| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" /> |
| |
| <title>Python User-defined Table Functions (UDTFs) — PySpark 4.0.0-preview1 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script> |
| <script src="../../_static/jquery.js"></script> |
| <script src="../../_static/underscore.js"></script> |
| <script src="../../_static/doctools.js"></script> |
| <script src="../../_static/clipboard.min.js"></script> |
| <script src="../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = 'user_guide/sql/python_udtf';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/user_guide/sql/python_udtf.html" /> |
| <link rel="search" title="Search" href="../../search.html" /> |
| <link rel="next" title="Python Data Source API" href="python_data_source.html" /> |
| <link rel="prev" title="Apache Arrow in PySpark" href="arrow_pandas.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item current active"> |
| <a class="nav-link nav-internal" href="../index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "user_guide/sql/python_udtf.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| <label class="sidebar-toggle secondary-toggle" for="__secondary"> |
| <span class="fa-solid fa-outdent"></span> |
| </label> |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item current active"> |
| <a class="nav-link nav-internal" href="../index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "user_guide/sql/python_udtf.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| <div class="sidebar-primary-items__start sidebar-primary__section"> |
| <div class="sidebar-primary-item"><nav class="bd-docs-nav bd-links" |
| aria-label="Section Navigation"> |
| <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p> |
| <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav"> |
| <li class="toctree-l1"><a class="reference internal" href="../python_packaging.html">Python Package Management</a></li> |
| <li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">Spark SQL</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul class="current"> |
| <li class="toctree-l2"><a class="reference internal" href="arrow_pandas.html">Apache Arrow in PySpark</a></li> |
| <li class="toctree-l2 current active"><a class="current reference internal" href="#">Python User-defined Table Functions (UDTFs)</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="python_data_source.html">Python Data Source API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="type_conversions.html">Python to Spark Type Conversions</a></li> |
| </ul> |
| </li> |
| <li class="toctree-l1 has-children"><a class="reference internal" href="../pandas_on_spark/index.html">Pandas API on Spark</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/options.html">Options and settings</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/pandas_pyspark.html">From/to pandas and PySpark DataFrames</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/transform_apply.html">Transform and apply a function</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/types.html">Type Support in Pandas API on Spark</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/typehints.html">Type Hints in Pandas API on Spark</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/from_to_dbms.html">From/to other DBMSes</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/best_practices.html">Best Practices</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/supported_pandas_api.html">Supported pandas API</a></li> |
| <li class="toctree-l2"><a class="reference internal" href="../pandas_on_spark/faq.html">FAQ</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </nav></div> |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../index.html" class="nav-link">User Guides</a></li> |
| |
| |
| <li class="breadcrumb-item"><a href="index.html" class="nav-link">Spark SQL</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">Python User-defined Table Functions (UDTFs)</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <section id="python-user-defined-table-functions-udtfs"> |
| <h1>Python User-defined Table Functions (UDTFs)<a class="headerlink" href="#python-user-defined-table-functions-udtfs" title="Permalink to this headline">#</a></h1> |
| <p>Spark 3.5 introduces the Python user-defined table function (UDTF), a new type of user-defined function. |
| Unlike scalar functions that return a single result value from each call, each UDTF is invoked in |
| the <code class="docutils literal notranslate"><span class="pre">FROM</span></code> clause of a query and returns an entire table as output. |
| Each UDTF call can accept zero or more arguments. |
| These arguments can either be scalar expressions or table arguments that represent entire input tables.</p> |
| <section id="implementing-a-python-udtf"> |
| <h2>Implementing a Python UDTF<a class="headerlink" href="#implementing-a-python-udtf" title="Permalink to this headline">#</a></h2> |
| <p>To implement a Python UDTF, you first need to define a class implementing the methods:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">PythonUDTF</span><span class="p">:</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Initializes the user-defined table function (UDTF). This is optional.</span> |
| |
| <span class="sd"> This method serves as the default constructor and is called once when the</span> |
| <span class="sd"> UDTF is instantiated on the executor side.</span> |
| |
| <span class="sd"> Any class fields assigned in this method will be available for subsequent</span> |
| <span class="sd"> calls to the `eval` and `terminate` methods. This class instance will remain</span> |
| <span class="sd"> alive until all rows in the current partition have been consumed by the `eval`</span> |
| <span class="sd"> method.</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> - You cannot create or reference the Spark session within the UDTF. Any</span> |
| <span class="sd"> attempt to do so will result in a serialization error.</span> |
| <span class="sd"> - If the below `analyze` method is implemented, it is also possible to define this</span> |
| <span class="sd"> method as: `__init__(self, analyze_result: AnalyzeResult)`. In this case, the result</span> |
| <span class="sd"> of the `analyze` method is passed into all future instantiations of this UDTF class.</span> |
| <span class="sd"> In this way, the UDTF may inspect the schema and metadata of the output table as</span> |
| <span class="sd"> needed during execution of other methods in this class. Note that it is possible to</span> |
| <span class="sd"> create a subclass of the `AnalyzeResult` class if desired for purposes of passing</span> |
| <span class="sd"> custom information generated just once during UDTF analysis to other method calls;</span> |
| <span class="sd"> this can be especially useful if this initialization is expensive.</span> |
| <span class="sd"> """</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@staticmethod</span> |
| <span class="k">def</span> <span class="nf">analyze</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">AnalyzeArgument</span><span class="p">)</span> <span class="o">-></span> <span class="n">AnalyzeResult</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Static method to compute the output schema of a particular call to this function in</span> |
| <span class="sd"> response to the arguments provided.</span> |
| |
| <span class="sd"> This method is optional and only needed if the registration of the UDTF did not provide</span> |
| <span class="sd"> a static output schema to be use for all calls to the function. In this context,</span> |
| <span class="sd"> `output schema` refers to the ordered list of the names and types of the columns in the</span> |
| <span class="sd"> function's result table.</span> |
| |
| <span class="sd"> This method accepts zero or more parameters mapping 1:1 with the arguments provided to</span> |
| <span class="sd"> the particular UDTF call under consideration. Each parameter is an instance of the</span> |
| <span class="sd"> `AnalyzeArgument` class.</span> |
| |
| <span class="sd"> `AnalyzeArgument` fields</span> |
| <span class="sd"> ------------------------</span> |
| <span class="sd"> dataType: DataType</span> |
| <span class="sd"> Indicates the type of the provided input argument to this particular UDTF call.</span> |
| <span class="sd"> For input table arguments, this is a StructType representing the table's columns.</span> |
| <span class="sd"> value: Optional[Any]</span> |
| <span class="sd"> The value of the provided input argument to this particular UDTF call. This is</span> |
| <span class="sd"> `None` for table arguments, or for literal scalar arguments that are not constant.</span> |
| <span class="sd"> isTable: bool</span> |
| <span class="sd"> This is true if the provided input argument to this particular UDTF call is a</span> |
| <span class="sd"> table argument.</span> |
| <span class="sd"> isConstantExpression: bool</span> |
| <span class="sd"> This is true if the provided input argument to this particular UDTF call is either a</span> |
| <span class="sd"> literal or other constant-foldable scalar expression.</span> |
| |
| <span class="sd"> This method returns an instance of the `AnalyzeResult` class which includes the result</span> |
| <span class="sd"> table's schema as a StructType. If the UDTF accepts an input table argument, then the</span> |
| <span class="sd"> `AnalyzeResult` can also include a requested way to partition and order the rows of</span> |
| <span class="sd"> the input table across several UDTF calls. See below for more information about UDTF</span> |
| <span class="sd"> table arguments and how to call them in SQL queries, including the WITH SINGLE</span> |
| <span class="sd"> PARTITION clause (corresponding to the `withSinglePartition` field here), PARTITION BY</span> |
| <span class="sd"> clause (corresponding to the `partitionBy` field here), ORDER BY clause (corresponding</span> |
| <span class="sd"> to the `orderBy` field here), and passing table subqueries as arguments (corresponding</span> |
| <span class="sd"> to the `select` field here).</span> |
| |
| <span class="sd"> `AnalyzeResult` fields</span> |
| <span class="sd"> ----------------------</span> |
| <span class="sd"> schema: StructType</span> |
| <span class="sd"> The schema of the result table.</span> |
| <span class="sd"> withSinglePartition: bool = False</span> |
| <span class="sd"> If True, the query planner will arrange a repartitioning operation from the previous</span> |
| <span class="sd"> execution stage such that all rows of the input table are consumed by the `eval`</span> |
| <span class="sd"> method from exactly one instance of the UDTF class.</span> |
| <span class="sd"> partitionBy: Sequence[PartitioningColumn] = field(default_factory=tuple)</span> |
| <span class="sd"> If non-empty, the query planner will arrange a repartitioning such that all rows</span> |
| <span class="sd"> with each unique combination of values of the partitioning expressions are consumed</span> |
| <span class="sd"> by a separate unique instance of the UDTF class.</span> |
| <span class="sd"> orderBy: Sequence[OrderingColumn] = field(default_factory=tuple)</span> |
| <span class="sd"> If non-empty, this specifies the requested ordering of rows within each partition.</span> |
| <span class="sd"> select: Sequence[SelectedColumn] = field(default_factory=tuple)</span> |
| <span class="sd"> If non-empty, this is a sequence of expressions that the UDTF is specifying for</span> |
| <span class="sd"> Catalyst to evaluate against the columns in the input TABLE argument. The UDTF then</span> |
| <span class="sd"> receives one input attribute for each name in the list, in the order they are</span> |
| <span class="sd"> listed.</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> - It is possible for the `analyze` method to accept the exact arguments expected,</span> |
| <span class="sd"> mapping 1:1 with the arguments provided to the UDTF call.</span> |
| <span class="sd"> - The `analyze` method can instead choose to accept positional arguments if desired</span> |
| <span class="sd"> (using `*args`) or keyword arguments (using `**kwargs`).</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> This is an `analyze` implementation that returns one output column for each word in the</span> |
| <span class="sd"> input string argument.</span> |
| |
| <span class="sd"> >>> @staticmethod</span> |
| <span class="sd"> ... def analyze(text: str) -> AnalyzeResult:</span> |
| <span class="sd"> ... schema = StructType()</span> |
| <span class="sd"> ... for index, word in enumerate(text.split(" ")):</span> |
| <span class="sd"> ... schema = schema.add(f"word_{index}")</span> |
| <span class="sd"> ... return AnalyzeResult(schema=schema)</span> |
| |
| <span class="sd"> Same as above, but using *args to accept the arguments.</span> |
| |
| <span class="sd"> >>> @staticmethod</span> |
| <span class="sd"> ... def analyze(*args) -> AnalyzeResult:</span> |
| <span class="sd"> ... assert len(args) == 1, "This function accepts one argument only"</span> |
| <span class="sd"> ... assert args[0].dataType == StringType(), "Only string arguments are supported"</span> |
| <span class="sd"> ... text = args[0]</span> |
| <span class="sd"> ... schema = StructType()</span> |
| <span class="sd"> ... for index, word in enumerate(text.split(" ")):</span> |
| <span class="sd"> ... schema = schema.add(f"word_{index}")</span> |
| <span class="sd"> ... return AnalyzeResult(schema=schema)</span> |
| |
| <span class="sd"> Same as above, but using **kwargs to accept the arguments.</span> |
| |
| <span class="sd"> >>> @staticmethod</span> |
| <span class="sd"> ... def analyze(**kwargs) -> AnalyzeResult:</span> |
| <span class="sd"> ... assert len(kwargs) == 1, "This function accepts one argument only"</span> |
| <span class="sd"> ... assert "text" in kwargs, "An argument named 'text' is required"</span> |
| <span class="sd"> ... assert kwargs["text"].dataType == StringType(), "Only strings are supported"</span> |
| <span class="sd"> ... text = args["text"]</span> |
| <span class="sd"> ... schema = StructType()</span> |
| <span class="sd"> ... for index, word in enumerate(text.split(" ")):</span> |
| <span class="sd"> ... schema = schema.add(f"word_{index}")</span> |
| <span class="sd"> ... return AnalyzeResult(schema=schema)</span> |
| |
| <span class="sd"> This is an `analyze` implementation that returns a constant output schema, but add</span> |
| <span class="sd"> custom information in the result metadata to be consumed by future __init__ method</span> |
| <span class="sd"> calls:</span> |
| |
| <span class="sd"> >>> @staticmethod</span> |
| <span class="sd"> ... def analyze(text: str) -> AnalyzeResult:</span> |
| <span class="sd"> ... @dataclass</span> |
| <span class="sd"> ... class AnalyzeResultWithOtherMetadata(AnalyzeResult):</span> |
| <span class="sd"> ... num_words: int</span> |
| <span class="sd"> ... num_articles: int</span> |
| <span class="sd"> ... words = text.split(" ")</span> |
| <span class="sd"> ... return AnalyzeResultWithOtherMetadata(</span> |
| <span class="sd"> ... schema=StructType()</span> |
| <span class="sd"> ... .add("word", StringType())</span> |
| <span class="sd"> ... .add('total", IntegerType()),</span> |
| <span class="sd"> ... num_words=len(words),</span> |
| <span class="sd"> ... num_articles=len((</span> |
| <span class="sd"> ... word for word in words</span> |
| <span class="sd"> ... if word == 'a' or word == 'an' or word == 'the')))</span> |
| |
| <span class="sd"> This is an `analyze` implementation that returns a constant output schema, and also</span> |
| <span class="sd"> requests to select a subset of columns from the input table and for the input table to</span> |
| <span class="sd"> be partitioned across several UDTF calls based on the values of the `date` column.</span> |
| <span class="sd"> A SQL query may this UDTF passing a table argument like "SELECT * FROM udtf(TABLE(t))".</span> |
| <span class="sd"> Then this `analyze` method specifies additional constraints on the input table:</span> |
| <span class="sd"> (1) The input table must be partitioned across several UDTF calls based on the values of</span> |
| <span class="sd"> the month value of each `date` column.</span> |
| <span class="sd"> (2) The rows within each partition will arrive ordered by the `date` column.</span> |
| <span class="sd"> (3) The UDTF will only receive the `date` and `word` columns from the input table.</span> |
| |
| <span class="sd"> >>> @staticmethod</span> |
| <span class="sd"> ... def analyze(*args) -> AnalyzeResult:</span> |
| <span class="sd"> ... assert len(args) == 1, "This function accepts one argument only"</span> |
| <span class="sd"> ... assert args[0].isTable, "Only table arguments are supported"</span> |
| <span class="sd"> ... return AnalyzeResult(</span> |
| <span class="sd"> ... schema=StructType()</span> |
| <span class="sd"> ... .add("month", DateType())</span> |
| <span class="sd"> ... .add('longest_word", IntegerType()),</span> |
| <span class="sd"> ... partitionBy=[</span> |
| <span class="sd"> ... PartitioningColumn("extract(month from date)")],</span> |
| <span class="sd"> ... orderBy=[</span> |
| <span class="sd"> ... OrderingColumn("date")],</span> |
| <span class="sd"> ... select=[</span> |
| <span class="sd"> ... SelectedColumn("date"),</span> |
| <span class="sd"> ... SelectedColumn(</span> |
| <span class="sd"> ... name="length(word),</span> |
| <span class="sd"> ... alias="length_word")])</span> |
| <span class="sd"> """</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Iterator</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluates the function using the given input arguments.</span> |
| |
| <span class="sd"> This method is required and must be implemented.</span> |
| |
| <span class="sd"> Argument Mapping:</span> |
| <span class="sd"> - Each provided scalar expression maps to exactly one value in the</span> |
| <span class="sd"> `*args` list.</span> |
| <span class="sd"> - Each provided table argument maps to a pyspark.sql.Row object containing</span> |
| <span class="sd"> the columns in the order they appear in the provided input table,</span> |
| <span class="sd"> and with the names computed by the query analyzer.</span> |
| |
| <span class="sd"> This method is called on every input row, and can produce zero or more</span> |
| <span class="sd"> output rows. Each element in the output tuple corresponds to one column</span> |
| <span class="sd"> specified in the return type of the UDTF.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> *args : Any</span> |
| <span class="sd"> Arbitrary positional arguments representing the input to the UDTF.</span> |
| |
| <span class="sd"> Yields</span> |
| <span class="sd"> ------</span> |
| <span class="sd"> tuple</span> |
| <span class="sd"> A tuple, list, or pyspark.sql.Row object representing a single row in the UDTF</span> |
| <span class="sd"> result table. Yield as many times as needed to produce multiple rows.</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> - It is also possible for UDTFs to accept the exact arguments expected, along with</span> |
| <span class="sd"> their types.</span> |
| <span class="sd"> - UDTFs can instead accept keyword arguments during the function call if needed.</span> |
| <span class="sd"> - The `eval` method can raise a `SkipRestOfInputTableException` to indicate that the</span> |
| <span class="sd"> UDTF wants to skip consuming all remaining rows from the current partition of the</span> |
| <span class="sd"> input table. This will cause the UDTF to proceed directly to the `terminate` method.</span> |
| <span class="sd"> - The `eval` method can raise any other exception to indicate that the UDTF should be</span> |
| <span class="sd"> aborted entirely. This will cause the UDTF to skip the `terminate` method and proceed</span> |
| <span class="sd"> directly to the `cleanup` method, and then the exception will be propagated to the</span> |
| <span class="sd"> query processor causing the invoking query to fail.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> This `eval` method returns one row and one column for each input.</span> |
| |
| <span class="sd"> >>> def eval(self, x: int):</span> |
| <span class="sd"> ... yield (x, )</span> |
| |
| <span class="sd"> This `eval` method returns two rows and two columns for each input.</span> |
| |
| <span class="sd"> >>> def eval(self, x: int, y: int):</span> |
| <span class="sd"> ... yield (x + y, x - y)</span> |
| <span class="sd"> ... yield (y + x, y - x)</span> |
| |
| <span class="sd"> Same as above, but using *args to accept the arguments:</span> |
| |
| <span class="sd"> >>> def eval(self, *args):</span> |
| <span class="sd"> ... assert len(args) == 2, "This function accepts two integer arguments only"</span> |
| <span class="sd"> ... x = args[0]</span> |
| <span class="sd"> ... y = args[1]</span> |
| <span class="sd"> ... yield (x + y, x - y)</span> |
| <span class="sd"> ... yield (y + x, y - x)</span> |
| |
| <span class="sd"> Same as above, but using **kwargs to accept the arguments:</span> |
| |
| <span class="sd"> >>> def eval(self, **kwargs):</span> |
| <span class="sd"> ... assert len(kwargs) == 2, "This function accepts two integer arguments only"</span> |
| <span class="sd"> ... x = kwargs["x"]</span> |
| <span class="sd"> ... y = kwargs["y"]</span> |
| <span class="sd"> ... yield (x + y, x - y)</span> |
| <span class="sd"> ... yield (y + x, y - x)</span> |
| <span class="sd"> """</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span> <span class="nf">terminate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Iterator</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Called when the UDTF has successfully processed all input rows.</span> |
| |
| <span class="sd"> This method is optional to implement and is useful for performing any</span> |
| <span class="sd"> finalization operations after the UDTF has finished processing</span> |
| <span class="sd"> all rows. It can also be used to yield additional rows if needed.</span> |
| <span class="sd"> Table functions that consume all rows in the entire input partition</span> |
| <span class="sd"> and then compute and return the entire output table can do so from</span> |
| <span class="sd"> this method as well (please be mindful of memory usage when doing</span> |
| <span class="sd"> this).</span> |
| |
| <span class="sd"> If any exceptions occur during input row processing, this method</span> |
| <span class="sd"> won't be called.</span> |
| |
| <span class="sd"> Yields</span> |
| <span class="sd"> ------</span> |
| <span class="sd"> tuple</span> |
| <span class="sd"> A tuple representing a single row in the UDTF result table.</span> |
| <span class="sd"> Yield this if you want to return additional rows during termination.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> def terminate(self) -> Iterator[Any]:</span> |
| <span class="sd"> >>> yield "done", None</span> |
| <span class="sd"> """</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span> <span class="nf">cleanup</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Invoked after the UDTF completes processing input rows.</span> |
| |
| <span class="sd"> This method is optional to implement and is useful for final cleanup</span> |
| <span class="sd"> regardless of whether the UDTF processed all input rows successfully</span> |
| <span class="sd"> or was aborted due to exceptions.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> def cleanup(self) -> None:</span> |
| <span class="sd"> >>> self.conn.close()</span> |
| <span class="sd"> """</span> |
| <span class="o">...</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="defining-the-output-schema"> |
| <h2>Defining the Output Schema<a class="headerlink" href="#defining-the-output-schema" title="Permalink to this headline">#</a></h2> |
| <p>The return type of the UDTF defines the schema of the table it outputs.</p> |
| <p>You can specify it either after the <code class="docutils literal notranslate"><span class="pre">@udtf</span></code> decorator or as a result from the <code class="docutils literal notranslate"><span class="pre">analyze</span></code> method.</p> |
| <p>It must be either a <code class="docutils literal notranslate"><span class="pre">StructType</span></code>:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">StructType</span><span class="p">()</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">"c1"</span><span class="p">,</span> <span class="n">StringType</span><span class="p">())</span> |
| </pre></div> |
| </div> |
| <p>or a DDL string representing a struct type:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">c1</span><span class="p">:</span> <span class="n">string</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="emitting-output-rows"> |
| <h2>Emitting Output Rows<a class="headerlink" href="#emitting-output-rows" title="Permalink to this headline">#</a></h2> |
| <p>The <cite>eval</cite> and <cite>terminate</cite> methods then emit zero or more output rows conforming to this schema by |
| yielding tuples, lists, or <code class="docutils literal notranslate"><span class="pre">pyspark.sql.Row</span></code> objects.</p> |
| <p>For example, here we return a row by providing a tuple of three elements:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>It is also acceptable to omit the parentheses:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> |
| </pre></div> |
| </div> |
| <p>Remember to add a trailing comma if returning a row with only one column!</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="n">x</span><span class="p">,</span> |
| </pre></div> |
| </div> |
| <p>It is also possible to yield a <code class="docutils literal notranslate"><span class="pre">pyspark.sql.Row</span></code> object.</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">Row</span> |
| <span class="k">yield</span> <span class="n">Row</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>This is an example of yielding output rows from the <cite>terminate</cite> method using a Python list. |
| Usually it makes sense to store state inside the class for this purpose from earlier steps in the |
| UDTF evaluation.</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">terminate</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">y</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">z</span><span class="p">]</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="registering-and-using-python-udtfs-in-sql"> |
| <h2>Registering and Using Python UDTFs in SQL<a class="headerlink" href="#registering-and-using-python-udtfs-in-sql" title="Permalink to this headline">#</a></h2> |
| <p>Python UDTFs can be registered and used in SQL queries.</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">udtf</span> |
| |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"word: string"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">WordSplitter</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">text</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span> |
| <span class="k">for</span> <span class="n">word</span> <span class="ow">in</span> <span class="n">text</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">" "</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="p">(</span><span class="n">word</span><span class="o">.</span><span class="n">strip</span><span class="p">(),)</span> |
| |
| <span class="c1"># Register the UDTF for use in Spark SQL.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">udtf</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">"split_words"</span><span class="p">,</span> <span class="n">WordSplitter</span><span class="p">)</span> |
| |
| <span class="c1"># Example: Using the UDTF in SQL.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"SELECT * FROM split_words('hello world')"</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-----+</span> |
| <span class="c1"># | word|</span> |
| <span class="c1"># +-----+</span> |
| <span class="c1"># |hello|</span> |
| <span class="c1"># |world|</span> |
| <span class="c1"># +-----+</span> |
| |
| <span class="c1"># Example: Using the UDTF with a lateral join in SQL.</span> |
| <span class="c1"># The lateral join allows us to reference the columns and aliases</span> |
| <span class="c1"># in the previous FROM clause items as inputs to the UDTF.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span> |
| <span class="s2">"SELECT * FROM VALUES ('Hello World'), ('Apache Spark') t(text), "</span> |
| <span class="s2">"LATERAL split_words(text)"</span> |
| <span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +------------+------+</span> |
| <span class="c1"># | text| word|</span> |
| <span class="c1"># +------------+------+</span> |
| <span class="c1"># | Hello World| Hello|</span> |
| <span class="c1"># | Hello World| World|</span> |
| <span class="c1"># |Apache Spark|Apache|</span> |
| <span class="c1"># |Apache Spark| Spark|</span> |
| <span class="c1"># +------------+------+</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="arrow-optimization"> |
| <h2>Arrow Optimization<a class="headerlink" href="#arrow-optimization" title="Permalink to this headline">#</a></h2> |
| <p>Apache Arrow is an in-memory columnar data format used in Spark to efficiently transfer |
| data between Java and Python processes. Apache Arrow is disabled by default for Python UDTFs.</p> |
| <p>Arrow can improve performance when each input row generates a large result table from the UDTF.</p> |
| <p>To enable Arrow optimization, set the <code class="docutils literal notranslate"><span class="pre">spark.sql.execution.pythonUDTF.arrow.enabled</span></code> |
| configuration to <code class="docutils literal notranslate"><span class="pre">true</span></code>. You can also enable it by specifying the <code class="docutils literal notranslate"><span class="pre">useArrow</span></code> parameter |
| when declaring the UDTF.</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">udtf</span> |
| |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"c1: int, c2: int"</span><span class="p">,</span> <span class="n">useArrow</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">PlusOne</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="n">x</span><span class="p">,</span> <span class="n">x</span> <span class="o">+</span> <span class="mi">1</span> |
| </pre></div> |
| </div> |
| <p>For more details, please see <a class="reference internal" href="../arrow_pandas.html"><span class="doc">Apache Arrow in PySpark</span></a>.</p> |
| </section> |
| <section id="udtf-examples-with-scalar-arguments"> |
| <h2>UDTF Examples with Scalar Arguments<a class="headerlink" href="#udtf-examples-with-scalar-arguments" title="Permalink to this headline">#</a></h2> |
| <p>Here is a simple example of a UDTF class implementation:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Define the UDTF class and implement the required `eval` method.</span> |
| <span class="k">class</span> <span class="nc">SquareNumbers</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">start</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">end</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span> |
| <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">end</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="p">(</span><span class="n">num</span><span class="p">,</span> <span class="n">num</span> <span class="o">*</span> <span class="n">num</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>To make use of the UDTF, you’ll first need to instantiate it using the <code class="docutils literal notranslate"><span class="pre">@udtf</span></code> decorator:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">lit</span><span class="p">,</span> <span class="n">udtf</span> |
| |
| <span class="c1"># Create a UDTF using the class definition and the `udtf` function.</span> |
| <span class="n">square_num</span> <span class="o">=</span> <span class="n">udtf</span><span class="p">(</span><span class="n">SquareNumbers</span><span class="p">,</span> <span class="n">returnType</span><span class="o">=</span><span class="s2">"num: int, squared: int"</span><span class="p">)</span> |
| |
| <span class="c1"># Invoke the UDTF in PySpark.</span> |
| <span class="n">square_num</span><span class="p">(</span><span class="n">lit</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">lit</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +---+-------+</span> |
| <span class="c1"># |num|squared|</span> |
| <span class="c1"># +---+-------+</span> |
| <span class="c1"># | 1| 1|</span> |
| <span class="c1"># | 2| 4|</span> |
| <span class="c1"># | 3| 9|</span> |
| <span class="c1"># +---+-------+</span> |
| </pre></div> |
| </div> |
| <p>An alternative way to create a UDTF is to use the <a class="reference internal" href="../../reference/pyspark.sql/api/pyspark.sql.functions.udtf.html#pyspark.sql.functions.udtf" title="pyspark.sql.functions.udtf"><code class="xref py py-func docutils literal notranslate"><span class="pre">udtf()</span></code></a> function:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">lit</span><span class="p">,</span> <span class="n">udtf</span> |
| |
| <span class="c1"># Define a UDTF using the `udtf` decorator directly on the class.</span> |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"num: int, squared: int"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">SquareNumbers</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">start</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">end</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span> |
| <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">end</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="p">(</span><span class="n">num</span><span class="p">,</span> <span class="n">num</span> <span class="o">*</span> <span class="n">num</span><span class="p">)</span> |
| |
| <span class="c1"># Invoke the UDTF in PySpark using the SquareNumbers class directly.</span> |
| <span class="n">SquareNumbers</span><span class="p">(</span><span class="n">lit</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">lit</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +---+-------+</span> |
| <span class="c1"># |num|squared|</span> |
| <span class="c1"># +---+-------+</span> |
| <span class="c1"># | 1| 1|</span> |
| <span class="c1"># | 2| 4|</span> |
| <span class="c1"># | 3| 9|</span> |
| <span class="c1"># +---+-------+</span> |
| </pre></div> |
| </div> |
| <p>Here is a Python UDTF that expands date ranges into individual dates:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">timedelta</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">lit</span><span class="p">,</span> <span class="n">udtf</span> |
| |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"date: string"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">DateExpander</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">start_date</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">end_date</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span> |
| <span class="n">current</span> <span class="o">=</span> <span class="n">datetime</span><span class="o">.</span><span class="n">strptime</span><span class="p">(</span><span class="n">start_date</span><span class="p">,</span> <span class="s1">'%Y-%m-</span><span class="si">%d</span><span class="s1">'</span><span class="p">)</span> |
| <span class="n">end</span> <span class="o">=</span> <span class="n">datetime</span><span class="o">.</span><span class="n">strptime</span><span class="p">(</span><span class="n">end_date</span><span class="p">,</span> <span class="s1">'%Y-%m-</span><span class="si">%d</span><span class="s1">'</span><span class="p">)</span> |
| <span class="k">while</span> <span class="n">current</span> <span class="o"><=</span> <span class="n">end</span><span class="p">:</span> |
| <span class="k">yield</span> <span class="p">(</span><span class="n">current</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="s1">'%Y-%m-</span><span class="si">%d</span><span class="s1">'</span><span class="p">),)</span> |
| <span class="n">current</span> <span class="o">+=</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> |
| |
| <span class="n">DateExpander</span><span class="p">(</span><span class="n">lit</span><span class="p">(</span><span class="s2">"2023-02-25"</span><span class="p">),</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"2023-03-01"</span><span class="p">))</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +----------+</span> |
| <span class="c1"># | date|</span> |
| <span class="c1"># +----------+</span> |
| <span class="c1"># |2023-02-25|</span> |
| <span class="c1"># |2023-02-26|</span> |
| <span class="c1"># |2023-02-27|</span> |
| <span class="c1"># |2023-02-28|</span> |
| <span class="c1"># |2023-03-01|</span> |
| <span class="c1"># +----------+</span> |
| </pre></div> |
| </div> |
| <p>Here is a Python UDTF with <code class="docutils literal notranslate"><span class="pre">__init__</span></code> and <code class="docutils literal notranslate"><span class="pre">terminate</span></code>:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">udtf</span> |
| |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"cnt: int"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">CountUDTF</span><span class="p">:</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="c1"># Initialize the counter to 0 when an instance of the class is created.</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">count</span> <span class="o">=</span> <span class="mi">0</span> |
| |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span> |
| <span class="c1"># Increment the counter by 1 for each input value received.</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span> |
| |
| <span class="k">def</span> <span class="nf">terminate</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="c1"># Yield the final count when the UDTF is done processing.</span> |
| <span class="k">yield</span> <span class="bp">self</span><span class="o">.</span><span class="n">count</span><span class="p">,</span> |
| |
| <span class="n">spark</span><span class="o">.</span><span class="n">udtf</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">"count_udtf"</span><span class="p">,</span> <span class="n">CountUDTF</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"SELECT * FROM range(0, 10, 1, 1), LATERAL count_udtf(id)"</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +---+---+</span> |
| <span class="c1"># | id|cnt|</span> |
| <span class="c1"># +---+---+</span> |
| <span class="c1"># | 9| 10|</span> |
| <span class="c1"># +---+---+</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"SELECT * FROM range(0, 10, 1, 2), LATERAL count_udtf(id)"</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +---+---+</span> |
| <span class="c1"># | id|cnt|</span> |
| <span class="c1"># +---+---+</span> |
| <span class="c1"># | 4| 5|</span> |
| <span class="c1"># | 9| 5|</span> |
| <span class="c1"># +---+---+</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="accepting-an-input-table-argument"> |
| <h2>Accepting an Input Table Argument<a class="headerlink" href="#accepting-an-input-table-argument" title="Permalink to this headline">#</a></h2> |
| <p>The UDTF examples above show functions that accept scalar input arguments, such as integers or |
| strings.</p> |
| <p>However, any Python UDTF can also accept an input table as an argument, and this can work in |
| conjunction with scalar input argument(s) for the same function definition. You are allowed to |
| have only one such table argument as input.</p> |
| <p>Then any SQL query can provide an input table using the <code class="docutils literal notranslate"><span class="pre">TABLE</span></code> keyword followed by parentheses |
| surrounding an appropriate table identifier, like <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span></code>. Alternatively, you can pass a table |
| subquery, like <code class="docutils literal notranslate"><span class="pre">TABLE(SELECT</span> <span class="pre">a,</span> <span class="pre">b,</span> <span class="pre">c</span> <span class="pre">FROM</span> <span class="pre">t)</span></code> or |
| <code class="docutils literal notranslate"><span class="pre">TABLE(SELECT</span> <span class="pre">t1.a,</span> <span class="pre">t2.b</span> <span class="pre">FROM</span> <span class="pre">t1</span> <span class="pre">INNER</span> <span class="pre">JOIN</span> <span class="pre">t2</span> <span class="pre">USING</span> <span class="pre">(key))</span></code>.</p> |
| <p>The input table argument is then represented as a <code class="docutils literal notranslate"><span class="pre">pyspark.sql.Row</span></code> argument to the <code class="docutils literal notranslate"><span class="pre">eval</span></code> |
| method, with one call to the <code class="docutils literal notranslate"><span class="pre">eval</span></code> method for each row in the input table.</p> |
| <p>For example:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">udtf</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">Row</span> |
| |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"id: int"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">FilterUDTF</span><span class="p">:</span> |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">row</span><span class="p">:</span> <span class="n">Row</span><span class="p">):</span> |
| <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s2">"id"</span><span class="p">]</span> <span class="o">></span> <span class="mi">5</span><span class="p">:</span> |
| <span class="k">yield</span> <span class="n">row</span><span class="p">[</span><span class="s2">"id"</span><span class="p">],</span> |
| |
| <span class="n">spark</span><span class="o">.</span><span class="n">udtf</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">"filter_udtf"</span><span class="p">,</span> <span class="n">FilterUDTF</span><span class="p">)</span> |
| |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"SELECT * FROM filter_udtf(TABLE(SELECT * FROM range(10)))"</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +---+</span> |
| <span class="c1"># | id|</span> |
| <span class="c1"># +---+</span> |
| <span class="c1"># | 6|</span> |
| <span class="c1"># | 7|</span> |
| <span class="c1"># | 8|</span> |
| <span class="c1"># | 9|</span> |
| <span class="c1"># +---+</span> |
| </pre></div> |
| </div> |
| <p>When calling a UDTF with a table argument, any SQL query can request that the input table be |
| partitioned across several UDTF calls based on the values of one or more columns of the input |
| table. To do so, specify the <code class="docutils literal notranslate"><span class="pre">PARTITION</span> <span class="pre">BY</span></code> clause in the function call after the <code class="docutils literal notranslate"><span class="pre">TABLE</span></code> |
| argument. This provides a guaranteee that all input rows with each unique combination of values of |
| the partitioning columns will get consumed by exactly one instance of the UDTF class.</p> |
| <p>Note that in addition to simple column references, the <code class="docutils literal notranslate"><span class="pre">PARTITION</span> <span class="pre">BY</span></code> clause also accepts |
| arbitrary expressions based on columns of the input table. For example, you can specify the |
| <code class="docutils literal notranslate"><span class="pre">LENGTH</span></code> of a string, extract a month from a date, or concatenate two values.</p> |
| <p>It is also possible to specify <code class="docutils literal notranslate"><span class="pre">WITH</span> <span class="pre">SINGLE</span> <span class="pre">PARTITION</span></code> instead of <code class="docutils literal notranslate"><span class="pre">PARTITION</span> <span class="pre">BY</span></code> to request |
| only one partition wherein all input rows must be consumed by exactly one instance of the UDTF |
| class.</p> |
| <p>Within each partition, you can optionally specify a required ordering of the input rows as the |
| UDTF’s <code class="docutils literal notranslate"><span class="pre">eval</span></code> method consumes them. To do so, provide an <code class="docutils literal notranslate"><span class="pre">ORDER</span> <span class="pre">BY</span></code> clause after the |
| <code class="docutils literal notranslate"><span class="pre">PARTITION</span> <span class="pre">BY</span></code> or <code class="docutils literal notranslate"><span class="pre">WITH</span> <span class="pre">SINGLE</span> <span class="pre">PARTITION</span></code> clause described above.</p> |
| <p>For example:</p> |
| <div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">udtf</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">Row</span> |
| |
| <span class="c1"># Define and register a UDTF.</span> |
| <span class="nd">@udtf</span><span class="p">(</span><span class="n">returnType</span><span class="o">=</span><span class="s2">"a: string, b: int"</span><span class="p">)</span> |
| <span class="k">class</span> <span class="nc">FilterUDTF</span><span class="p">:</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">key</span> <span class="o">=</span> <span class="s2">""</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">max</span> <span class="o">=</span> <span class="mi">0</span> |
| |
| <span class="k">def</span> <span class="nf">eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">row</span><span class="p">:</span> <span class="n">Row</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">key</span> <span class="o">=</span> <span class="n">row</span><span class="p">[</span><span class="s2">"a"</span><span class="p">]</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">max</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max</span><span class="p">,</span> <span class="n">row</span><span class="p">[</span><span class="s2">"b"</span><span class="p">])</span> |
| |
| <span class="k">def</span> <span class="nf">terminate</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="k">yield</span> <span class="bp">self</span><span class="o">.</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max</span> |
| |
| <span class="n">spark</span><span class="o">.</span><span class="n">udtf</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="s2">"filter_udtf"</span><span class="p">,</span> <span class="n">FilterUDTF</span><span class="p">)</span> |
| |
| <span class="c1"># Create an input table with some example values.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"DROP TABLE IF EXISTS values_table"</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"CREATE TABLE values_table (a STRING, b INT)"</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"INSERT INTO values_table VALUES ('abc', 2), ('abc', 4), ('def', 6), ('def', 8)"</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="s2">"values_table"</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | a | b |</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | "abc" | 2 |</span> |
| <span class="c1"># | "abc" | 4 |</span> |
| <span class="c1"># | "def" | 6 |</span> |
| <span class="c1"># | "def" | 8 |</span> |
| <span class="c1"># +-------+----+</span> |
| |
| <span class="c1"># Query the UDTF with the input table as an argument, and a directive to partition the input</span> |
| <span class="c1"># rows such that all rows with each unique value of the `a` column are processed by the same</span> |
| <span class="c1"># instance of the UDTF class. Within each partition, the rows are ordered by the `b` column.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"""</span> |
| <span class="s2"> SELECT * FROM filter_udtf(TABLE(values_table) PARTITION BY a ORDER BY b) ORDER BY 1</span> |
| <span class="s2"> """</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | a | b |</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | "abc" | 4 |</span> |
| <span class="c1"># | "def" | 8 |</span> |
| <span class="c1"># +-------+----+</span> |
| |
| <span class="c1"># Query the UDTF with the input table as an argument, and a directive to partition the input</span> |
| <span class="c1"># rows such that all rows with each unique result of evaluating the "LENGTH(a)" expression are</span> |
| <span class="c1"># processed by the same instance of the UDTF class. Within each partition, the rows are ordered</span> |
| <span class="c1"># by the `b` column.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"""</span> |
| <span class="s2"> SELECT * FROM filter_udtf(TABLE(values_table) PARTITION BY LENGTH(a) ORDER BY b) ORDER BY 1</span> |
| <span class="s2"> """</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-------+---+</span> |
| <span class="c1"># | a | b |</span> |
| <span class="c1"># +-------+---+</span> |
| <span class="c1"># | "def" | 8 |</span> |
| <span class="c1"># +-------+---+</span> |
| |
| <span class="c1"># Query the UDTF with the input table as an argument, and a directive to consider all the input</span> |
| <span class="c1"># rows in one single partition such that exactly once instance of the UDTF class consumes all of</span> |
| <span class="c1"># the input rows. Within each partition, the rows are ordered by the `b` column.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"""</span> |
| <span class="s2"> SELECT * FROM filter_udtf(TABLE(values_table) WITH SINGLE PARTITION ORDER BY b) ORDER BY 1</span> |
| <span class="s2"> """</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | a | b |</span> |
| <span class="c1"># +-------+----+</span> |
| <span class="c1"># | "def" | 8 |</span> |
| <span class="c1"># +-------+----+</span> |
| |
| <span class="c1"># Clean up.</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s2">"DROP TABLE values_table"</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>Note that in for each of these ways of partitioning the input table when calling UDTFs in SQL |
| queries, there is a corresponding way for the UDTF’s <code class="docutils literal notranslate"><span class="pre">analyze</span></code> method to specify the same |
| partitioning method automatically instead.</p> |
| <p>For example, instead of calling a UDTF as <code class="docutils literal notranslate"><span class="pre">SELECT</span> <span class="pre">*</span> <span class="pre">FROM</span> <span class="pre">udtf(TABLE(t)</span> <span class="pre">PARTITION</span> <span class="pre">BY</span> <span class="pre">a)</span></code>, you can |
| update the <code class="docutils literal notranslate"><span class="pre">analyze</span></code> method to set the field <code class="docutils literal notranslate"><span class="pre">partitionBy=[PartitioningColumn("a")]</span></code> and simply |
| call the function like <code class="docutils literal notranslate"><span class="pre">SELECT</span> <span class="pre">*</span> <span class="pre">FROM</span> <span class="pre">udtf(TABLE(t))</span></code>.</p> |
| <p>By the same token, instead of specifying <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span> <span class="pre">WITH</span> <span class="pre">SINGLE</span> <span class="pre">PARTITION</span></code> in the SQL query, |
| make <code class="docutils literal notranslate"><span class="pre">analyze</span></code> set the field <code class="docutils literal notranslate"><span class="pre">withSinglePartition=true</span></code> and then just pass <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span></code>.</p> |
| <p>Instead of passing <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span> <span class="pre">ORDER</span> <span class="pre">BY</span> <span class="pre">b</span></code> in the SQL query, you can make <code class="docutils literal notranslate"><span class="pre">analyze</span></code> set |
| <code class="docutils literal notranslate"><span class="pre">orderBy=[OrderingColumn("b")]</span></code> and then just pass <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span></code>.</p> |
| <p>Instead of passing <code class="docutils literal notranslate"><span class="pre">TABLE(SELECT</span> <span class="pre">a</span> <span class="pre">FROM</span> <span class="pre">t)</span></code> in the SQL query, you can make <code class="docutils literal notranslate"><span class="pre">analyze</span></code> set |
| <code class="docutils literal notranslate"><span class="pre">select=[SelectedColumn("a")]</span></code> and then just pass <code class="docutils literal notranslate"><span class="pre">TABLE(t)</span></code>.</p> |
| </section> |
| </section> |
| |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| <a class="left-prev" |
| href="arrow_pandas.html" |
| title="previous page"> |
| <i class="fa-solid fa-angle-left"></i> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">previous</p> |
| <p class="prev-next-title">Apache Arrow in PySpark</p> |
| </div> |
| </a> |
| <a class="right-next" |
| href="python_data_source.html" |
| title="next page"> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">next</p> |
| <p class="prev-next-title">Python Data Source API</p> |
| </div> |
| <i class="fa-solid fa-angle-right"></i> |
| </a> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner"> |
| |
| <div class="sidebar-secondary-item"> |
| <div class="page-toc tocsection onthispage"> |
| <i class="fa-solid fa-list"></i> On this page |
| </div> |
| <nav class="bd-toc-nav page-toc"> |
| <ul class="visible nav section-nav flex-column"> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#implementing-a-python-udtf">Implementing a Python UDTF</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#defining-the-output-schema">Defining the Output Schema</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#emitting-output-rows">Emitting Output Rows</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#registering-and-using-python-udtfs-in-sql">Registering and Using Python UDTFs in SQL</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#arrow-optimization">Arrow Optimization</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#udtf-examples-with-scalar-arguments">UDTF Examples with Scalar Arguments</a></li> |
| <li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#accepting-an-input-table-argument">Accepting an Input Table Argument</a></li> |
| </ul> |
| </nav></div> |
| |
| <div class="sidebar-secondary-item"> |
| <div class="tocsection sourcelink"> |
| <a href="../../_sources/user_guide/sql/python_udtf.rst.txt"> |
| <i class="fa-solid fa-file-lines"></i> Show Source |
| </a> |
| </div> |
| </div> |
| |
| </div></div> |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |