blob: d8d3ff1cecbf79792d7fcb0c3a7eaa784802cc44 [file] [log] [blame]
<!DOCTYPE html>
<html >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyspark.sql.column &#8212; PySpark 4.0.0-preview1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" />
<script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/sql/column';</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/column.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<a class="skip-link" href="#main-content">Skip to main content</a>
<input type="checkbox"
class="sidebar-toggle"
name="__primary"
id="__primary"/>
<label class="overlay overlay-primary" for="__primary"></label>
<input type="checkbox"
class="sidebar-toggle"
name="__secondary"
id="__secondary"/>
<label class="overlay overlay-secondary" for="__secondary"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<nav class="bd-header navbar navbar-expand-lg bd-navbar">
<div class="bd-header__inner bd-page-width">
<label class="sidebar-toggle primary-toggle" for="__primary">
<span class="fa-solid fa-bars"></span>
</label>
<div class="navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/>
<script>document.write(`<img src="../../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item"><nav class="navbar-nav">
<p class="sidebar-header-items__title"
role="heading"
aria-level="1"
aria-label="Site Navigation">
Site Navigation
</p>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../index.html">
Overview
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../development/index.html">
Development
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
</button>
`);
</script>
</div>
<div class="navbar-item"><!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
4.0.0-preview1
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/sql/column.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script></div>
<div class="navbar-item">
<script>
document.write(`
<button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
<span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
<span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span>
<label class="sr-only">GitHub</label></a>
</li>
<li class="nav-item">
<a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span>
<label class="sr-only">PyPI</label></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
</button>
`);
</script>
</div>
</div>
</nav>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar hide-on-wide">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item"><nav class="navbar-nav">
<p class="sidebar-header-items__title"
role="heading"
aria-level="1"
aria-label="Site Navigation">
Site Navigation
</p>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../index.html">
Overview
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../development/index.html">
Development
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item"><!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
4.0.0-preview1
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/sql/column.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script></div>
<div class="navbar-item">
<script>
document.write(`
<button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
<span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
<span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span>
<label class="sr-only">GitHub</label></a>
</li>
<li class="nav-item">
<a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span>
<label class="sr-only">PyPI</label></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumbs">
<ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page">pyspark.sql.column</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article" role="main">
<h1>Source code for pyspark.sql.column</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="c1"># mypy: disable-error-code=&quot;empty-body&quot;</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">overload</span><span class="p">,</span>
<span class="n">Any</span><span class="p">,</span>
<span class="n">TYPE_CHECKING</span><span class="p">,</span>
<span class="n">Union</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.utils</span> <span class="kn">import</span> <span class="n">dispatch_col_method</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">DataType</span>
<span class="kn">from</span> <span class="nn">pyspark.errors</span> <span class="kn">import</span> <span class="n">PySparkValueError</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span>
<span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">LiteralType</span><span class="p">,</span> <span class="n">DecimalLiteral</span><span class="p">,</span> <span class="n">DateTimeLiteral</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.window</span> <span class="kn">import</span> <span class="n">WindowSpec</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">]</span>
<div class="viewcode-block" id="Column"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.html#pyspark.sql.Column">[docs]</a><span class="k">class</span> <span class="nc">Column</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A column in a DataFrame.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Column instances can be created by</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> Select a column out of a DataFrame</span>
<span class="sd"> &gt;&gt;&gt; df.name</span>
<span class="sd"> Column&lt;&#39;name&#39;&gt;</span>
<span class="sd"> &gt;&gt;&gt; df[&quot;name&quot;]</span>
<span class="sd"> Column&lt;&#39;name&#39;&gt;</span>
<span class="sd"> Create from an expression</span>
<span class="sd"> &gt;&gt;&gt; df.age + 1</span>
<span class="sd"> Column&lt;...&gt;</span>
<span class="sd"> &gt;&gt;&gt; 1 / df.age</span>
<span class="sd"> Column&lt;...&gt;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># HACK ALERT!! this is to reduce the backward compatibility concern, and returns</span>
<span class="c1"># Spark Classic Column by default. This is NOT an API, and NOT supposed to</span>
<span class="c1"># be directly invoked. DO NOT use this constructor.</span>
<span class="k">def</span> <span class="fm">__new__</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">jc</span><span class="p">:</span> <span class="s2">&quot;JavaObject&quot;</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">Column</span>
<span class="k">return</span> <span class="n">Column</span><span class="o">.</span><span class="fm">__new__</span><span class="p">(</span><span class="n">Column</span><span class="p">,</span> <span class="n">jc</span><span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">jc</span><span class="p">:</span> <span class="s2">&quot;JavaObject&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jc</span> <span class="o">=</span> <span class="n">jc</span>
<span class="c1"># arithmetic operators</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__neg__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__add__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__sub__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__mul__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">__div__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__truediv__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__mod__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__radd__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rsub__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rmul__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">__rdiv__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rtruediv__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rmod__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__pow__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rpow__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="c1"># logistic operators</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__eq__</span><span class="p">(</span> <span class="c1"># type: ignore[override]</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;binary function&quot;&quot;&quot;</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__ne__</span><span class="p">(</span> <span class="c1"># type: ignore[override]</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">other</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;binary function&quot;&quot;&quot;</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__lt__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__le__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__ge__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__gt__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<div class="viewcode-block" id="Column.eqNullSafe"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.eqNullSafe.html#pyspark.sql.Column.eqNullSafe">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">eqNullSafe</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Equality test that is safe for null values.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other</span>
<span class="sd"> a value or :class:`Column`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df1 = spark.createDataFrame([</span>
<span class="sd"> ... Row(id=1, value=&#39;foo&#39;),</span>
<span class="sd"> ... Row(id=2, value=None)</span>
<span class="sd"> ... ])</span>
<span class="sd"> &gt;&gt;&gt; df1.select(</span>
<span class="sd"> ... df1[&#39;value&#39;] == &#39;foo&#39;,</span>
<span class="sd"> ... df1[&#39;value&#39;].eqNullSafe(&#39;foo&#39;),</span>
<span class="sd"> ... df1[&#39;value&#39;].eqNullSafe(None)</span>
<span class="sd"> ... ).show()</span>
<span class="sd"> +-------------+---------------+----------------+</span>
<span class="sd"> |(value = foo)|(value &lt;=&gt; foo)|(value &lt;=&gt; NULL)|</span>
<span class="sd"> +-------------+---------------+----------------+</span>
<span class="sd"> | true| true| false|</span>
<span class="sd"> | NULL| false| true|</span>
<span class="sd"> +-------------+---------------+----------------+</span>
<span class="sd"> &gt;&gt;&gt; df2 = spark.createDataFrame([</span>
<span class="sd"> ... Row(value = &#39;bar&#39;),</span>
<span class="sd"> ... Row(value = None)</span>
<span class="sd"> ... ])</span>
<span class="sd"> &gt;&gt;&gt; df1.join(df2, df1[&quot;value&quot;] == df2[&quot;value&quot;]).count()</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; df1.join(df2, df1[&quot;value&quot;].eqNullSafe(df2[&quot;value&quot;])).count()</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; df2 = spark.createDataFrame([</span>
<span class="sd"> ... Row(id=1, value=float(&#39;NaN&#39;)),</span>
<span class="sd"> ... Row(id=2, value=42.0),</span>
<span class="sd"> ... Row(id=3, value=None)</span>
<span class="sd"> ... ])</span>
<span class="sd"> &gt;&gt;&gt; df2.select(</span>
<span class="sd"> ... df2[&#39;value&#39;].eqNullSafe(None),</span>
<span class="sd"> ... df2[&#39;value&#39;].eqNullSafe(float(&#39;NaN&#39;)),</span>
<span class="sd"> ... df2[&#39;value&#39;].eqNullSafe(42.0)</span>
<span class="sd"> ... ).show()</span>
<span class="sd"> +----------------+---------------+----------------+</span>
<span class="sd"> |(value &lt;=&gt; NULL)|(value &lt;=&gt; NaN)|(value &lt;=&gt; 42.0)|</span>
<span class="sd"> +----------------+---------------+----------------+</span>
<span class="sd"> | false| true| false|</span>
<span class="sd"> | false| false| true|</span>
<span class="sd"> | true| false| false|</span>
<span class="sd"> +----------------+---------------+----------------+</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Unlike Pandas, PySpark doesn&#39;t consider NaN values to be NULL. See the</span>
<span class="sd"> `NaN Semantics &lt;https://spark.apache.org/docs/latest/sql-ref-datatypes.html#nan-semantics&gt;`_</span>
<span class="sd"> for details.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<span class="c1"># `and`, `or`, `not` cannot be overloaded in Python,</span>
<span class="c1"># so use bitwise operators as boolean operators</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__and__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__or__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__invert__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__rand__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__ror__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="c1"># container operators</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__contains__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkValueError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;CANNOT_APPLY_IN_FOR_COLUMN&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span>
<span class="c1"># bitwise operators</span>
<div class="viewcode-block" id="Column.bitwiseOR"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.bitwiseOR.html#pyspark.sql.Column.bitwiseOR">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">bitwiseOR</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot; &quot;</span>
<span class="sd"> Compute bitwise OR of this expression with another expression.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other</span>
<span class="sd"> a value or :class:`Column` to calculate bitwise or(|) with</span>
<span class="sd"> this :class:`Column`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(a=170, b=75)])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.a.bitwiseOR(df.b)).collect()</span>
<span class="sd"> [Row((a | b)=235)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.bitwiseAND"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.bitwiseAND.html#pyspark.sql.Column.bitwiseAND">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">bitwiseAND</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute bitwise AND of this expression with another expression.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other</span>
<span class="sd"> a value or :class:`Column` to calculate bitwise and(&amp;) with</span>
<span class="sd"> this :class:`Column`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(a=170, b=75)])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.a.bitwiseAND(df.b)).collect()</span>
<span class="sd"> [Row((a &amp; b)=10)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.bitwiseXOR"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.bitwiseXOR.html#pyspark.sql.Column.bitwiseXOR">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">bitwiseXOR</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute bitwise XOR of this expression with another expression.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other</span>
<span class="sd"> a value or :class:`Column` to calculate bitwise xor(^) with</span>
<span class="sd"> this :class:`Column`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(a=170, b=75)])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.a.bitwiseXOR(df.b)).collect()</span>
<span class="sd"> [Row((a ^ b)=225)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.getItem"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.getItem.html#pyspark.sql.Column.getItem">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">getItem</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that gets an item at position ``ordinal`` out of a list,</span>
<span class="sd"> or gets an item by key out of a dict.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> key</span>
<span class="sd"> a literal value, or a :class:`Column` expression.</span>
<span class="sd"> The result will only be true at a location if the item matches in the column.</span>
<span class="sd"> .. deprecated:: 3.0.0</span>
<span class="sd"> :class:`Column` as a parameter is deprecated.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing the item(s) got at position out of a list or by key out of a dict.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([([1, 2], {&quot;key&quot;: &quot;value&quot;})], [&quot;l&quot;, &quot;d&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.l.getItem(0), df.d.getItem(&quot;key&quot;)).show()</span>
<span class="sd"> +----+------+</span>
<span class="sd"> |l[0]|d[key]|</span>
<span class="sd"> +----+------+</span>
<span class="sd"> | 1| value|</span>
<span class="sd"> +----+------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.getField"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.getField.html#pyspark.sql.Column.getField">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">getField</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that gets a field by name in a :class:`StructType`.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name</span>
<span class="sd"> a literal value, or a :class:`Column` expression.</span>
<span class="sd"> The result will only be true at a location if the field matches in the Column.</span>
<span class="sd"> .. deprecated:: 3.0.0</span>
<span class="sd"> :class:`Column` as a parameter is deprecated.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column got by name.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(r=Row(a=1, b=&quot;b&quot;))])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.r.getField(&quot;b&quot;)).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> |r.b|</span>
<span class="sd"> +---+</span>
<span class="sd"> | b|</span>
<span class="sd"> +---+</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.r.a).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> |r.a|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 1|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.withField"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.withField.html#pyspark.sql.Column.withField">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">withField</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fieldName</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">col</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that adds/replaces a field in :class:`StructType` by name.</span>
<span class="sd"> .. versionadded:: 3.1.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> fieldName : str</span>
<span class="sd"> a literal value.</span>
<span class="sd"> The result will only be true at a location if any field matches in the Column.</span>
<span class="sd"> col : :class:`Column`</span>
<span class="sd"> A :class:`Column` expression for the column with `fieldName`.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column</span>
<span class="sd"> which field was added/replaced by fieldName.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import lit</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(a=Row(b=1, c=2))])</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(&#39;a&#39;, df[&#39;a&#39;].withField(&#39;b&#39;, lit(3))).select(&#39;a.b&#39;).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | b|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 3|</span>
<span class="sd"> +---+</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(&#39;a&#39;, df[&#39;a&#39;].withField(&#39;d&#39;, lit(4))).select(&#39;a.d&#39;).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | d|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 4|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.dropFields"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.dropFields.html#pyspark.sql.Column.dropFields">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">dropFields</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">fieldNames</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that drops fields in :class:`StructType` by name.</span>
<span class="sd"> This is a no-op if the schema doesn&#39;t contain field name(s).</span>
<span class="sd"> .. versionadded:: 3.1.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> fieldNames : str</span>
<span class="sd"> Desired field names (collects all positional arguments passed)</span>
<span class="sd"> The result will drop at a location if any field matches in the Column.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column with field dropped by fieldName.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import col, lit</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([</span>
<span class="sd"> ... Row(a=Row(b=1, c=2, d=3, e=Row(f=4, g=5, h=6)))])</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(&#39;a&#39;, df[&#39;a&#39;].dropFields(&#39;b&#39;)).show()</span>
<span class="sd"> +-----------------+</span>
<span class="sd"> | a|</span>
<span class="sd"> +-----------------+</span>
<span class="sd"> |{2, 3, {4, 5, 6}}|</span>
<span class="sd"> +-----------------+</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(&#39;a&#39;, df[&#39;a&#39;].dropFields(&#39;b&#39;, &#39;c&#39;)).show()</span>
<span class="sd"> +--------------+</span>
<span class="sd"> | a|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> |{3, {4, 5, 6}}|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> This method supports dropping multiple nested fields directly e.g.</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(&quot;a&quot;, col(&quot;a&quot;).dropFields(&quot;e.g&quot;, &quot;e.h&quot;)).show()</span>
<span class="sd"> +--------------+</span>
<span class="sd"> | a|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> |{1, 2, 3, {4}}|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> However, if you are going to add/replace multiple nested fields,</span>
<span class="sd"> it is preferred to extract out the nested struct before</span>
<span class="sd"> adding/replacing multiple fields e.g.</span>
<span class="sd"> &gt;&gt;&gt; df.select(col(&quot;a&quot;).withField(</span>
<span class="sd"> ... &quot;e&quot;, col(&quot;a.e&quot;).dropFields(&quot;g&quot;, &quot;h&quot;)).alias(&quot;a&quot;)</span>
<span class="sd"> ... ).show()</span>
<span class="sd"> +--------------+</span>
<span class="sd"> | a|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> |{1, 2, 3, {4}}|</span>
<span class="sd"> +--------------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.__getattr__"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.__getattr__.html#pyspark.sql.Column.__getattr__">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__getattr__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that gets an item at position ``ordinal`` out of a list,</span>
<span class="sd"> or gets an item by key out of a dict.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> item</span>
<span class="sd"> a literal value.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing the item got by key out of a dict.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(&#39;abcedfg&#39;, {&quot;key&quot;: &quot;value&quot;})], [&quot;l&quot;, &quot;d&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.d.key).show()</span>
<span class="sd"> +------+</span>
<span class="sd"> |d[key]|</span>
<span class="sd"> +------+</span>
<span class="sd"> | value|</span>
<span class="sd"> +------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.__getitem__"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.__getitem__.html#pyspark.sql.Column.__getitem__">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An expression that gets an item at position ``ordinal`` out of a list,</span>
<span class="sd"> or gets an item by key out of a dict.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> k</span>
<span class="sd"> a literal value, or a slice object without step.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing the item got by key out of a dict, or substrings sliced by</span>
<span class="sd"> the given slice object.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(&#39;abcedfg&#39;, {&quot;key&quot;: &quot;value&quot;})], [&quot;l&quot;, &quot;d&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.l[slice(1, 3)], df.d[&#39;key&#39;]).show()</span>
<span class="sd"> +---------------+------+</span>
<span class="sd"> |substr(l, 1, 3)|d[key]|</span>
<span class="sd"> +---------------+------+</span>
<span class="sd"> | abc| value|</span>
<span class="sd"> +---------------+------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__iter__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="o">...</span>
<span class="c1"># string methods</span>
<div class="viewcode-block" id="Column.contains"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.contains.html#pyspark.sql.Column.contains">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">contains</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Contains the other element. Returns a boolean :class:`Column` based on a string match.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other</span>
<span class="sd"> string in line. A value as a literal or a :class:`Column`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.contains(&#39;o&#39;)).collect()</span>
<span class="sd"> [Row(age=5, name=&#39;Bob&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.startswith"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.startswith.html#pyspark.sql.Column.startswith">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">startswith</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> String starts with. Returns a boolean :class:`Column` based on a string match.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : :class:`Column` or str</span>
<span class="sd"> string at start of line (do not use a regex `^`)</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.startswith(&#39;Al&#39;)).collect()</span>
<span class="sd"> [Row(age=2, name=&#39;Alice&#39;)]</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.startswith(&#39;^Al&#39;)).collect()</span>
<span class="sd"> []</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.endswith"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.endswith.html#pyspark.sql.Column.endswith">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">endswith</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> String ends with. Returns a boolean :class:`Column` based on a string match.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : :class:`Column` or str</span>
<span class="sd"> string at end of line (do not use a regex `$`)</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.endswith(&#39;ice&#39;)).collect()</span>
<span class="sd"> [Row(age=2, name=&#39;Alice&#39;)]</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.endswith(&#39;ice$&#39;)).collect()</span>
<span class="sd"> []</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.like"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.like.html#pyspark.sql.Column.like">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">like</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> SQL like expression. Returns a boolean :class:`Column` based on a SQL LIKE match.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : str</span>
<span class="sd"> a SQL LIKE pattern</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.sql.Column.rlike</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column of booleans showing whether each element</span>
<span class="sd"> in the Column is matched by SQL LIKE pattern.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.like(&#39;Al%&#39;)).collect()</span>
<span class="sd"> [Row(age=2, name=&#39;Alice&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.rlike"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.rlike.html#pyspark.sql.Column.rlike">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">rlike</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> SQL RLIKE expression (LIKE with Regex). Returns a boolean :class:`Column` based on a regex</span>
<span class="sd"> match.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : str</span>
<span class="sd"> an extended regex expression</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column of booleans showing whether each element</span>
<span class="sd"> in the Column is matched by extended regex expression.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.rlike(&#39;ice$&#39;)).collect()</span>
<span class="sd"> [Row(age=2, name=&#39;Alice&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.ilike"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.ilike.html#pyspark.sql.Column.ilike">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">ilike</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> SQL ILIKE expression (case insensitive LIKE). Returns a boolean :class:`Column`</span>
<span class="sd"> based on a case insensitive match.</span>
<span class="sd"> .. versionadded:: 3.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : str</span>
<span class="sd"> a SQL LIKE pattern</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.sql.Column.rlike</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column of booleans showing whether each element</span>
<span class="sd"> in the Column is matched by SQL LIKE pattern.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.name.ilike(&#39;%Ice&#39;)).collect()</span>
<span class="sd"> [Row(age=2, name=&#39;Alice&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">substr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">startPos</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">length</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">substr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">startPos</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="n">length</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="o">...</span>
<div class="viewcode-block" id="Column.substr"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.substr.html#pyspark.sql.Column.substr">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">substr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">startPos</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="s2">&quot;Column&quot;</span><span class="p">],</span> <span class="n">length</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="s2">&quot;Column&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a :class:`Column` which is a substring of the column.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> startPos : :class:`Column` or int</span>
<span class="sd"> start position</span>
<span class="sd"> length : :class:`Column` or int</span>
<span class="sd"> length of the substring</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is substr of origin Column.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Example 1. Using integers for the input arguments.</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name.substr(1, 3).alias(&quot;col&quot;)).collect()</span>
<span class="sd"> [Row(col=&#39;Ali&#39;), Row(col=&#39;Bob&#39;)]</span>
<span class="sd"> Example 2. Using columns for the input arguments.</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(3, 4, &quot;Alice&quot;), (2, 3, &quot;Bob&quot;)], [&quot;sidx&quot;, &quot;eidx&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name.substr(df.sidx, df.eidx).alias(&quot;col&quot;)).collect()</span>
<span class="sd"> [Row(col=&#39;ice&#39;), Row(col=&#39;ob&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.isin"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.isin.html#pyspark.sql.Column.isin">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">isin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A boolean expression that is evaluated to true if the value of this</span>
<span class="sd"> expression is contained by the evaluated values of the arguments.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cols : Any</span>
<span class="sd"> The values to compare with the column values. The result will only be true at a location</span>
<span class="sd"> if any value matches in the Column.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column of booleans showing whether each element in the Column is contained in cols.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(2, &quot;Alice&quot;), (5, &quot;Bob&quot;), (8, &quot;Mike&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> Example 1: Filter rows with names in the specified values</span>
<span class="sd"> &gt;&gt;&gt; df[df.name.isin(&quot;Bob&quot;, &quot;Mike&quot;)].show()</span>
<span class="sd"> +---+----+</span>
<span class="sd"> |age|name|</span>
<span class="sd"> +---+----+</span>
<span class="sd"> | 5| Bob|</span>
<span class="sd"> | 8|Mike|</span>
<span class="sd"> +---+----+</span>
<span class="sd"> Example 2: Filter rows with ages in the specified list</span>
<span class="sd"> &gt;&gt;&gt; df[df.age.isin([1, 2, 3])].show()</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> |age| name|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> | 2|Alice|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> Example 3: Filter rows with names not in the specified values</span>
<span class="sd"> &gt;&gt;&gt; df[~df.name.isin(&quot;Alice&quot;, &quot;Bob&quot;)].show()</span>
<span class="sd"> +---+----+</span>
<span class="sd"> |age|name|</span>
<span class="sd"> +---+----+</span>
<span class="sd"> | 8|Mike|</span>
<span class="sd"> +---+----+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<span class="c1"># order</span>
<div class="viewcode-block" id="Column.asc"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.asc.html#pyspark.sql.Column.asc">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">asc</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on the ascending order of the column.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(&#39;Tom&#39;, 80), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.asc()).collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;), Row(name=&#39;Tom&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.asc_nulls_first"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.asc_nulls_first.html#pyspark.sql.Column.asc_nulls_first">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">asc_nulls_first</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on ascending order of the column, and null values</span>
<span class="sd"> return before non-null values.</span>
<span class="sd"> .. versionadded:: 2.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&#39;Tom&#39;, 80), (None, 60), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.asc_nulls_first()).collect()</span>
<span class="sd"> [Row(name=None), Row(name=&#39;Alice&#39;), Row(name=&#39;Tom&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.asc_nulls_last"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.asc_nulls_last.html#pyspark.sql.Column.asc_nulls_last">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">asc_nulls_last</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on ascending order of the column, and null values</span>
<span class="sd"> appear after non-null values.</span>
<span class="sd"> .. versionadded:: 2.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&#39;Tom&#39;, 80), (None, 60), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.asc_nulls_last()).collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;), Row(name=&#39;Tom&#39;), Row(name=None)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.desc"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.desc.html#pyspark.sql.Column.desc">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">desc</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on the descending order of the column.</span>
<span class="sd"> .. versionadded:: 2.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(&#39;Tom&#39;, 80), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.desc()).collect()</span>
<span class="sd"> [Row(name=&#39;Tom&#39;), Row(name=&#39;Alice&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.desc_nulls_first"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.desc_nulls_first.html#pyspark.sql.Column.desc_nulls_first">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">desc_nulls_first</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on the descending order of the column, and null values</span>
<span class="sd"> appear before non-null values.</span>
<span class="sd"> .. versionadded:: 2.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&#39;Tom&#39;, 80), (None, 60), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.desc_nulls_first()).collect()</span>
<span class="sd"> [Row(name=None), Row(name=&#39;Tom&#39;), Row(name=&#39;Alice&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.desc_nulls_last"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.desc_nulls_last.html#pyspark.sql.Column.desc_nulls_last">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">desc_nulls_last</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a sort expression based on the descending order of the column, and null values</span>
<span class="sd"> appear after non-null values.</span>
<span class="sd"> .. versionadded:: 2.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&#39;Tom&#39;, 80), (None, 60), (&#39;Alice&#39;, None)], [&quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name).orderBy(df.name.desc_nulls_last()).collect()</span>
<span class="sd"> [Row(name=&#39;Tom&#39;), Row(name=&#39;Alice&#39;), Row(name=None)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.isNull"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.isNull.html#pyspark.sql.Column.isNull">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">isNull</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> True if the current expression is null.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(name=&#39;Tom&#39;, height=80), Row(name=&#39;Alice&#39;, height=None)])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.height.isNull()).collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, height=None)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.isNotNull"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.isNotNull.html#pyspark.sql.Column.isNotNull">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">isNotNull</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> True if the current expression is NOT null.</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([Row(name=&#39;Tom&#39;, height=80), Row(name=&#39;Alice&#39;, height=None)])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.height.isNotNull()).collect()</span>
<span class="sd"> [Row(name=&#39;Tom&#39;, height=80)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.isNaN"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.isNaN.html#pyspark.sql.Column.isNaN">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">isNaN</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> True if the current expression is NaN.</span>
<span class="sd"> .. versionadded:: 4.0.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [Row(name=&#39;Tom&#39;, height=80.0), Row(name=&#39;Alice&#39;, height=float(&#39;nan&#39;))])</span>
<span class="sd"> &gt;&gt;&gt; df.filter(df.height.isNaN()).collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, height=nan)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.alias"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.alias.html#pyspark.sql.Column.alias">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">alias</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">alias</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns this column aliased with a new name or names (in the case of expressions that</span>
<span class="sd"> return more than one column, such as explode).</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> alias : str</span>
<span class="sd"> desired column names (collects all positional arguments passed)</span>
<span class="sd"> Other Parameters</span>
<span class="sd"> ----------------</span>
<span class="sd"> metadata: dict</span>
<span class="sd"> a dict of information to be stored in ``metadata`` attribute of the</span>
<span class="sd"> corresponding :class:`StructField &lt;pyspark.sql.types.StructField&gt;` (optional, keyword</span>
<span class="sd"> only argument)</span>
<span class="sd"> .. versionchanged:: 2.2.0</span>
<span class="sd"> Added optional ``metadata`` argument.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is aliased with new name or names.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.age.alias(&quot;age2&quot;)).collect()</span>
<span class="sd"> [Row(age2=2), Row(age2=5)]</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.age.alias(&quot;age3&quot;, metadata={&#39;max&#39;: 99})).schema[&#39;age3&#39;].metadata[&#39;max&#39;]</span>
<span class="sd"> 99</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.name"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.name.html#pyspark.sql.Column.name">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">name</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">alias</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :func:`name` is an alias for :func:`alias`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.cast"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.cast.html#pyspark.sql.Column.cast">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">cast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataType</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="nb">str</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Casts the column into type ``dataType``.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataType : :class:`DataType` or str</span>
<span class="sd"> a DataType or Python string literal with a DDL-formatted string</span>
<span class="sd"> to use when parsing the column to the same type.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is cast into new type.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import StringType</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.age.cast(&quot;string&quot;).alias(&#39;ages&#39;)).collect()</span>
<span class="sd"> [Row(ages=&#39;2&#39;), Row(ages=&#39;5&#39;)]</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.age.cast(StringType()).alias(&#39;ages&#39;)).collect()</span>
<span class="sd"> [Row(ages=&#39;2&#39;), Row(ages=&#39;5&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.try_cast"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.try_cast.html#pyspark.sql.Column.try_cast">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">try_cast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataType</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="nb">str</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> This is a special version of `cast` that performs the same operation, but returns a NULL</span>
<span class="sd"> value instead of raising an error if the invoke method throws exception.</span>
<span class="sd"> .. versionadded:: 4.0.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataType : :class:`DataType` or str</span>
<span class="sd"> a DataType or Python string literal with a DDL-formatted string</span>
<span class="sd"> to use when parsing the column to the same type.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is cast into new type.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Example 1: Cast with a Datatype</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import LongType</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;123&quot;), (5, &quot;Bob&quot;), (3, None)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name.try_cast(LongType())).show()</span>
<span class="sd"> +----+</span>
<span class="sd"> |name|</span>
<span class="sd"> +----+</span>
<span class="sd"> | 123|</span>
<span class="sd"> |NULL|</span>
<span class="sd"> |NULL|</span>
<span class="sd"> +----+</span>
<span class="sd"> Example 2: Cast with a DDL string</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;123&quot;), (5, &quot;Bob&quot;), (3, None)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name.try_cast(&quot;double&quot;)).show()</span>
<span class="sd"> +-----+</span>
<span class="sd"> | name|</span>
<span class="sd"> +-----+</span>
<span class="sd"> |123.0|</span>
<span class="sd"> | NULL|</span>
<span class="sd"> | NULL|</span>
<span class="sd"> +-----+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.astype"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.astype.html#pyspark.sql.Column.astype">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">astype</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataType</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="nb">str</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :func:`astype` is an alias for :func:`cast`.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.between"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.between.html#pyspark.sql.Column.between">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">between</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">lowerBound</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">],</span>
<span class="n">upperBound</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="s2">&quot;LiteralType&quot;</span><span class="p">,</span> <span class="s2">&quot;DateTimeLiteral&quot;</span><span class="p">,</span> <span class="s2">&quot;DecimalLiteral&quot;</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Check if the current column&#39;s values are between the specified lower and upper</span>
<span class="sd"> bounds, inclusive.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> lowerBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal</span>
<span class="sd"> The lower boundary value, inclusive.</span>
<span class="sd"> upperBound : :class:`Column`, int, float, string, bool, datetime, date or Decimal</span>
<span class="sd"> The upper boundary value, inclusive.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> A new column of boolean values indicating whether each element in the original</span>
<span class="sd"> column is within the specified range (inclusive).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Using between with integer values.</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.age.between(2, 4)).show()</span>
<span class="sd"> +-----+---------------------------+</span>
<span class="sd"> | name|((age &gt;= 2) AND (age &lt;= 4))|</span>
<span class="sd"> +-----+---------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| false|</span>
<span class="sd"> +-----+---------------------------+</span>
<span class="sd"> Using between with string values.</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(&quot;Alice&quot;, &quot;A&quot;), (&quot;Bob&quot;, &quot;B&quot;)], [&quot;name&quot;, &quot;initial&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.initial.between(&quot;A&quot;, &quot;B&quot;)).show()</span>
<span class="sd"> +-----+-----------------------------------+</span>
<span class="sd"> | name|((initial &gt;= A) AND (initial &lt;= B))|</span>
<span class="sd"> +-----+-----------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| true|</span>
<span class="sd"> +-----+-----------------------------------+</span>
<span class="sd"> Using between with float values.</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2.5, &quot;Alice&quot;), (5.5, &quot;Bob&quot;)], [&quot;height&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.height.between(2.0, 5.0)).show()</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> | name|((height &gt;= 2.0) AND (height &lt;= 5.0))|</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| false|</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> Using between with date values.</span>
<span class="sd"> &gt;&gt;&gt; import pyspark.sql.functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&quot;Alice&quot;, &quot;2023-01-01&quot;), (&quot;Bob&quot;, &quot;2023-02-01&quot;)], [&quot;name&quot;, &quot;date&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df = df.withColumn(&quot;date&quot;, sf.to_date(df.date))</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.date.between(&quot;2023-01-01&quot;, &quot;2023-01-15&quot;)).show()</span>
<span class="sd"> +-----+-----------------------------------------------+</span>
<span class="sd"> | name|((date &gt;= 2023-01-01) AND (date &lt;= 2023-01-15))|</span>
<span class="sd"> +-----+-----------------------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| false|</span>
<span class="sd"> +-----+-----------------------------------------------+</span>
<span class="sd"> &gt;&gt;&gt; from datetime import date</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.date.between(date(2023, 1, 1), date(2023, 1, 15))).show()</span>
<span class="sd"> +-----+-------------------------------------------------------------+</span>
<span class="sd"> | name|((date &gt;= DATE &#39;2023-01-01&#39;) AND (date &lt;= DATE &#39;2023-01-15&#39;))|</span>
<span class="sd"> +-----+-------------------------------------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| false|</span>
<span class="sd"> +-----+-------------------------------------------------------------+</span>
<span class="sd"> Using between with timestamp values.</span>
<span class="sd"> &gt;&gt;&gt; import pyspark.sql.functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(&quot;Alice&quot;, &quot;2023-01-01 10:00:00&quot;), (&quot;Bob&quot;, &quot;2023-02-01 10:00:00&quot;)],</span>
<span class="sd"> ... schema=[&quot;name&quot;, &quot;timestamp&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df = df.withColumn(&quot;timestamp&quot;, sf.to_timestamp(df.timestamp))</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.timestamp.between(&quot;2023-01-01&quot;, &quot;2023-02-01&quot;)).show()</span>
<span class="sd"> +-----+---------------------------------------------------------+</span>
<span class="sd"> | name|((timestamp &gt;= 2023-01-01) AND (timestamp &lt;= 2023-02-01))|</span>
<span class="sd"> +-----+---------------------------------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| false|</span>
<span class="sd"> +-----+---------------------------------------------------------+</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, df.timestamp.between(&quot;2023-01-01&quot;, &quot;2023-02-01 12:00:00&quot;)).show()</span>
<span class="sd"> +-----+------------------------------------------------------------------+</span>
<span class="sd"> | name|((timestamp &gt;= 2023-01-01) AND (timestamp &lt;= 2023-02-01 12:00:00))|</span>
<span class="sd"> +-----+------------------------------------------------------------------+</span>
<span class="sd"> |Alice| true|</span>
<span class="sd"> | Bob| true|</span>
<span class="sd"> +-----+------------------------------------------------------------------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.when"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.when.html#pyspark.sql.Column.when">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">when</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">condition</span><span class="p">:</span> <span class="s2">&quot;Column&quot;</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluates a list of conditions and returns one of multiple possible result expressions.</span>
<span class="sd"> If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> condition : :class:`Column`</span>
<span class="sd"> a boolean :class:`Column` expression.</span>
<span class="sd"> value</span>
<span class="sd"> a literal value, or a :class:`Column` expression.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is in conditions.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Example 1: Using :func:`when` with conditions and values to create a new Column</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; result = df.select(df.name, sf.when(df.age &gt; 4, 1).when(df.age &lt; 3, -1).otherwise(0))</span>
<span class="sd"> &gt;&gt;&gt; result.show()</span>
<span class="sd"> +-----+------------------------------------------------------------+</span>
<span class="sd"> | name|CASE WHEN (age &gt; 4) THEN 1 WHEN (age &lt; 3) THEN -1 ELSE 0 END|</span>
<span class="sd"> +-----+------------------------------------------------------------+</span>
<span class="sd"> |Alice| -1|</span>
<span class="sd"> | Bob| 1|</span>
<span class="sd"> +-----+------------------------------------------------------------+</span>
<span class="sd"> Example 2: Chaining multiple :func:`when` conditions</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(1, &quot;Alice&quot;), (4, &quot;Bob&quot;), (6, &quot;Charlie&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; result = df.select(</span>
<span class="sd"> ... df.name,</span>
<span class="sd"> ... sf.when(df.age &lt; 3, &quot;Young&quot;).when(df.age &lt; 5, &quot;Middle-aged&quot;).otherwise(&quot;Old&quot;)</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; result.show()</span>
<span class="sd"> +-------+---------------------------------------------------------------------------+</span>
<span class="sd"> | name|CASE WHEN (age &lt; 3) THEN Young WHEN (age &lt; 5) THEN Middle-aged ELSE Old END|</span>
<span class="sd"> +-------+---------------------------------------------------------------------------+</span>
<span class="sd"> | Alice| Young|</span>
<span class="sd"> | Bob| Middle-aged|</span>
<span class="sd"> |Charlie| Old|</span>
<span class="sd"> +-------+---------------------------------------------------------------------------+</span>
<span class="sd"> Example 3: Using literal values as conditions</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; result = df.select(</span>
<span class="sd"> ... df.name, sf.when(sf.lit(True), 1).otherwise(</span>
<span class="sd"> ... sf.raise_error(&quot;unreachable&quot;)).alias(&quot;when&quot;))</span>
<span class="sd"> &gt;&gt;&gt; result.show()</span>
<span class="sd"> +-----+----+</span>
<span class="sd"> | name|when|</span>
<span class="sd"> +-----+----+</span>
<span class="sd"> |Alice| 1|</span>
<span class="sd"> | Bob| 1|</span>
<span class="sd"> +-----+----+</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.sql.functions.when</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.otherwise"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.otherwise.html#pyspark.sql.Column.otherwise">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">otherwise</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluates a list of conditions and returns one of multiple possible result expressions.</span>
<span class="sd"> If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> value</span>
<span class="sd"> a literal value, or a :class:`Column` expression.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Column representing whether each element of Column is unmatched conditions.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import functions as sf</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(df.name, sf.when(df.age &gt; 3, 1).otherwise(0)).show()</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> | name|CASE WHEN (age &gt; 3) THEN 1 ELSE 0 END|</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> |Alice| 0|</span>
<span class="sd"> | Bob| 1|</span>
<span class="sd"> +-----+-------------------------------------+</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.sql.functions.when</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<div class="viewcode-block" id="Column.over"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Column.over.html#pyspark.sql.Column.over">[docs]</a> <span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">over</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">window</span><span class="p">:</span> <span class="s2">&quot;WindowSpec&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Column&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Define a windowing column.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> window : :class:`WindowSpec`</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Column`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Window</span>
<span class="sd"> &gt;&gt;&gt; window = (</span>
<span class="sd"> ... Window.partitionBy(&quot;name&quot;)</span>
<span class="sd"> ... .orderBy(&quot;age&quot;)</span>
<span class="sd"> ... .rowsBetween(Window.unboundedPreceding, Window.currentRow)</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import rank, min, desc</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (5, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.withColumn(</span>
<span class="sd"> ... &quot;rank&quot;, rank().over(window)</span>
<span class="sd"> ... ).withColumn(</span>
<span class="sd"> ... &quot;min&quot;, min(&#39;age&#39;).over(window)</span>
<span class="sd"> ... ).sort(desc(&quot;age&quot;)).show()</span>
<span class="sd"> +---+-----+----+---+</span>
<span class="sd"> |age| name|rank|min|</span>
<span class="sd"> +---+-----+----+---+</span>
<span class="sd"> | 5| Bob| 1| 5|</span>
<span class="sd"> | 2|Alice| 1| 2|</span>
<span class="sd"> +---+-----+----+---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="o">...</span></div>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="nf">__nonzero__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__bool__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@dispatch_col_method</span>
<span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="o">...</span></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.sql.column</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">column</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;sql.column tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span>
<span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">column</span><span class="p">,</span>
<span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span>
<span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">REPORT_NDIFF</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item"><!-- Previous / next buttons -->
<div class="prev-next-area">
</div></div>
</div>
</footer>
</div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item"><p class="copyright">
Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>.
</p></div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item"><p class="theme-version">
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3.
</p></div>
</div>
</div>
</footer>
</body>
</html>