| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.pandas.mlflow — PySpark 4.0.0-preview1 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/pandas/mlflow';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/pandas/mlflow.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="../../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/pandas/mlflow.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/pandas/mlflow.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.pandas.mlflow</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.pandas.mlflow</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="sd">"""</span> |
| <span class="sd">MLflow-related functions to load models and apply them to pandas-on-Spark dataframes.</span> |
| <span class="sd">"""</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Union</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span> |
| |
| <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> |
| <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">DataType</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">struct</span> |
| <span class="kn">from</span> <span class="nn">pyspark.pandas._typing</span> <span class="kn">import</span> <span class="n">Label</span><span class="p">,</span> <span class="n">Dtype</span> |
| <span class="kn">from</span> <span class="nn">pyspark.pandas.utils</span> <span class="kn">import</span> <span class="n">lazy_property</span><span class="p">,</span> <span class="n">default_session</span> |
| <span class="kn">from</span> <span class="nn">pyspark.pandas.frame</span> <span class="kn">import</span> <span class="n">DataFrame</span> |
| <span class="kn">from</span> <span class="nn">pyspark.pandas.series</span> <span class="kn">import</span> <span class="n">Series</span><span class="p">,</span> <span class="n">first_series</span> |
| <span class="kn">from</span> <span class="nn">pyspark.pandas.typedef</span> <span class="kn">import</span> <span class="n">as_spark_type</span> |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"PythonModelWrapper"</span><span class="p">,</span> <span class="s2">"load_model"</span><span class="p">]</span> |
| |
| |
| <div class="viewcode-block" id="PythonModelWrapper"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.mlflow.PythonModelWrapper.html#pyspark.pandas.mlflow.PythonModelWrapper">[docs]</a><span class="k">class</span> <span class="nc">PythonModelWrapper</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> A wrapper around MLflow's Python object model.</span> |
| |
| <span class="sd"> This wrapper acts as a predictor on pandas-on-Spark</span> |
| |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_uri</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">return_type_hint</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">Dtype</span><span class="p">]):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span> <span class="o">=</span> <span class="n">model_uri</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_return_type_hint</span> <span class="o">=</span> <span class="n">return_type_hint</span> |
| |
| <span class="nd">@lazy_property</span> |
| <span class="k">def</span> <span class="nf">_return_type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataType</span><span class="p">:</span> |
| <span class="n">hint</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_return_type_hint</span> |
| <span class="c1"># The logic is simple for now, because it corresponds to the default</span> |
| <span class="c1"># case: continuous predictions</span> |
| <span class="c1"># TODO: do something smarter, for example when there is a sklearn.Classifier (it should</span> |
| <span class="c1"># return an integer or a categorical)</span> |
| <span class="c1"># We can do the same for pytorch/tensorflow/keras models by looking at the output types.</span> |
| <span class="c1"># However, this is probably better done in mlflow than here.</span> |
| <span class="k">if</span> <span class="n">hint</span> <span class="o">==</span> <span class="s2">"infer"</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">hint</span><span class="p">:</span> |
| <span class="n">hint</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">float64</span> |
| <span class="k">return</span> <span class="n">as_spark_type</span><span class="p">(</span><span class="n">hint</span><span class="p">)</span> |
| |
| <span class="nd">@lazy_property</span> |
| <span class="k">def</span> <span class="nf">_model</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> The return object has to follow the API of mlflow.pyfunc.PythonModel.</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">mlflow</span> <span class="kn">import</span> <span class="n">pyfunc</span> |
| |
| <span class="k">return</span> <span class="n">pyfunc</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="n">model_uri</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span><span class="p">)</span> |
| |
| <span class="nd">@lazy_property</span> |
| <span class="k">def</span> <span class="nf">_model_udf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">mlflow</span> <span class="kn">import</span> <span class="n">pyfunc</span> |
| |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">default_session</span><span class="p">()</span> |
| <span class="k">return</span> <span class="n">pyfunc</span><span class="o">.</span><span class="n">spark_udf</span><span class="p">(</span><span class="n">spark</span><span class="p">,</span> <span class="n">model_uri</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span><span class="p">,</span> <span class="n">result_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_return_type</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"PythonModelWrapper(</span><span class="si">{}</span><span class="s2">)"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">))</span> |
| |
| <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"PythonModelWrapper(</span><span class="si">{}</span><span class="s2">)"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">))</span> |
| |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">])</span> <span class="o">-></span> <span class="n">Union</span><span class="p">[</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns a prediction on the data.</span> |
| |
| <span class="sd"> If the data is a pandas-on-Spark DataFrame, the return is a pandas-on-Spark Series.</span> |
| |
| <span class="sd"> If the data is a pandas Dataframe, the return is the expected output of the underlying</span> |
| <span class="sd"> pyfunc object (typically a pandas Series or a numpy array).</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span> |
| <span class="n">s</span> <span class="o">=</span> <span class="n">struct</span><span class="p">(</span><span class="o">*</span><span class="n">data</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> |
| <span class="n">return_col</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_model_udf</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> |
| <span class="n">column_labels</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Label</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="p">(</span><span class="n">col</span><span class="p">,)</span> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">spark_frame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">return_col</span><span class="p">)</span><span class="o">.</span><span class="n">columns</span> |
| <span class="p">]</span> |
| <span class="n">internal</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span> |
| <span class="n">column_labels</span><span class="o">=</span><span class="n">column_labels</span><span class="p">,</span> <span class="n">data_spark_columns</span><span class="o">=</span><span class="p">[</span><span class="n">return_col</span><span class="p">],</span> <span class="n">data_fields</span><span class="o">=</span><span class="kc">None</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">first_series</span><span class="p">(</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">internal</span><span class="p">))</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"unknown data type: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">data</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">))</span></div> |
| |
| |
| <div class="viewcode-block" id="load_model"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.mlflow.load_model.html#pyspark.pandas.mlflow.load_model">[docs]</a><span class="k">def</span> <span class="nf">load_model</span><span class="p">(</span> |
| <span class="n">model_uri</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">predict_type</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">Dtype</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"infer"</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">PythonModelWrapper</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Loads an MLflow model into a wrapper that can be used both for pandas and pandas-on-Spark</span> |
| <span class="sd"> DataFrame.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> model_uri : str</span> |
| <span class="sd"> URI pointing to the model. See MLflow documentation for more details.</span> |
| <span class="sd"> predict_type : a python basic type, a numpy basic type, a Spark type or 'infer'.</span> |
| <span class="sd"> This is the return type that is expected when calling the predict function of the model.</span> |
| <span class="sd"> If 'infer' is specified, the wrapper will attempt to automatically determine the return type</span> |
| <span class="sd"> based on the model type.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> PythonModelWrapper</span> |
| <span class="sd"> A wrapper around MLflow PythonModel objects. This wrapper is expected to adhere to the</span> |
| <span class="sd"> interface of mlflow.pyfunc.PythonModel.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> Here is a full example that creates a model with scikit-learn and saves the model with</span> |
| <span class="sd"> MLflow. The model is then loaded as a predictor that can be applied on a pandas-on-Spark</span> |
| <span class="sd"> Dataframe.</span> |
| |
| <span class="sd"> We first initialize our MLflow environment:</span> |
| |
| <span class="sd"> >>> from mlflow.tracking import MlflowClient, set_tracking_uri</span> |
| <span class="sd"> >>> import mlflow.sklearn</span> |
| <span class="sd"> >>> from tempfile import mkdtemp</span> |
| <span class="sd"> >>> d = mkdtemp("pandas_on_spark_mlflow")</span> |
| <span class="sd"> >>> set_tracking_uri("file:%s"%d)</span> |
| <span class="sd"> >>> client = MlflowClient()</span> |
| <span class="sd"> >>> exp_id = mlflow.create_experiment("my_experiment")</span> |
| <span class="sd"> >>> exp = mlflow.set_experiment("my_experiment")</span> |
| |
| <span class="sd"> We aim at learning this numerical function using a simple linear regressor.</span> |
| |
| <span class="sd"> >>> from sklearn.linear_model import LinearRegression</span> |
| <span class="sd"> >>> train = pd.DataFrame({"x1": np.arange(8), "x2": np.arange(8)**2,</span> |
| <span class="sd"> ... "y": np.log(2 + np.arange(8))})</span> |
| <span class="sd"> >>> train_x = train[["x1", "x2"]]</span> |
| <span class="sd"> >>> train_y = train[["y"]]</span> |
| <span class="sd"> >>> with mlflow.start_run():</span> |
| <span class="sd"> ... lr = LinearRegression()</span> |
| <span class="sd"> ... lr.fit(train_x, train_y)</span> |
| <span class="sd"> ... mlflow.sklearn.log_model(lr, "model")</span> |
| <span class="sd"> LinearRegression...</span> |
| |
| <span class="sd"> Now that our model is logged using MLflow, we load it back and apply it on a pandas-on-Spark</span> |
| <span class="sd"> dataframe:</span> |
| |
| <span class="sd"> >>> from pyspark.pandas.mlflow import load_model</span> |
| <span class="sd"> >>> run_info = client.search_runs(exp_id)[-1].info</span> |
| <span class="sd"> >>> model = load_model("runs:/{run_id}/model".format(run_id=run_info.run_id))</span> |
| <span class="sd"> >>> prediction_df = ps.DataFrame({"x1": [2.0], "x2": [4.0]})</span> |
| <span class="sd"> >>> prediction_df["prediction"] = model.predict(prediction_df)</span> |
| <span class="sd"> >>> prediction_df</span> |
| <span class="sd"> x1 x2 prediction</span> |
| <span class="sd"> 0 2.0 4.0 1.355551</span> |
| |
| <span class="sd"> The model also works on pandas DataFrames as expected:</span> |
| |
| <span class="sd"> >>> model.predict(prediction_df[["x1", "x2"]].to_pandas())</span> |
| <span class="sd"> array([[1.35555142]])</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> Currently, the model prediction can only be merged back with the existing dataframe.</span> |
| <span class="sd"> Other columns must be manually joined.</span> |
| <span class="sd"> For example, this code will not work:</span> |
| |
| <span class="sd"> >>> df = ps.DataFrame({"x1": [2.0], "x2": [3.0], "z": [-1]})</span> |
| <span class="sd"> >>> features = df[["x1", "x2"]]</span> |
| <span class="sd"> >>> y = model.predict(features)</span> |
| <span class="sd"> >>> # Works:</span> |
| <span class="sd"> >>> features["y"] = y # doctest: +SKIP</span> |
| <span class="sd"> >>> # Will fail with a message about dataframes not aligned.</span> |
| <span class="sd"> >>> df["y"] = y # doctest: +SKIP</span> |
| |
| <span class="sd"> A current workaround is to use the .merge() function, using the feature values</span> |
| <span class="sd"> as merging keys.</span> |
| |
| <span class="sd"> >>> features['y'] = y</span> |
| <span class="sd"> >>> everything = df.merge(features, on=['x1', 'x2'])</span> |
| <span class="sd"> >>> everything</span> |
| <span class="sd"> x1 x2 z y</span> |
| <span class="sd"> 0 2.0 3.0 -1 1.376932</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="n">PythonModelWrapper</span><span class="p">(</span><span class="n">model_uri</span><span class="p">,</span> <span class="n">predict_type</span><span class="p">)</span></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">os</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">import</span> <span class="nn">sys</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span> <span class="nn">pyspark.pandas.mlflow</span> |
| |
| <span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"SPARK_HOME"</span><span class="p">])</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">mlflow</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"ps"</span><span class="p">]</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"pyspark.pandas.mlflow tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="p">)</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">mlflow</span><span class="p">,</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> |
| <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">mlflow</span> <span class="c1"># noqa: F401</span> |
| <span class="kn">import</span> <span class="nn">sklearn</span> <span class="c1"># noqa: F401</span> |
| |
| <span class="n">_test</span><span class="p">()</span> |
| <span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span> |
| <span class="k">pass</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |