| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.sql.group — PySpark 4.0.0-preview1 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/sql/group';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/group.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="../../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/sql/group.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/sql/group.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.sql.group</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.sql.group</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span> <span class="nn">sys</span> |
| |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">overload</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">Tuple</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.session</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas.group_ops</span> <span class="kn">import</span> <span class="n">PandasGroupedOpsMixin</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">LiteralType</span> |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"GroupedData"</span><span class="p">]</span> |
| |
| |
| <span class="k">def</span> <span class="nf">dfapi</span><span class="p">(</span><span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">])</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">]:</span> |
| <span class="k">def</span> <span class="nf">_api</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"GroupedData"</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="n">name</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="p">,</span> <span class="n">name</span><span class="p">)()</span> |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span> |
| |
| <span class="n">_api</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span> |
| <span class="n">_api</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__doc__</span> |
| <span class="k">return</span> <span class="n">_api</span> |
| |
| |
| <span class="k">def</span> <span class="nf">df_varargs_api</span><span class="p">(</span><span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">])</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">]:</span> |
| <span class="k">def</span> <span class="nf">_api</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"GroupedData"</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">_to_seq</span> |
| |
| <span class="n">name</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="p">,</span> <span class="n">name</span><span class="p">)(</span><span class="n">_to_seq</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">cols</span><span class="p">))</span> |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span> |
| |
| <span class="n">_api</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span> |
| <span class="n">_api</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__doc__</span> |
| <span class="k">return</span> <span class="n">_api</span> |
| |
| |
| <div class="viewcode-block" id="GroupedData"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData">[docs]</a><span class="k">class</span> <span class="nc">GroupedData</span><span class="p">(</span><span class="n">PandasGroupedOpsMixin</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> A set of methods for aggregations on a :class:`DataFrame`,</span> |
| <span class="sd"> created by :func:`DataFrame.groupBy`.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">jgd</span><span class="p">:</span> <span class="s2">"JavaObject"</span><span class="p">,</span> <span class="n">df</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span> <span class="o">=</span> <span class="n">jgd</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_df</span> <span class="o">=</span> <span class="n">df</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">:</span> <span class="n">SparkSession</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">sparkSession</span> |
| |
| <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="n">index</span> <span class="o">=</span> <span class="mi">26</span> <span class="c1"># index to truncate string from the JVM side</span> |
| <span class="n">jvm_string</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">toString</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">jvm_string</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">jvm_string</span><span class="p">)</span> <span class="o">></span> <span class="n">index</span> <span class="ow">and</span> <span class="n">jvm_string</span><span class="p">[</span><span class="n">index</span><span class="p">]</span> <span class="o">==</span> <span class="s2">"["</span><span class="p">:</span> |
| <span class="k">return</span> <span class="sa">f</span><span class="s2">"GroupedData</span><span class="si">{</span><span class="n">jvm_string</span><span class="p">[</span><span class="n">index</span><span class="p">:]</span><span class="si">}</span><span class="s2">"</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__repr__</span><span class="p">()</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">exprs</span><span class="p">:</span> <span class="n">Column</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">__exprs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">])</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="GroupedData.agg"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.agg.html#pyspark.sql.GroupedData.agg">[docs]</a> <span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">exprs</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Column</span><span class="p">,</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]])</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Compute aggregates and returns the result as a :class:`DataFrame`.</span> |
| |
| <span class="sd"> The available aggregate functions can be:</span> |
| |
| <span class="sd"> 1. built-in aggregation functions, such as `avg`, `max`, `min`, `sum`, `count`</span> |
| |
| <span class="sd"> 2. group aggregate pandas UDFs, created with :func:`pyspark.sql.functions.pandas_udf`</span> |
| |
| <span class="sd"> .. note:: There is no partial aggregation with group aggregate UDFs, i.e.,</span> |
| <span class="sd"> a full shuffle is required. Also, all the data of a group will be loaded into</span> |
| <span class="sd"> memory, so the user should be aware of the potential OOM risk if data is skewed</span> |
| <span class="sd"> and certain groups are too large to fit in memory.</span> |
| |
| <span class="sd"> .. seealso:: :func:`pyspark.sql.functions.pandas_udf`</span> |
| |
| <span class="sd"> If ``exprs`` is a single :class:`dict` mapping from string to string, then the key</span> |
| <span class="sd"> is the column to perform aggregation on, and the value is the aggregate function.</span> |
| |
| <span class="sd"> Alternatively, ``exprs`` can also be a list of aggregate :class:`Column` expressions.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> exprs : dict</span> |
| <span class="sd"> a dict mapping from column name (string) to aggregate functions (string),</span> |
| <span class="sd"> or a list of :class:`Column`.</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> Built-in aggregation functions and group aggregate pandas UDFs cannot be mixed</span> |
| <span class="sd"> in a single call to this function.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.sql import functions as sf</span> |
| <span class="sd"> >>> from pyspark.sql.functions import pandas_udf, PandasUDFType</span> |
| <span class="sd"> >>> df = spark.createDataFrame(</span> |
| <span class="sd"> ... [(2, "Alice"), (3, "Alice"), (5, "Bob"), (10, "Bob")], ["age", "name"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+</span> |
| <span class="sd"> |age| name|</span> |
| <span class="sd"> +---+-----+</span> |
| <span class="sd"> | 2|Alice|</span> |
| <span class="sd"> | 3|Alice|</span> |
| <span class="sd"> | 5| Bob|</span> |
| <span class="sd"> | 10| Bob|</span> |
| <span class="sd"> +---+-----+</span> |
| |
| <span class="sd"> Group-by name, and count each group.</span> |
| |
| <span class="sd"> >>> df.groupBy(df.name)</span> |
| <span class="sd"> GroupedData[grouping...: [name...], value: [age: bigint, name: string], type: GroupBy]</span> |
| |
| <span class="sd"> >>> df.groupBy(df.name).agg({"*": "count"}).sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|count(1)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 2|</span> |
| <span class="sd"> | Bob| 2|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Group-by name, and calculate the minimum age.</span> |
| |
| <span class="sd"> >>> df.groupBy(df.name).agg(sf.min(df.age)).sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|min(age)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 2|</span> |
| <span class="sd"> | Bob| 5|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Same as above but uses pandas UDF.</span> |
| |
| <span class="sd"> >>> @pandas_udf('int', PandasUDFType.GROUPED_AGG) # doctest: +SKIP</span> |
| <span class="sd"> ... def min_udf(v):</span> |
| <span class="sd"> ... return v.min()</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> df.groupBy(df.name).agg(min_udf(df.age)).sort("name").show() # doctest: +SKIP</span> |
| <span class="sd"> +-----+------------+</span> |
| <span class="sd"> | name|min_udf(age)|</span> |
| <span class="sd"> +-----+------------+</span> |
| <span class="sd"> |Alice| 2|</span> |
| <span class="sd"> | Bob| 5|</span> |
| <span class="sd"> +-----+------------+</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">_to_seq</span> |
| |
| <span class="k">assert</span> <span class="n">exprs</span><span class="p">,</span> <span class="s2">"exprs should not be empty"</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">exprs</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="nb">dict</span><span class="p">):</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="c1"># Columns</span> |
| <span class="k">assert</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">Column</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">),</span> <span class="s2">"all exprs should be Column"</span> |
| <span class="n">exprs</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">Tuple</span><span class="p">[</span><span class="n">Column</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="n">exprs</span><span class="p">)</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jc</span><span class="p">,</span> <span class="n">_to_seq</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="p">[</span><span class="n">c</span><span class="o">.</span><span class="n">_jc</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">[</span><span class="mi">1</span><span class="p">:]]))</span> |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.count"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.count.html#pyspark.sql.GroupedData.count">[docs]</a> <span class="nd">@dfapi</span> |
| <span class="k">def</span> <span class="nf">count</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Counts the number of records for each group.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df = spark.createDataFrame(</span> |
| <span class="sd"> ... [(2, "Alice"), (3, "Alice"), (5, "Bob"), (10, "Bob")], ["age", "name"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+</span> |
| <span class="sd"> |age| name|</span> |
| <span class="sd"> +---+-----+</span> |
| <span class="sd"> | 2|Alice|</span> |
| <span class="sd"> | 3|Alice|</span> |
| <span class="sd"> | 5| Bob|</span> |
| <span class="sd"> | 10| Bob|</span> |
| <span class="sd"> +---+-----+</span> |
| |
| <span class="sd"> Group-by name, and count each group.</span> |
| |
| <span class="sd"> >>> df.groupBy(df.name).count().sort("name").show()</span> |
| <span class="sd"> +-----+-----+</span> |
| <span class="sd"> | name|count|</span> |
| <span class="sd"> +-----+-----+</span> |
| <span class="sd"> |Alice| 2|</span> |
| <span class="sd"> | Bob| 2|</span> |
| <span class="sd"> +-----+-----+</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.mean"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.mean.html#pyspark.sql.GroupedData.mean">[docs]</a> <span class="nd">@df_varargs_api</span> |
| <span class="k">def</span> <span class="nf">mean</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Computes average values for each numeric columns for each group.</span> |
| |
| <span class="sd"> :func:`mean` is an alias for :func:`avg`.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> cols : str</span> |
| <span class="sd"> column names. Non-numeric columns are ignored.</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.avg"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.avg.html#pyspark.sql.GroupedData.avg">[docs]</a> <span class="nd">@df_varargs_api</span> |
| <span class="k">def</span> <span class="nf">avg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Computes average values for each numeric columns for each group.</span> |
| |
| <span class="sd"> :func:`mean` is an alias for :func:`avg`.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> cols : str</span> |
| <span class="sd"> column names. Non-numeric columns are ignored.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df = spark.createDataFrame([</span> |
| <span class="sd"> ... (2, "Alice", 80), (3, "Alice", 100),</span> |
| <span class="sd"> ... (5, "Bob", 120), (10, "Bob", 140)], ["age", "name", "height"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> |age| name|height|</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> | 2|Alice| 80|</span> |
| <span class="sd"> | 3|Alice| 100|</span> |
| <span class="sd"> | 5| Bob| 120|</span> |
| <span class="sd"> | 10| Bob| 140|</span> |
| <span class="sd"> +---+-----+------+</span> |
| |
| <span class="sd"> Group-by name, and calculate the mean of the age in each group.</span> |
| |
| <span class="sd"> >>> df.groupBy("name").avg('age').sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|avg(age)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 2.5|</span> |
| <span class="sd"> | Bob| 7.5|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Calculate the mean of the age and height in all data.</span> |
| |
| <span class="sd"> >>> df.groupBy().avg('age', 'height').show()</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> |avg(age)|avg(height)|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> | 5.0| 110.0|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.max"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.max.html#pyspark.sql.GroupedData.max">[docs]</a> <span class="nd">@df_varargs_api</span> |
| <span class="k">def</span> <span class="nf">max</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Computes the max value for each numeric columns for each group.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df = spark.createDataFrame([</span> |
| <span class="sd"> ... (2, "Alice", 80), (3, "Alice", 100),</span> |
| <span class="sd"> ... (5, "Bob", 120), (10, "Bob", 140)], ["age", "name", "height"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> |age| name|height|</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> | 2|Alice| 80|</span> |
| <span class="sd"> | 3|Alice| 100|</span> |
| <span class="sd"> | 5| Bob| 120|</span> |
| <span class="sd"> | 10| Bob| 140|</span> |
| <span class="sd"> +---+-----+------+</span> |
| |
| <span class="sd"> Group-by name, and calculate the max of the age in each group.</span> |
| |
| <span class="sd"> >>> df.groupBy("name").max("age").sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|max(age)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 3|</span> |
| <span class="sd"> | Bob| 10|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Calculate the max of the age and height in all data.</span> |
| |
| <span class="sd"> >>> df.groupBy().max("age", "height").show()</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> |max(age)|max(height)|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> | 10| 140|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.min"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.min.html#pyspark.sql.GroupedData.min">[docs]</a> <span class="nd">@df_varargs_api</span> |
| <span class="k">def</span> <span class="nf">min</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Computes the min value for each numeric column for each group.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> cols : str</span> |
| <span class="sd"> column names. Non-numeric columns are ignored.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df = spark.createDataFrame([</span> |
| <span class="sd"> ... (2, "Alice", 80), (3, "Alice", 100),</span> |
| <span class="sd"> ... (5, "Bob", 120), (10, "Bob", 140)], ["age", "name", "height"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> |age| name|height|</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> | 2|Alice| 80|</span> |
| <span class="sd"> | 3|Alice| 100|</span> |
| <span class="sd"> | 5| Bob| 120|</span> |
| <span class="sd"> | 10| Bob| 140|</span> |
| <span class="sd"> +---+-----+------+</span> |
| |
| <span class="sd"> Group-by name, and calculate the min of the age in each group.</span> |
| |
| <span class="sd"> >>> df.groupBy("name").min("age").sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|min(age)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 2|</span> |
| <span class="sd"> | Bob| 5|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Calculate the min of the age and height in all data.</span> |
| |
| <span class="sd"> >>> df.groupBy().min("age", "height").show()</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> |min(age)|min(height)|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> | 2| 80|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.sum"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.sum.html#pyspark.sql.GroupedData.sum">[docs]</a> <span class="nd">@df_varargs_api</span> |
| <span class="k">def</span> <span class="nf">sum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> <span class="c1"># type: ignore[empty-body]</span> |
| <span class="w"> </span><span class="sd">"""Computes the sum for each numeric columns for each group.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> cols : str</span> |
| <span class="sd"> column names. Non-numeric columns are ignored.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df = spark.createDataFrame([</span> |
| <span class="sd"> ... (2, "Alice", 80), (3, "Alice", 100),</span> |
| <span class="sd"> ... (5, "Bob", 120), (10, "Bob", 140)], ["age", "name", "height"])</span> |
| <span class="sd"> >>> df.show()</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> |age| name|height|</span> |
| <span class="sd"> +---+-----+------+</span> |
| <span class="sd"> | 2|Alice| 80|</span> |
| <span class="sd"> | 3|Alice| 100|</span> |
| <span class="sd"> | 5| Bob| 120|</span> |
| <span class="sd"> | 10| Bob| 140|</span> |
| <span class="sd"> +---+-----+------+</span> |
| |
| <span class="sd"> Group-by name, and calculate the sum of the age in each group.</span> |
| |
| <span class="sd"> >>> df.groupBy("name").sum("age").sort("name").show()</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> | name|sum(age)|</span> |
| <span class="sd"> +-----+--------+</span> |
| <span class="sd"> |Alice| 5|</span> |
| <span class="sd"> | Bob| 15|</span> |
| <span class="sd"> +-----+--------+</span> |
| |
| <span class="sd"> Calculate the sum of the age and height in all data.</span> |
| |
| <span class="sd"> >>> df.groupBy().sum("age", "height").show()</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> |sum(age)|sum(height)|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> | 20| 440|</span> |
| <span class="sd"> +--------+-----------+</span> |
| <span class="sd"> """</span></div> |
| |
| <div class="viewcode-block" id="GroupedData.pivot"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.pivot.html#pyspark.sql.GroupedData.pivot">[docs]</a> <span class="k">def</span> <span class="nf">pivot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">pivot_col</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">values</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="s2">"LiteralType"</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"GroupedData"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Pivots a column of the current :class:`DataFrame` and performs the specified aggregation.</span> |
| |
| <span class="sd"> .. versionadded:: 1.6.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> pivot_col : str</span> |
| <span class="sd"> Name of the column to pivot.</span> |
| <span class="sd"> values : list, optional</span> |
| <span class="sd"> List of values that will be translated to columns in the output DataFrame.</span> |
| |
| <span class="sd"> If ``values`` is not provided, Spark will eagerly compute the distinct values in</span> |
| <span class="sd"> ``pivot_col`` so it can determine the resulting schema of the transformation. To avoid</span> |
| <span class="sd"> any eager computations, provide an explicit list of values.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.sql import Row</span> |
| <span class="sd"> >>> df1 = spark.createDataFrame([</span> |
| <span class="sd"> ... Row(course="dotNET", year=2012, earnings=10000),</span> |
| <span class="sd"> ... Row(course="Java", year=2012, earnings=20000),</span> |
| <span class="sd"> ... Row(course="dotNET", year=2012, earnings=5000),</span> |
| <span class="sd"> ... Row(course="dotNET", year=2013, earnings=48000),</span> |
| <span class="sd"> ... Row(course="Java", year=2013, earnings=30000),</span> |
| <span class="sd"> ... ])</span> |
| <span class="sd"> >>> df1.show()</span> |
| <span class="sd"> +------+----+--------+</span> |
| <span class="sd"> |course|year|earnings|</span> |
| <span class="sd"> +------+----+--------+</span> |
| <span class="sd"> |dotNET|2012| 10000|</span> |
| <span class="sd"> | Java|2012| 20000|</span> |
| <span class="sd"> |dotNET|2012| 5000|</span> |
| <span class="sd"> |dotNET|2013| 48000|</span> |
| <span class="sd"> | Java|2013| 30000|</span> |
| <span class="sd"> +------+----+--------+</span> |
| <span class="sd"> >>> df2 = spark.createDataFrame([</span> |
| <span class="sd"> ... Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=10000)),</span> |
| <span class="sd"> ... Row(training="junior", sales=Row(course="Java", year=2012, earnings=20000)),</span> |
| <span class="sd"> ... Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=5000)),</span> |
| <span class="sd"> ... Row(training="junior", sales=Row(course="dotNET", year=2013, earnings=48000)),</span> |
| <span class="sd"> ... Row(training="expert", sales=Row(course="Java", year=2013, earnings=30000)),</span> |
| <span class="sd"> ... ]) # doctest: +SKIP</span> |
| <span class="sd"> >>> df2.show() # doctest: +SKIP</span> |
| <span class="sd"> +--------+--------------------+</span> |
| <span class="sd"> |training| sales|</span> |
| <span class="sd"> +--------+--------------------+</span> |
| <span class="sd"> | expert|{dotNET, 2012, 10...|</span> |
| <span class="sd"> | junior| {Java, 2012, 20000}|</span> |
| <span class="sd"> | expert|{dotNET, 2012, 5000}|</span> |
| <span class="sd"> | junior|{dotNET, 2013, 48...|</span> |
| <span class="sd"> | expert| {Java, 2013, 30000}|</span> |
| <span class="sd"> +--------+--------------------+</span> |
| |
| <span class="sd"> Compute the sum of earnings for each year by course with each course as a separate column</span> |
| |
| <span class="sd"> >>> df1.groupBy("year").pivot("course", ["dotNET", "Java"]).sum("earnings").show()</span> |
| <span class="sd"> +----+------+-----+</span> |
| <span class="sd"> |year|dotNET| Java|</span> |
| <span class="sd"> +----+------+-----+</span> |
| <span class="sd"> |2012| 15000|20000|</span> |
| <span class="sd"> |2013| 48000|30000|</span> |
| <span class="sd"> +----+------+-----+</span> |
| |
| <span class="sd"> Or without specifying column values (less efficient)</span> |
| |
| <span class="sd"> >>> df1.groupBy("year").pivot("course").sum("earnings").show()</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> |year| Java|dotNET|</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> |2012|20000| 15000|</span> |
| <span class="sd"> |2013|30000| 48000|</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> >>> df2.groupBy("sales.year").pivot("sales.course").sum("sales.earnings").show()</span> |
| <span class="sd"> ... # doctest: +SKIP</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> |year| Java|dotNET|</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> |2012|20000| 15000|</span> |
| <span class="sd"> |2013|30000| 48000|</span> |
| <span class="sd"> +----+-----+------+</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">values</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">jgd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">pivot</span><span class="p">(</span><span class="n">pivot_col</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">jgd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">pivot</span><span class="p">(</span><span class="n">pivot_col</span><span class="p">,</span> <span class="n">values</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">GroupedData</span><span class="p">(</span><span class="n">jgd</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_df</span><span class="p">)</span></div></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span> <span class="nn">pyspark.sql.group</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">group</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"sql.group tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"spark"</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span> |
| |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">group</span><span class="p">,</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> |
| <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">REPORT_NDIFF</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |