <p>In PySpark we provide Spark SQL data source API for loading <code class="language-plaintext highlighter-rouge">LIBSVM</code> data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="o">>>></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">option</span><span class="p">(</span><span class="s">"numFeatures"</span><span class="p">,</span> <span class="s">"780"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span> | 
 | <span class="o">>>></span> <span class="n">df</span><span class="p">.</span><span class="n">show</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> | 
 | <span class="o">+-----+--------------------+</span> | 
 | <span class="o">|</span><span class="n">label</span><span class="o">|</span>            <span class="n">features</span><span class="o">|</span> | 
 | <span class="o">+-----+--------------------+</span> | 
 | <span class="o">|</span>  <span class="mf">0.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">127</span><span class="p">,</span><span class="mi">128</span><span class="p">,</span><span class="mf">129.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">158</span><span class="p">,</span><span class="mi">159</span><span class="p">,</span><span class="mf">160.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">124</span><span class="p">,</span><span class="mi">125</span><span class="p">,</span><span class="mf">126.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">152</span><span class="p">,</span><span class="mi">153</span><span class="p">,</span><span class="mf">154.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">151</span><span class="p">,</span><span class="mi">152</span><span class="p">,</span><span class="mf">153.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">0.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">129</span><span class="p">,</span><span class="mi">130</span><span class="p">,</span><span class="mf">131.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">158</span><span class="p">,</span><span class="mi">159</span><span class="p">,</span><span class="mf">160.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">1.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">99</span><span class="p">,</span><span class="mi">100</span><span class="p">,</span><span class="mi">101</span><span class="p">,...</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">0.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">154</span><span class="p">,</span><span class="mi">155</span><span class="p">,</span><span class="mf">156.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">|</span>  <span class="mf">0.0</span><span class="o">|</span><span class="p">(</span><span class="mi">780</span><span class="p">,[</span><span class="mi">127</span><span class="p">,</span><span class="mi">128</span><span class="p">,</span><span class="mf">129.</span><span class="p">..</span><span class="o">|</span> | 
 | <span class="o">+-----+--------------------+</span> | 
 | <span class="n">only</span> <span class="n">showing</span> <span class="n">top</span> <span class="mi">10</span> <span class="n">rows</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="scala"> | 
 |     <p><a href="api/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.html"><code class="language-plaintext highlighter-rouge">LibSVMDataSource</code></a> | 
 | implements a Spark SQL data source API for loading <code class="language-plaintext highlighter-rouge">LIBSVM</code> data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="n">scala</span><span class="o">></span> <span class="k">val</span> <span class="nv">df</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">option</span><span class="o">(</span><span class="s">"numFeatures"</span><span class="o">,</span> <span class="s">"780"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span> | 
 | <span class="n">df</span><span class="k">:</span> <span class="kt">org.apache.spark.sql.DataFrame</span> <span class="o">=</span> <span class="o">[</span><span class="kt">label:</span> <span class="kt">double</span>, <span class="kt">features:</span> <span class="kt">vector</span><span class="o">]</span> | 
 |  | 
 | <span class="n">scala</span><span class="o">></span> <span class="nv">df</span><span class="o">.</span><span class="py">show</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> | 
 | <span class="o">+-----+--------------------+</span> | 
 | <span class="o">|</span><span class="n">label</span><span class="o">|</span>            <span class="n">features</span><span class="o">|</span> | 
 | <span class="o">+-----+--------------------+</span> | 
 | <span class="o">|</span>  <span class="mf">0.0</span><span class="o">|(</span><span class="mi">780</span><span class="o">,[</span><span class="err">127</span>,<span class="err">128</span>,<span class="err">129</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">158</span>,<span class="err">159</span>,<span class="err">160</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">124</span>,<span class="err">125</span>,<span class="err">126</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">152</span>,<span class="err">153</span>,<span class="err">154</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">151</span>,<span class="err">152</span>,<span class="err">153</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">0</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">129</span>,<span class="err">130</span>,<span class="err">131</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">158</span>,<span class="err">159</span>,<span class="err">160</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">1</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">99</span>,<span class="err">100</span>,<span class="err">101</span>,<span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">0</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">154</span>,<span class="err">155</span>,<span class="err">156</span><span class="kt">...|</span> | 
 | <span class="kt">|</span>  <span class="err">0</span><span class="kt">.</span><span class="err">0</span><span class="kt">|</span><span class="o">(</span><span class="err">780</span>,<span class="o">[</span><span class="err">127</span>,<span class="err">128</span>,<span class="err">129</span><span class="kt">...|</span> | 
 | <span class="kt">+-----+--------------------+</span> | 
 | <span class="kt">only</span> <span class="kt">showing</span> <span class="kt">top</span> <span class="err">10</span> <span class="kt">rows</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="java"> | 
 |     <p><a href="api/java/org/apache/spark/ml/source/libsvm/LibSVMDataSource.html"><code class="language-plaintext highlighter-rouge">LibSVMDataSource</code></a> | 
 | implements Spark SQL data source API for loading <code class="language-plaintext highlighter-rouge">LIBSVM</code> data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">.</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">option</span><span class="o">(</span><span class="s">"numFeatures"</span><span class="o">,</span> <span class="s">"780"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span> | 
 | <span class="n">df</span><span class="o">.</span><span class="na">show</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span> | 
 | <span class="cm">/* | 
 | Will output: | 
 | +-----+--------------------+ | 
 | |label|            features| | 
 | +-----+--------------------+ | 
 | |  0.0|(780,[127,128,129...| | 
 | |  1.0|(780,[158,159,160...| | 
 | |  1.0|(780,[124,125,126...| | 
 | |  1.0|(780,[152,153,154...| | 
 | |  1.0|(780,[151,152,153...| | 
 | |  0.0|(780,[129,130,131...| | 
 | |  1.0|(780,[158,159,160...| | 
 | |  1.0|(780,[99,100,101,...| | 
 | |  0.0|(780,[154,155,156...| | 
 | |  0.0|(780,[127,128,129...| | 
 | +-----+--------------------+ | 
 | only showing top 10 rows | 
 | */</span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 | <div data-lang="r"> | 
 |     <p>In SparkR we provide Spark SQL data source API for loading <code class="language-plaintext highlighter-rouge">LIBSVM</code> data as a DataFrame.</p> | 
 |  | 
 |     <figure class="highlight"><pre><code class="language-r" data-lang="r"><span class="o">></span><span class="w"> </span><span class="n">df</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w"> | 
 | </span><span class="o">></span><span class="w"> </span><span class="n">head</span><span class="p">(</span><span class="n">select</span><span class="p">(</span><span class="n">df</span><span class="p">,</span><span class="w"> </span><span class="n">df</span><span class="o">$</span><span class="n">label</span><span class="p">,</span><span class="w"> </span><span class="n">df</span><span class="o">$</span><span class="n">features</span><span class="p">),</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w"> | 
 |  | 
 |    </span><span class="n">label</span><span class="w">                      </span><span class="n">features</span><span class="w"> | 
 | </span><span class="m">1</span><span class="w">      </span><span class="m">0</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d35366e8</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">2</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d353bf78</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">3</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d3541840</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">4</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d3545108</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">5</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d354c8e0</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">6</span><span class="w">      </span><span class="m">0</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d35501a8</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">7</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d3555a70</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">8</span><span class="w">      </span><span class="m">1</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d3559338</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">9</span><span class="w">      </span><span class="m">0</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d355cc00</span><span class="o">></span><span class="w"> | 
 | </span><span class="m">10</span><span class="w">     </span><span class="m">0</span><span class="w"> </span><span class="o"><</span><span class="n">environment</span><span class="o">:</span><span class="w"> </span><span class="mh">0x7fe6d35643d8</span><span class="o">></span></code></pre></figure> | 
 |  | 
 |   </div> | 
 |  | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 |                 </div> | 
 |              | 
 |              <!-- /container --> | 
 |         </div> | 
 |  | 
 |         <script src="js/vendor/jquery-3.5.1.min.js"></script> | 
 |         <script src="js/vendor/bootstrap.bundle.min.js"></script> | 
 |  | 
 |         <script src="js/vendor/anchor.min.js"></script> | 
 |         <script src="js/main.js"></script> | 
 |  | 
 |         <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> | 
 |         <script type="text/javascript"> | 
 |             // DocSearch is entirely free and automated. DocSearch is built in two parts: | 
 |             // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link | 
 |             //    in your website and extract content from every page it traverses. It then pushes this | 
 |             //    content to an Algolia index. | 
 |             // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index | 
 |             //    to your search input and display its results in a dropdown UI. If you want to find more | 
 |             //    details on how works DocSearch, check the docs of DocSearch. | 
 |             docsearch({ | 
 |     apiKey: 'd62f962a82bc9abb53471cb7b89da35e', | 
 |     appId: 'RAI69RXRSK', | 
 |     indexName: 'apache_spark', | 
 |     inputSelector: '#docsearch-input', | 
 |     enhancedSearchInput: true, | 
 |     algoliaOptions: { | 
 |       'facetFilters': ["version:3.5.0"] | 
 |     }, | 
 |     debug: false // Set debug to true if you want to inspect the dropdown | 
 | }); | 
 |  | 
 |         </script> | 
 |  | 
 |         <!-- MathJax Section --> | 
 |         <script type="text/x-mathjax-config"> | 
 |             MathJax.Hub.Config({ | 
 |                 TeX: { equationNumbers: { autoNumber: "AMS" } } | 
 |             }); | 
 |         </script> | 
 |         <script> | 
 |             // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. | 
 |             // We could use "//cdn.mathjax...", but that won't support "file://". | 
 |             (function(d, script) { | 
 |                 script = d.createElement('script'); | 
 |                 script.type = 'text/javascript'; | 
 |                 script.async = true; | 
 |                 script.onload = function(){ | 
 |                     MathJax.Hub.Config({ | 
 |                         tex2jax: { | 
 |                             inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], | 
 |                             displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], | 
 |                             processEscapes: true, | 
 |                             skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] | 
 |                         } | 
 |                     }); | 
 |                 }; | 
 |                 script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + | 
 |                     'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + | 
 |                     '?config=TeX-AMS-MML_HTMLorMML'; | 
 |                 d.getElementsByTagName('head')[0].appendChild(script); | 
 |             }(document)); | 
 |         </script> | 
 |     </body> | 
 | </html> |