blob: fa805c9235c86594ded8fa86d33b91ccf2b0fc2a [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.sql.session &#8212; PySpark 3.4.0 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../index.html">Overview</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guides</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guides</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.sql.session</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">collections.abc</span> <span class="kn">import</span> <span class="n">Sized</span>
<span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">reduce</span>
<span class="kn">from</span> <span class="nn">threading</span> <span class="kn">import</span> <span class="n">RLock</span>
<span class="kn">from</span> <span class="nn">types</span> <span class="kn">import</span> <span class="n">TracebackType</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">Any</span><span class="p">,</span>
<span class="n">ClassVar</span><span class="p">,</span>
<span class="n">Dict</span><span class="p">,</span>
<span class="n">Iterable</span><span class="p">,</span>
<span class="n">List</span><span class="p">,</span>
<span class="n">Optional</span><span class="p">,</span>
<span class="n">Tuple</span><span class="p">,</span>
<span class="n">Type</span><span class="p">,</span>
<span class="n">Union</span><span class="p">,</span>
<span class="n">cast</span><span class="p">,</span>
<span class="n">no_type_check</span><span class="p">,</span>
<span class="n">overload</span><span class="p">,</span>
<span class="n">TYPE_CHECKING</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkConf</span><span class="p">,</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">_to_java_column</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.conf</span> <span class="kn">import</span> <span class="n">RuntimeConfig</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">lit</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.conversion</span> <span class="kn">import</span> <span class="n">SparkConversionMixin</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.readwriter</span> <span class="kn">import</span> <span class="n">DataFrameReader</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.sql_formatter</span> <span class="kn">import</span> <span class="n">SQLStringFormatter</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">DataStreamReader</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">AtomicType</span><span class="p">,</span>
<span class="n">DataType</span><span class="p">,</span>
<span class="n">StructField</span><span class="p">,</span>
<span class="n">StructType</span><span class="p">,</span>
<span class="n">_make_type_verifier</span><span class="p">,</span>
<span class="n">_infer_schema</span><span class="p">,</span>
<span class="n">_has_nulltype</span><span class="p">,</span>
<span class="n">_merge_type</span><span class="p">,</span>
<span class="n">_create_converter</span><span class="p">,</span>
<span class="n">_parse_datatype_string</span><span class="p">,</span>
<span class="n">_from_numpy_type</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.errors.exceptions.captured</span> <span class="kn">import</span> <span class="n">install_exception_handler</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.utils</span> <span class="kn">import</span> <span class="n">is_timestamp_ntz_preferred</span><span class="p">,</span> <span class="n">to_str</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">AtomicValue</span><span class="p">,</span> <span class="n">RowLike</span><span class="p">,</span> <span class="n">OptionalPrimitiveType</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.catalog</span> <span class="kn">import</span> <span class="n">Catalog</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas._typing</span> <span class="kn">import</span> <span class="n">ArrayLike</span><span class="p">,</span> <span class="n">DataFrameLike</span> <span class="k">as</span> <span class="n">PandasDataFrameLike</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">StreamingQueryManager</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.udf</span> <span class="kn">import</span> <span class="n">UDFRegistration</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;SparkSession&quot;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">_monkey_patch_RDD</span><span class="p">(</span><span class="n">sparkSession</span><span class="p">:</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nd">@no_type_check</span>
<span class="k">def</span> <span class="nf">toDF</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">sampleRatio</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Converts current :class:`RDD` into a :class:`DataFrame`</span>
<span class="sd"> This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)``</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> schema : :class:`pyspark.sql.types.DataType`, str or list, optional</span>
<span class="sd"> a :class:`pyspark.sql.types.DataType` or a datatype string or a list of</span>
<span class="sd"> column names, default is None. The data type string format equals to</span>
<span class="sd"> :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can</span>
<span class="sd"> omit the ``struct&lt;&gt;`` and atomic types use ``typeName()`` as their format, e.g. use</span>
<span class="sd"> ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`.</span>
<span class="sd"> We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`.</span>
<span class="sd"> sampleRatio : float, optional</span>
<span class="sd"> the sample ratio of rows used for inferring</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; rdd = spark.range(1).rdd.map(lambda x: tuple(x))</span>
<span class="sd"> &gt;&gt;&gt; rdd.collect()</span>
<span class="sd"> [(0,)]</span>
<span class="sd"> &gt;&gt;&gt; rdd.toDF().show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | _1|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">sparkSession</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">sampleRatio</span><span class="p">)</span>
<span class="n">RDD</span><span class="o">.</span><span class="n">toDF</span> <span class="o">=</span> <span class="n">toDF</span> <span class="c1"># type: ignore[assignment]</span>
<span class="c1"># TODO(SPARK-38912): This method can be dropped once support for Python 3.8 is dropped</span>
<span class="c1"># In Python 3.9, the @property decorator has been made compatible with the</span>
<span class="c1"># @classmethod decorator (https://docs.python.org/3.9/library/functions.html#classmethod)</span>
<span class="c1">#</span>
<span class="c1"># @classmethod + @property is also affected by a bug in Python&#39;s docstring which was backported</span>
<span class="c1"># to Python 3.9.6 (https://github.com/python/cpython/pull/28838)</span>
<span class="k">class</span> <span class="nc">classproperty</span><span class="p">(</span><span class="nb">property</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Same as Python&#39;s @property decorator, but for class attributes.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; class Builder:</span>
<span class="sd"> ... def build(self):</span>
<span class="sd"> ... return MyClass()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; class MyClass:</span>
<span class="sd"> ... @classproperty</span>
<span class="sd"> ... def builder(cls):</span>
<span class="sd"> ... print(&quot;instantiating new builder&quot;)</span>
<span class="sd"> ... return Builder()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; c1 = MyClass.builder</span>
<span class="sd"> instantiating new builder</span>
<span class="sd"> &gt;&gt;&gt; c2 = MyClass.builder</span>
<span class="sd"> instantiating new builder</span>
<span class="sd"> &gt;&gt;&gt; c1 == c2</span>
<span class="sd"> False</span>
<span class="sd"> &gt;&gt;&gt; isinstance(c1.build(), MyClass)</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__get__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">instance</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">owner</span><span class="p">:</span> <span class="n">Any</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="c1"># The &quot;type: ignore&quot; below silences the following error from mypy:</span>
<span class="c1"># error: Argument 1 to &quot;classmethod&quot; has incompatible</span>
<span class="c1"># type &quot;Optional[Callable[[Any], Any]]&quot;;</span>
<span class="c1"># expected &quot;Callable[..., Any]&quot; [arg-type]</span>
<span class="k">return</span> <span class="nb">classmethod</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fget</span><span class="p">)</span><span class="o">.</span><span class="fm">__get__</span><span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="n">owner</span><span class="p">)()</span> <span class="c1"># type: ignore</span>
<div class="viewcode-block" id="SparkSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.html#pyspark.sql.SparkSession">[docs]</a><span class="k">class</span> <span class="nc">SparkSession</span><span class="p">(</span><span class="n">SparkConversionMixin</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;The entry point to programming Spark with the Dataset and DataFrame API.</span>
<span class="sd"> A SparkSession can be used to create :class:`DataFrame`, register :class:`DataFrame` as</span>
<span class="sd"> tables, execute SQL over tables, cache tables, and read parquet files.</span>
<span class="sd"> To create a :class:`SparkSession`, use the following builder pattern:</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> .. autoattribute:: builder</span>
<span class="sd"> :annotation:</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Create a Spark session.</span>
<span class="sd"> &gt;&gt;&gt; spark = (</span>
<span class="sd"> ... SparkSession.builder</span>
<span class="sd"> ... .master(&quot;local&quot;)</span>
<span class="sd"> ... .appName(&quot;Word Count&quot;)</span>
<span class="sd"> ... .config(&quot;spark.some.config.option&quot;, &quot;some-value&quot;)</span>
<span class="sd"> ... .getOrCreate()</span>
<span class="sd"> ... )</span>
<span class="sd"> Create a Spark session with Spark Connect.</span>
<span class="sd"> &gt;&gt;&gt; spark = (</span>
<span class="sd"> ... SparkSession.builder</span>
<span class="sd"> ... .remote(&quot;sc://localhost&quot;)</span>
<span class="sd"> ... .appName(&quot;Word Count&quot;)</span>
<span class="sd"> ... .config(&quot;spark.some.config.option&quot;, &quot;some-value&quot;)</span>
<span class="sd"> ... .getOrCreate()</span>
<span class="sd"> ... ) # doctest: +SKIP</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">class</span> <span class="nc">Builder</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Builder for :class:`SparkSession`.&quot;&quot;&quot;</span>
<span class="n">_lock</span> <span class="o">=</span> <span class="n">RLock</span><span class="p">()</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="p">{}</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="n">conf</span><span class="p">:</span> <span class="n">SparkConf</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="nb">map</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s2">&quot;OptionalPrimitiveType&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="o">...</span>
<span class="k">def</span> <span class="nf">config</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">key</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">value</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="nb">map</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s2">&quot;OptionalPrimitiveType&quot;</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Sets a config option. Options set using this method are automatically propagated to</span>
<span class="sd"> both :class:`SparkConf` and :class:`SparkSession`&#39;s own configuration.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> key : str, optional</span>
<span class="sd"> a key name string for configuration property</span>
<span class="sd"> value : str, optional</span>
<span class="sd"> a value for configuration property</span>
<span class="sd"> conf : :class:`SparkConf`, optional</span>
<span class="sd"> an instance of :class:`SparkConf`</span>
<span class="sd"> map: dictionary, optional</span>
<span class="sd"> a dictionary of configurations to set</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession.Builder`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> For an existing class:`SparkConf`, use `conf` parameter.</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.conf import SparkConf</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.config(conf=SparkConf())</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> For a (key, value) pair, you can omit parameter names.</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.config(&quot;spark.some.config.option&quot;, &quot;some-value&quot;)</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> Additionally, you can pass a dictionary of configurations to set.</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.config(</span>
<span class="sd"> ... map={&quot;spark.some.config.number&quot;: 123, &quot;spark.some.config.float&quot;: 0.123})</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">check_startup_urls</span><span class="p">(</span><span class="n">k</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">v</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">k</span> <span class="o">==</span> <span class="s2">&quot;spark.master&quot;</span><span class="p">:</span>
<span class="k">if</span> <span class="s2">&quot;spark.remote&quot;</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span> <span class="ow">or</span> <span class="s2">&quot;SPARK_REMOTE&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s2">&quot;Spark master cannot be configured with Spark Connect server; &quot;</span>
<span class="s2">&quot;however, found URL for Spark Connect [</span><span class="si">%s</span><span class="s2">]&quot;</span>
<span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.remote&quot;</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">))</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="n">k</span> <span class="o">==</span> <span class="s2">&quot;spark.remote&quot;</span><span class="p">:</span>
<span class="k">if</span> <span class="s2">&quot;spark.master&quot;</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span> <span class="ow">or</span> <span class="s2">&quot;MASTER&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s2">&quot;Spark Connect server cannot be configured with Spark master; &quot;</span>
<span class="s2">&quot;however, found URL for Spark master [</span><span class="si">%s</span><span class="s2">]&quot;</span>
<span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.master&quot;</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;MASTER&quot;</span><span class="p">))</span>
<span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="s2">&quot;SPARK_REMOTE&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span> <span class="ow">and</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">]</span> <span class="o">!=</span> <span class="n">v</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span>
<span class="s2">&quot;SPARK_LOCAL_REMOTE&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">v</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s2">&quot;local&quot;</span><span class="p">)</span>
<span class="p">):</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s2">&quot;Only one Spark Connect client URL can be set; however, got a &quot;</span>
<span class="s2">&quot;different URL [</span><span class="si">%s</span><span class="s2">] from the existing [</span><span class="si">%s</span><span class="s2">]&quot;</span>
<span class="o">%</span> <span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">],</span> <span class="n">v</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="k">if</span> <span class="n">conf</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">conf</span><span class="o">.</span><span class="n">getAll</span><span class="p">():</span>
<span class="n">check_startup_urls</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="k">elif</span> <span class="nb">map</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">map</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> <span class="c1"># type: ignore[assignment]</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">to_str</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="c1"># type: ignore[assignment]</span>
<span class="n">check_startup_urls</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">to_str</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
<span class="n">check_startup_urls</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">[</span><span class="n">cast</span><span class="p">(</span><span class="nb">str</span><span class="p">,</span> <span class="n">key</span><span class="p">)]</span> <span class="o">=</span> <span class="n">value</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span> <span class="nf">master</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">master</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Sets the Spark master URL to connect to, such as &quot;local&quot; to run locally, &quot;local[4]&quot;</span>
<span class="sd"> to run locally with 4 cores, or &quot;spark://master:7077&quot; to run on a Spark standalone</span>
<span class="sd"> cluster.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> master : str</span>
<span class="sd"> a url for spark master</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession.Builder`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.master(&quot;local&quot;)</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">&quot;spark.master&quot;</span><span class="p">,</span> <span class="n">master</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">remote</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">url</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Sets the Spark remote URL to connect to, such as &quot;sc://host:port&quot; to run</span>
<span class="sd"> it via Spark Connect server.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> url : str</span>
<span class="sd"> URL to Spark Connect server</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession.Builder`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.remote(&quot;sc://localhost&quot;) # doctest: +SKIP</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">&quot;spark.remote&quot;</span><span class="p">,</span> <span class="n">url</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">appName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Sets a name for the application, which will be shown in the Spark web UI.</span>
<span class="sd"> If no application name is set, a randomly generated name will be used.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str</span>
<span class="sd"> an application name</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession.Builder`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.appName(&quot;My app&quot;)</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">&quot;spark.app.name&quot;</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">enableHiveSupport</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession.Builder&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Enables Hive support, including connectivity to a persistent Hive metastore, support</span>
<span class="sd"> for Hive SerDes, and Hive user-defined functions.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession.Builder`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; SparkSession.builder.enableHiveSupport()</span>
<span class="sd"> &lt;pyspark.sql.session.SparkSession.Builder...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">&quot;spark.sql.catalogImplementation&quot;</span><span class="p">,</span> <span class="s2">&quot;hive&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getOrCreate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Gets an existing :class:`SparkSession` or, if there is no existing one, creates a</span>
<span class="sd"> new one based on the options set in this builder.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> This method first checks whether there is a valid global default SparkSession, and if</span>
<span class="sd"> yes, return that one. If no valid global default SparkSession exists, the method</span>
<span class="sd"> creates a new SparkSession and assigns the newly created SparkSession as the global</span>
<span class="sd"> default.</span>
<span class="sd"> &gt;&gt;&gt; s1 = SparkSession.builder.config(&quot;k1&quot;, &quot;v1&quot;).getOrCreate()</span>
<span class="sd"> &gt;&gt;&gt; s1.conf.get(&quot;k1&quot;) == &quot;v1&quot;</span>
<span class="sd"> True</span>
<span class="sd"> The configuration of the SparkSession can be changed afterwards</span>
<span class="sd"> &gt;&gt;&gt; s1.conf.set(&quot;k1&quot;, &quot;v1_new&quot;)</span>
<span class="sd"> &gt;&gt;&gt; s1.conf.get(&quot;k1&quot;) == &quot;v1_new&quot;</span>
<span class="sd"> True</span>
<span class="sd"> In case an existing SparkSession is returned, the config options specified</span>
<span class="sd"> in this builder will be applied to the existing SparkSession.</span>
<span class="sd"> &gt;&gt;&gt; s2 = SparkSession.builder.config(&quot;k2&quot;, &quot;v2&quot;).getOrCreate()</span>
<span class="sd"> &gt;&gt;&gt; s1.conf.get(&quot;k1&quot;) == s2.conf.get(&quot;k1&quot;) == &quot;v1_new&quot;</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; s1.conf.get(&quot;k2&quot;) == s2.conf.get(&quot;k2&quot;) == &quot;v2&quot;</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.conf</span> <span class="kn">import</span> <span class="n">SparkConf</span>
<span class="n">opts</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">)</span>
<span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="k">if</span> <span class="s2">&quot;SPARK_REMOTE&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span> <span class="ow">or</span> <span class="s2">&quot;spark.remote&quot;</span> <span class="ow">in</span> <span class="n">opts</span><span class="p">:</span>
<span class="k">with</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.connect.session</span> <span class="kn">import</span> <span class="n">SparkSession</span> <span class="k">as</span> <span class="n">RemoteSparkSession</span>
<span class="k">if</span> <span class="p">(</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="ow">and</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="p">):</span>
<span class="n">url</span> <span class="o">=</span> <span class="n">opts</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.remote&quot;</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">))</span>
<span class="k">if</span> <span class="n">url</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s2">&quot;local&quot;</span><span class="p">):</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_LOCAL_REMOTE&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;1&quot;</span>
<span class="n">RemoteSparkSession</span><span class="o">.</span><span class="n">_start_connect_server</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">opts</span><span class="p">)</span>
<span class="n">url</span> <span class="o">=</span> <span class="s2">&quot;sc://localhost&quot;</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">url</span>
<span class="n">opts</span><span class="p">[</span><span class="s2">&quot;spark.remote&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">url</span>
<span class="k">return</span> <span class="n">RemoteSparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="nb">map</span><span class="o">=</span><span class="n">opts</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="k">elif</span> <span class="s2">&quot;SPARK_LOCAL_REMOTE&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">:</span>
<span class="n">url</span> <span class="o">=</span> <span class="s2">&quot;sc://localhost&quot;</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_REMOTE&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">url</span>
<span class="n">opts</span><span class="p">[</span><span class="s2">&quot;spark.remote&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">url</span>
<span class="k">return</span> <span class="n">RemoteSparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="nb">map</span><span class="o">=</span><span class="n">opts</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s2">&quot;Cannot start a remote Spark session because there &quot;</span>
<span class="s2">&quot;is a regular Spark session already running.&quot;</span>
<span class="p">)</span>
<span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span>
<span class="k">if</span> <span class="n">session</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sparkConf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">sparkConf</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="c1"># This SparkContext may be an existing one.</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sparkConf</span><span class="p">)</span>
<span class="c1"># Do not update `SparkConf` for existing `SparkContext`, as it&#39;s shared</span>
<span class="c1"># by all sessions.</span>
<span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">getattr</span><span class="p">(</span>
<span class="nb">getattr</span><span class="p">(</span><span class="n">session</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">&quot;SparkSession$&quot;</span><span class="p">),</span> <span class="s2">&quot;MODULE$&quot;</span>
<span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span><span class="n">session</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">)</span>
<span class="k">return</span> <span class="n">session</span>
<span class="c1"># TODO(SPARK-38912): Replace @classproperty with @classmethod + @property once support for</span>
<span class="c1"># Python 3.8 is dropped.</span>
<span class="c1">#</span>
<span class="c1"># In Python 3.9, the @property decorator has been made compatible with the</span>
<span class="c1"># @classmethod decorator (https://docs.python.org/3.9/library/functions.html#classmethod)</span>
<span class="c1">#</span>
<span class="c1"># @classmethod + @property is also affected by a bug in Python&#39;s docstring which was backported</span>
<span class="c1"># to Python 3.9.6 (https://github.com/python/cpython/pull/28838)</span>
<div class="viewcode-block" id="SparkSession.builder"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.html#pyspark.sql.SparkSession.builder">[docs]</a> <span class="nd">@classproperty</span>
<span class="k">def</span> <span class="nf">builder</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Builder</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Creates a :class:`Builder` for constructing a :class:`SparkSession`.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">Builder</span><span class="p">()</span></div>
<span class="n">_instantiatedSession</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;SparkSession&quot;</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">_activeSession</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;SparkSession&quot;</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">sparkContext</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">jsparkSession</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaObject</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">options</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="p">{},</span>
<span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="n">sparkContext</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">jsparkSession</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">isDefined</span><span class="p">()</span>
<span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span><span class="o">.</span><span class="n">sparkContext</span><span class="p">()</span><span class="o">.</span><span class="n">isStopped</span><span class="p">()</span>
<span class="p">):</span>
<span class="n">jsparkSession</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span>
<span class="nb">getattr</span><span class="p">(</span><span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">&quot;SparkSession$&quot;</span><span class="p">),</span> <span class="s2">&quot;MODULE$&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span>
<span class="n">jsparkSession</span><span class="p">,</span> <span class="n">options</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">jsparkSession</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">options</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">getattr</span><span class="p">(</span><span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">&quot;SparkSession$&quot;</span><span class="p">),</span> <span class="s2">&quot;MODULE$&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span>
<span class="n">jsparkSession</span><span class="p">,</span> <span class="n">options</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span> <span class="o">=</span> <span class="n">jsparkSession</span>
<span class="n">_monkey_patch_RDD</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="n">install_exception_handler</span><span class="p">()</span>
<span class="c1"># If we had an instantiated SparkSession attached with a SparkContext</span>
<span class="c1"># which is stopped now, we need to renew the instantiated SparkSession.</span>
<span class="c1"># Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate.</span>
<span class="k">if</span> <span class="p">(</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="ow">or</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="p">):</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="o">=</span> <span class="bp">self</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="bp">self</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setDefaultSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setActiveSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_repr_html_</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="k">return</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2"> &lt;div&gt;</span>
<span class="s2"> &lt;p&gt;&lt;b&gt;SparkSession - </span><span class="si">{catalogImplementation}</span><span class="s2">&lt;/b&gt;&lt;/p&gt;</span>
<span class="s2"> </span><span class="si">{sc_HTML}</span>
<span class="s2"> &lt;/div&gt;</span>
<span class="s2"> &quot;&quot;&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">catalogImplementation</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.sql.catalogImplementation&quot;</span><span class="p">),</span>
<span class="n">sc_HTML</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sparkContext</span><span class="o">.</span><span class="n">_repr_html_</span><span class="p">(),</span>
<span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">_jconf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;JavaObject&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Accessor for the JVM SQL-specific configurations&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">sessionState</span><span class="p">()</span><span class="o">.</span><span class="n">conf</span><span class="p">()</span>
<div class="viewcode-block" id="SparkSession.newSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.newSession.html#pyspark.sql.SparkSession.newSession">[docs]</a> <span class="k">def</span> <span class="nf">newSession</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a new :class:`SparkSession` as new session, that has separate SQLConf,</span>
<span class="sd"> registered temporary views and UDFs, but shared :class:`SparkContext` and</span>
<span class="sd"> table cache.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession`</span>
<span class="sd"> Spark session if an active session exists for the current thread</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.newSession()</span>
<span class="sd"> &lt;...SparkSession object ...&gt;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">newSession</span><span class="p">())</span></div>
<div class="viewcode-block" id="SparkSession.getActiveSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.getActiveSession.html#pyspark.sql.SparkSession.getActiveSession">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">getActiveSession</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;SparkSession&quot;</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the active :class:`SparkSession` for the current thread, returned by the builder</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkSession`</span>
<span class="sd"> Spark session if an active session exists for the current thread</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; s = SparkSession.getActiveSession()</span>
<span class="sd"> &gt;&gt;&gt; df = s.createDataFrame([(&#39;Alice&#39;, 1)], [&#39;name&#39;, &#39;age&#39;])</span>
<span class="sd"> &gt;&gt;&gt; df.select(&quot;age&quot;).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> |age|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 1|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span>
<span class="k">if</span> <span class="n">sc</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span><span class="o">.</span><span class="n">isDefined</span><span class="p">():</span>
<span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">())</span>
<span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">sparkContext</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">SparkContext</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the underlying :class:`SparkContext`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkContext`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.sparkContext</span>
<span class="sd"> &lt;SparkContext master=... appName=...&gt;</span>
<span class="sd"> Create an RDD from the Spark context</span>
<span class="sd"> &gt;&gt;&gt; rdd = spark.sparkContext.parallelize([1, 2, 3])</span>
<span class="sd"> &gt;&gt;&gt; rdd.collect()</span>
<span class="sd"> [1, 2, 3]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">version</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> The version of Spark on which this application is running.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> str</span>
<span class="sd"> the version of Spark in string.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.version</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">version</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">conf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RuntimeConfig</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Runtime configuration interface for Spark.</span>
<span class="sd"> This is the interface through which the user can get and set all Spark and Hadoop</span>
<span class="sd"> configurations that are relevant to Spark SQL. When getting the value of a config,</span>
<span class="sd"> this defaults to the value set in the underlying :class:`SparkContext`, if any.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`pyspark.sql.conf.RuntimeConfig`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.conf</span>
<span class="sd"> &lt;pyspark.sql.conf.RuntimeConfig object ...&gt;</span>
<span class="sd"> Set a runtime configuration for the session</span>
<span class="sd"> &gt;&gt;&gt; spark.conf.set(&quot;key&quot;, &quot;value&quot;)</span>
<span class="sd"> &gt;&gt;&gt; spark.conf.get(&quot;key&quot;)</span>
<span class="sd"> &#39;value&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;_conf&quot;</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> <span class="o">=</span> <span class="n">RuntimeConfig</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">conf</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">catalog</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Catalog&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Interface through which the user may create, drop, alter or query underlying</span>
<span class="sd"> databases, tables, functions, etc.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Catalog`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.catalog</span>
<span class="sd"> &lt;...Catalog object ...&gt;</span>
<span class="sd"> Create a temp view, show the list, and drop it.</span>
<span class="sd"> &gt;&gt;&gt; spark.range(1).createTempView(&quot;test_view&quot;)</span>
<span class="sd"> &gt;&gt;&gt; spark.catalog.listTables()</span>
<span class="sd"> [Table(name=&#39;test_view&#39;, catalog=None, namespace=[], description=None, ...</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.catalog.dropTempView(&quot;test_view&quot;)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.catalog</span> <span class="kn">import</span> <span class="n">Catalog</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;_catalog&quot;</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_catalog</span> <span class="o">=</span> <span class="n">Catalog</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_catalog</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">udf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UDFRegistration&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns a :class:`UDFRegistration` for UDF registration.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`UDFRegistration`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Register a Python UDF, and use it in SQL.</span>
<span class="sd"> &gt;&gt;&gt; strlen = spark.udf.register(&quot;strlen&quot;, lambda x: len(x))</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT strlen(&#39;test&#39;)&quot;).show()</span>
<span class="sd"> +------------+</span>
<span class="sd"> |strlen(test)|</span>
<span class="sd"> +------------+</span>
<span class="sd"> | 4|</span>
<span class="sd"> +------------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.udf</span> <span class="kn">import</span> <span class="n">UDFRegistration</span>
<span class="k">return</span> <span class="n">UDFRegistration</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<div class="viewcode-block" id="SparkSession.range"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.range.html#pyspark.sql.SparkSession.range">[docs]</a> <span class="k">def</span> <span class="nf">range</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">start</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">end</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">step</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named</span>
<span class="sd"> ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with</span>
<span class="sd"> step value ``step``.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> start : int</span>
<span class="sd"> the start value</span>
<span class="sd"> end : int, optional</span>
<span class="sd"> the end value (exclusive)</span>
<span class="sd"> step : int, optional</span>
<span class="sd"> the incremental step (default: 1)</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> the number of partitions of the DataFrame</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.range(1, 7, 2).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 3|</span>
<span class="sd"> | 5|</span>
<span class="sd"> +---+</span>
<span class="sd"> If only one argument is specified, it will be used as the end value.</span>
<span class="sd"> &gt;&gt;&gt; spark.range(3).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 2|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">if</span> <span class="n">end</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">step</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">end</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">step</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_inferSchemaFromList</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">names</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">StructType</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Infer schema from list of Row, dict, or tuple.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : iterable</span>
<span class="sd"> list of Row, dict, or tuple</span>
<span class="sd"> names : list, optional</span>
<span class="sd"> list of column names</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`pyspark.sql.types.StructType`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">data</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;can not infer schema from empty dataset&quot;</span><span class="p">)</span>
<span class="n">infer_dict_as_struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">inferDictAsStruct</span><span class="p">()</span>
<span class="n">infer_array_from_first_element</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">legacyInferArrayTypeFromFirstElement</span><span class="p">()</span>
<span class="n">prefer_timestamp_ntz</span> <span class="o">=</span> <span class="n">is_timestamp_ntz_preferred</span><span class="p">()</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">reduce</span><span class="p">(</span>
<span class="n">_merge_type</span><span class="p">,</span>
<span class="p">(</span>
<span class="n">_infer_schema</span><span class="p">(</span>
<span class="n">row</span><span class="p">,</span>
<span class="n">names</span><span class="p">,</span>
<span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span>
<span class="n">infer_array_from_first_element</span><span class="o">=</span><span class="n">infer_array_from_first_element</span><span class="p">,</span>
<span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">data</span>
<span class="p">),</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Some of types cannot be determined after inferring&quot;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">schema</span>
<span class="k">def</span> <span class="nf">_inferSchema</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">names</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">StructType</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Infer schema from an RDD of Row, dict, or tuple.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> rdd : :class:`RDD`</span>
<span class="sd"> an RDD of Row, dict, or tuple</span>
<span class="sd"> samplingRatio : float, optional</span>
<span class="sd"> sampling ratio, or no sampling (default)</span>
<span class="sd"> names : list, optional</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`pyspark.sql.types.StructType`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">Sized</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">first</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;The first row in RDD is empty, can not infer schema&quot;</span><span class="p">)</span>
<span class="n">infer_dict_as_struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">inferDictAsStruct</span><span class="p">()</span>
<span class="n">infer_array_from_first_element</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">legacyInferArrayTypeFromFirstElement</span><span class="p">()</span>
<span class="n">prefer_timestamp_ntz</span> <span class="o">=</span> <span class="n">is_timestamp_ntz_preferred</span><span class="p">()</span>
<span class="k">if</span> <span class="n">samplingRatio</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">_infer_schema</span><span class="p">(</span>
<span class="n">first</span><span class="p">,</span>
<span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">,</span>
<span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span>
<span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span>
<span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">rdd</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">1</span><span class="p">:]:</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">_merge_type</span><span class="p">(</span>
<span class="n">schema</span><span class="p">,</span>
<span class="n">_infer_schema</span><span class="p">(</span>
<span class="n">row</span><span class="p">,</span>
<span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">,</span>
<span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span>
<span class="n">infer_array_from_first_element</span><span class="o">=</span><span class="n">infer_array_from_first_element</span><span class="p">,</span>
<span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span>
<span class="p">),</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span>
<span class="k">break</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;Some of types cannot be determined by the &quot;</span>
<span class="s2">&quot;first 100 rows, please try again with sampling&quot;</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">samplingRatio</span> <span class="o">&lt;</span> <span class="mf">0.99</span><span class="p">:</span>
<span class="n">rdd</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">samplingRatio</span><span class="p">))</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span>
<span class="k">lambda</span> <span class="n">row</span><span class="p">:</span> <span class="n">_infer_schema</span><span class="p">(</span>
<span class="n">row</span><span class="p">,</span>
<span class="n">names</span><span class="p">,</span>
<span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span>
<span class="n">infer_array_from_first_element</span><span class="o">=</span><span class="n">infer_array_from_first_element</span><span class="p">,</span>
<span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span>
<span class="p">)</span>
<span class="p">)</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">_merge_type</span><span class="p">)</span>
<span class="k">return</span> <span class="n">schema</span>
<span class="k">def</span> <span class="nf">_createFromRDD</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">],</span> <span class="n">StructType</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create an RDD for DataFrame from an existing RDD, returns the RDD and schema.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">schema</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_inferSchema</span><span class="p">(</span><span class="n">rdd</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span>
<span class="n">converter</span> <span class="o">=</span> <span class="n">_create_converter</span><span class="p">(</span><span class="n">struct</span><span class="p">)</span>
<span class="n">tupled_rdd</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">converter</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span>
<span class="n">struct</span><span class="o">.</span><span class="n">fields</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span>
<span class="n">struct</span><span class="o">.</span><span class="n">names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">name</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="n">struct</span> <span class="o">=</span> <span class="n">schema</span>
<span class="n">tupled_rdd</span> <span class="o">=</span> <span class="n">rdd</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;schema should be StructType or list or None, but got: </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">schema</span><span class="p">)</span>
<span class="c1"># convert python objects to sql data</span>
<span class="n">internal_rdd</span> <span class="o">=</span> <span class="n">tupled_rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">struct</span><span class="o">.</span><span class="n">toInternal</span><span class="p">)</span>
<span class="k">return</span> <span class="n">internal_rdd</span><span class="p">,</span> <span class="n">struct</span>
<span class="k">def</span> <span class="nf">_createFromLocal</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">],</span> <span class="n">StructType</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create an RDD for DataFrame from a list or pandas.DataFrame, returns</span>
<span class="sd"> the RDD and schema.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># make sure data could consumed multiple times</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">data</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="n">schema</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_inferSchemaFromList</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span>
<span class="n">converter</span> <span class="o">=</span> <span class="n">_create_converter</span><span class="p">(</span><span class="n">struct</span><span class="p">)</span>
<span class="n">tupled_data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Tuple</span><span class="p">]</span> <span class="o">=</span> <span class="nb">map</span><span class="p">(</span><span class="n">converter</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span>
<span class="n">struct</span><span class="o">.</span><span class="n">fields</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span>
<span class="n">struct</span><span class="o">.</span><span class="n">names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">name</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="n">struct</span> <span class="o">=</span> <span class="n">schema</span>
<span class="n">tupled_data</span> <span class="o">=</span> <span class="n">data</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;schema should be StructType or list or None, but got: </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">schema</span><span class="p">)</span>
<span class="c1"># convert python objects to sql data</span>
<span class="n">internal_data</span> <span class="o">=</span> <span class="p">[</span><span class="n">struct</span><span class="o">.</span><span class="n">toInternal</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">tupled_data</span><span class="p">]</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">internal_data</span><span class="p">),</span> <span class="n">struct</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_create_shell_session</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Initialize a :class:`SparkSession` for a pyspark shell session. This is called from</span>
<span class="sd"> shell.py to make error handling simpler without needing to declare local variables in</span>
<span class="sd"> that script, which would expose those to users.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">py4j</span>
<span class="kn">from</span> <span class="nn">pyspark.conf</span> <span class="kn">import</span> <span class="n">SparkConf</span>
<span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># Try to access HiveConf, it will raise exception if Hive is not added</span>
<span class="n">conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span>
<span class="k">assert</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.sql.catalogImplementation&quot;</span><span class="p">,</span> <span class="s2">&quot;hive&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="o">==</span> <span class="s2">&quot;hive&quot;</span><span class="p">:</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">hadoop</span><span class="o">.</span><span class="n">hive</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">HiveConf</span><span class="p">()</span>
<span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">enableHiveSupport</span><span class="p">()</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span>
<span class="k">except</span> <span class="p">(</span><span class="n">py4j</span><span class="o">.</span><span class="n">protocol</span><span class="o">.</span><span class="n">Py4JError</span><span class="p">,</span> <span class="ne">TypeError</span><span class="p">):</span>
<span class="k">if</span> <span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.sql.catalogImplementation&quot;</span><span class="p">,</span> <span class="s2">&quot;&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="o">==</span> <span class="s2">&quot;hive&quot;</span><span class="p">:</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">&quot;Fall back to non-hive support because failing to access HiveConf, &quot;</span>
<span class="s2">&quot;please make sure you build spark with hive&quot;</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_getActiveSessionOrCreate</span><span class="p">(</span><span class="o">**</span><span class="n">static_conf</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the active :class:`SparkSession` for the current thread, returned by the builder,</span>
<span class="sd"> or if there is no existing one, creates a new one based on the options set in the builder.</span>
<span class="sd"> NOTE that &#39;static_conf&#39; might not be set if there&#39;s an active or default Spark session</span>
<span class="sd"> running.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span>
<span class="k">if</span> <span class="n">spark</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">builder</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">static_conf</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">builder</span> <span class="o">=</span> <span class="n">builder</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">builder</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="k">return</span> <span class="n">spark</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">&quot;RowLike&quot;</span><span class="p">],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="o">...</span><span class="p">]]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="s2">&quot;RDD[RowLike]&quot;</span><span class="p">,</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="o">...</span><span class="p">]]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">&quot;RowLike&quot;</span><span class="p">],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="s2">&quot;RDD[RowLike]&quot;</span><span class="p">,</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="s2">&quot;RDD[AtomicValue]&quot;</span><span class="p">,</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">&quot;AtomicValue&quot;</span><span class="p">],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="s2">&quot;PandasDataFrameLike&quot;</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="s2">&quot;PandasDataFrameLike&quot;</span><span class="p">,</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<div class="viewcode-block" id="SparkSession.createDataFrame"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.createDataFrame.html#pyspark.sql.SparkSession.createDataFrame">[docs]</a> <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> <span class="c1"># type: ignore[misc]</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="s2">&quot;PandasDataFrameLike&quot;</span><span class="p">,</span> <span class="s2">&quot;ArrayLike&quot;</span><span class="p">],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Creates a :class:`DataFrame` from an :class:`RDD`, a list, a :class:`pandas.DataFrame`</span>
<span class="sd"> or a :class:`numpy.ndarray`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : :class:`RDD` or iterable</span>
<span class="sd"> an RDD of any kind of SQL data representation (:class:`Row`,</span>
<span class="sd"> :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`,</span>
<span class="sd"> :class:`pandas.DataFrame` or :class:`numpy.ndarray`.</span>
<span class="sd"> schema : :class:`pyspark.sql.types.DataType`, str or list, optional</span>
<span class="sd"> a :class:`pyspark.sql.types.DataType` or a datatype string or a list of</span>
<span class="sd"> column names, default is None. The data type string format equals to</span>
<span class="sd"> :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can</span>
<span class="sd"> omit the ``struct&lt;&gt;``.</span>
<span class="sd"> When ``schema`` is a list of column names, the type of each column</span>
<span class="sd"> will be inferred from ``data``.</span>
<span class="sd"> When ``schema`` is ``None``, it will try to infer the schema (column names and types)</span>
<span class="sd"> from ``data``, which should be an RDD of either :class:`Row`,</span>
<span class="sd"> :class:`namedtuple`, or :class:`dict`.</span>
<span class="sd"> When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must</span>
<span class="sd"> match the real data, or an exception will be thrown at runtime. If the given schema is</span>
<span class="sd"> not :class:`pyspark.sql.types.StructType`, it will be wrapped into a</span>
<span class="sd"> :class:`pyspark.sql.types.StructType` as its only field, and the field name will be</span>
<span class="sd"> &quot;value&quot;. Each record will also be wrapped into a tuple, which can be converted to row</span>
<span class="sd"> later.</span>
<span class="sd"> samplingRatio : float, optional</span>
<span class="sd"> the sample ratio of rows used for inferring. The first few rows will be used</span>
<span class="sd"> if ``samplingRatio`` is ``None``.</span>
<span class="sd"> verifySchema : bool, optional</span>
<span class="sd"> verify data types of every row against schema. Enabled by default.</span>
<span class="sd"> .. versionadded:: 2.1.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Usage with `spark.sql.execution.arrow.pyspark.enabled=True` is experimental.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Create a DataFrame from a list of tuples.</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame([(&#39;Alice&#39;, 1)]).collect()</span>
<span class="sd"> [Row(_1=&#39;Alice&#39;, _2=1)]</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame([(&#39;Alice&#39;, 1)], [&#39;name&#39;, &#39;age&#39;]).collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, age=1)]</span>
<span class="sd"> Create a DataFrame from a list of dictionaries</span>
<span class="sd"> &gt;&gt;&gt; d = [{&#39;name&#39;: &#39;Alice&#39;, &#39;age&#39;: 1}]</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(d).collect()</span>
<span class="sd"> [Row(age=1, name=&#39;Alice&#39;)]</span>
<span class="sd"> Create a DataFrame from an RDD.</span>
<span class="sd"> &gt;&gt;&gt; rdd = spark.sparkContext.parallelize([(&#39;Alice&#39;, 1)])</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(rdd).collect()</span>
<span class="sd"> [Row(_1=&#39;Alice&#39;, _2=1)]</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(rdd, [&#39;name&#39;, &#39;age&#39;])</span>
<span class="sd"> &gt;&gt;&gt; df.collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, age=1)]</span>
<span class="sd"> Create a DataFrame from Row instances.</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; Person = Row(&#39;name&#39;, &#39;age&#39;)</span>
<span class="sd"> &gt;&gt;&gt; person = rdd.map(lambda r: Person(*r))</span>
<span class="sd"> &gt;&gt;&gt; df2 = spark.createDataFrame(person)</span>
<span class="sd"> &gt;&gt;&gt; df2.collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, age=1)]</span>
<span class="sd"> Create a DataFrame with the explicit schema specified.</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import *</span>
<span class="sd"> &gt;&gt;&gt; schema = StructType([</span>
<span class="sd"> ... StructField(&quot;name&quot;, StringType(), True),</span>
<span class="sd"> ... StructField(&quot;age&quot;, IntegerType(), True)])</span>
<span class="sd"> &gt;&gt;&gt; df3 = spark.createDataFrame(rdd, schema)</span>
<span class="sd"> &gt;&gt;&gt; df3.collect()</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, age=1)]</span>
<span class="sd"> Create a DataFrame from a pandas DataFrame.</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(name=&#39;Alice&#39;, age=1)]</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(0=1, 1=2)]</span>
<span class="sd"> Create a DataFrame from an RDD with the schema in DDL formatted string.</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(rdd, &quot;a: string, b: int&quot;).collect()</span>
<span class="sd"> [Row(a=&#39;Alice&#39;, b=1)]</span>
<span class="sd"> &gt;&gt;&gt; rdd = rdd.map(lambda row: row[1])</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(rdd, &quot;int&quot;).collect()</span>
<span class="sd"> [Row(value=1)]</span>
<span class="sd"> When the type is unmatched, it throws an exception.</span>
<span class="sd"> &gt;&gt;&gt; spark.createDataFrame(rdd, &quot;boolean&quot;).collect() # doctest: +IGNORE_EXCEPTION_DETAIL</span>
<span class="sd"> Traceback (most recent call last):</span>
<span class="sd"> ...</span>
<span class="sd"> Py4JJavaError: ...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="bp">self</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setActiveSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;data is already a DataFrame&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="n">schema</span><span class="p">))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="c1"># Must re-encode any unicode strings to be consistent with StructField names</span>
<span class="n">schema</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="s2">&quot;utf-8&quot;</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">str</span><span class="p">)</span> <span class="k">else</span> <span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">schema</span><span class="p">]</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">has_pandas</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="n">has_pandas</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">has_numpy</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="n">has_numpy</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">if</span> <span class="n">has_numpy</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span>
<span class="c1"># `data` of numpy.ndarray type will be converted to a pandas DataFrame,</span>
<span class="c1"># so pandas is required.</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.utils</span> <span class="kn">import</span> <span class="n">require_minimum_pandas_version</span>
<span class="n">require_minimum_pandas_version</span><span class="p">()</span>
<span class="k">if</span> <span class="n">data</span><span class="o">.</span><span class="n">ndim</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;NumPy array input should be of 1 or 2 dimensions.&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">data</span><span class="o">.</span><span class="n">ndim</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">column_names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;value&quot;</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">column_names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;_</span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
<span class="k">if</span> <span class="n">schema</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">arrowPySparkEnabled</span><span class="p">():</span>
<span class="c1"># Construct `schema` from `np.dtype` of the input NumPy array</span>
<span class="c1"># TODO: Apply the logic below when self._jconf.arrowPySparkEnabled() is True</span>
<span class="n">spark_type</span> <span class="o">=</span> <span class="n">_from_numpy_type</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">spark_type</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">(</span>
<span class="p">[</span><span class="n">StructField</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">spark_type</span><span class="p">,</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">column_names</span><span class="p">]</span>
<span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">column_names</span><span class="p">)</span>
<span class="k">if</span> <span class="n">has_pandas</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span>
<span class="c1"># Create a DataFrame from pandas DataFrame.</span>
<span class="k">return</span> <span class="nb">super</span><span class="p">(</span><span class="n">SparkSession</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span> <span class="c1"># type: ignore[call-overload]</span>
<span class="n">data</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">verifySchema</span>
<span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_dataframe</span><span class="p">(</span>
<span class="n">data</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">verifySchema</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_create_dataframe</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">]],</span>
<span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span>
<span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span>
<span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="n">verify_func</span> <span class="o">=</span> <span class="n">_make_type_verifier</span><span class="p">(</span><span class="n">schema</span><span class="p">)</span> <span class="k">if</span> <span class="n">verifySchema</span> <span class="k">else</span> <span class="k">lambda</span> <span class="n">_</span><span class="p">:</span> <span class="kc">True</span>
<span class="nd">@no_type_check</span>
<span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">):</span>
<span class="n">verify_func</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span>
<span class="k">return</span> <span class="n">obj</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span>
<span class="n">dataType</span> <span class="o">=</span> <span class="n">schema</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">()</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;value&quot;</span><span class="p">,</span> <span class="n">schema</span><span class="p">)</span>
<span class="n">verify_func</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">_make_type_verifier</span><span class="p">(</span><span class="n">dataType</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;field value&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">verifySchema</span>
<span class="k">else</span> <span class="k">lambda</span> <span class="n">_</span><span class="p">:</span> <span class="kc">True</span>
<span class="p">)</span>
<span class="nd">@no_type_check</span>
<span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">):</span>
<span class="n">verify_func</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span>
<span class="k">return</span> <span class="p">(</span><span class="n">obj</span><span class="p">,)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">return</span> <span class="n">obj</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="n">rdd</span><span class="p">,</span> <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_createFromRDD</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">prepare</span><span class="p">),</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">rdd</span><span class="p">,</span> <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_createFromLocal</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="n">prepare</span><span class="p">,</span> <span class="n">data</span><span class="p">),</span> <span class="n">schema</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SerDeUtil</span><span class="o">.</span><span class="n">toJavaArray</span><span class="p">(</span><span class="n">rdd</span><span class="o">.</span><span class="n">_to_java_object_rdd</span><span class="p">())</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">applySchemaToPythonRDD</span><span class="p">(</span><span class="n">jrdd</span><span class="o">.</span><span class="n">rdd</span><span class="p">(),</span> <span class="n">struct</span><span class="o">.</span><span class="n">json</span><span class="p">())</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span>
<span class="n">df</span><span class="o">.</span><span class="n">_schema</span> <span class="o">=</span> <span class="n">struct</span>
<span class="k">return</span> <span class="n">df</span>
<div class="viewcode-block" id="SparkSession.sql"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.sql.html#pyspark.sql.SparkSession.sql">[docs]</a> <span class="k">def</span> <span class="nf">sql</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sqlQuery</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">args</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns a :class:`DataFrame` representing the result of the given query.</span>
<span class="sd"> When ``kwargs`` is specified, this method formats the given string by using the Python</span>
<span class="sd"> standard formatter. The method binds named parameters to SQL literals from `args`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect and parameterized SQL.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sqlQuery : str</span>
<span class="sd"> SQL query string.</span>
<span class="sd"> args : dict</span>
<span class="sd"> A dictionary of parameter names to Python objects that can be converted to</span>
<span class="sd"> SQL literal expressions. See</span>
<span class="sd"> &lt;a href=&quot;https://spark.apache.org/docs/latest/sql-ref-datatypes.html&quot;&gt;</span>
<span class="sd"> Supported Data Types&lt;/a&gt; for supported value types in Python.</span>
<span class="sd"> For example, dictionary keys: &quot;rank&quot;, &quot;name&quot;, &quot;birthdate&quot;;</span>
<span class="sd"> dictionary values: 1, &quot;Steven&quot;, datetime.date(2023, 4, 2).</span>
<span class="sd"> Map value can be also a `Column` of literal expression, in that case it is taken as is.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> kwargs : dict</span>
<span class="sd"> Other variables that the user wants to set that can be referenced in the query</span>
<span class="sd"> .. versionchanged:: 3.3.0</span>
<span class="sd"> Added optional argument ``kwargs`` to specify the mapping of variables in the query.</span>
<span class="sd"> This feature is experimental and unstable.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Executing a SQL query.</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT * FROM range(10) where id &gt; 7&quot;).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 8|</span>
<span class="sd"> | 9|</span>
<span class="sd"> +---+</span>
<span class="sd"> Executing a SQL query with variables as Python formatter standard.</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(</span>
<span class="sd"> ... &quot;SELECT * FROM range(10) WHERE id &gt; {bound1} AND id &lt; {bound2}&quot;, bound1=7, bound2=9</span>
<span class="sd"> ... ).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 8|</span>
<span class="sd"> +---+</span>
<span class="sd"> &gt;&gt;&gt; mydf = spark.range(10)</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(</span>
<span class="sd"> ... &quot;SELECT {col} FROM {mydf} WHERE id IN {x}&quot;,</span>
<span class="sd"> ... col=mydf.id, mydf=mydf, x=tuple(range(4))).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 2|</span>
<span class="sd"> | 3|</span>
<span class="sd"> +---+</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&#39;&#39;&#39;</span>
<span class="sd"> ... SELECT m1.a, m2.b</span>
<span class="sd"> ... FROM {table1} m1 INNER JOIN {table2} m2</span>
<span class="sd"> ... ON m1.key = m2.key</span>
<span class="sd"> ... ORDER BY m1.a, m2.b&#39;&#39;&#39;,</span>
<span class="sd"> ... table1=spark.createDataFrame([(1, &quot;a&quot;), (2, &quot;b&quot;)], [&quot;a&quot;, &quot;key&quot;]),</span>
<span class="sd"> ... table2=spark.createDataFrame([(3, &quot;a&quot;), (4, &quot;b&quot;), (5, &quot;b&quot;)], [&quot;b&quot;, &quot;key&quot;])).show()</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | a| b|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | 1| 3|</span>
<span class="sd"> | 2| 4|</span>
<span class="sd"> | 2| 5|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> Also, it is possible to query using class:`Column` from :class:`DataFrame`.</span>
<span class="sd"> &gt;&gt;&gt; mydf = spark.createDataFrame([(1, 4), (2, 4), (3, 6)], [&quot;A&quot;, &quot;B&quot;])</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT {df.A}, {df[B]} FROM {df}&quot;, df=mydf).show()</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | A| B|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | 1| 4|</span>
<span class="sd"> | 2| 4|</span>
<span class="sd"> | 3| 6|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> And substitude named parameters with the `:` prefix by SQL literals.</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT * FROM {df} WHERE {df[B]} &gt; :minB&quot;, {&quot;minB&quot; : 5}, df=mydf).show()</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | A| B|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> | 3| 6|</span>
<span class="sd"> +---+---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">formatter</span> <span class="o">=</span> <span class="n">SQLStringFormatter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">sqlQuery</span> <span class="o">=</span> <span class="n">formatter</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">sqlQuery</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">litArgs</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">_to_java_column</span><span class="p">(</span><span class="n">lit</span><span class="p">(</span><span class="n">v</span><span class="p">))</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="p">(</span><span class="n">args</span> <span class="ow">or</span> <span class="p">{})</span><span class="o">.</span><span class="n">items</span><span class="p">()}</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="n">sqlQuery</span><span class="p">,</span> <span class="n">litArgs</span><span class="p">),</span> <span class="bp">self</span><span class="p">)</span>
<span class="k">finally</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">formatter</span><span class="o">.</span><span class="n">clear</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkSession.table"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.table.html#pyspark.sql.SparkSession.table">[docs]</a> <span class="k">def</span> <span class="nf">table</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tableName</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns the specified table as a :class:`DataFrame`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> tableName : str</span>
<span class="sd"> the table name to retrieve.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.range(5).createOrReplaceTempView(&quot;table1&quot;)</span>
<span class="sd"> &gt;&gt;&gt; spark.table(&quot;table1&quot;).sort(&quot;id&quot;).show()</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 2|</span>
<span class="sd"> | 3|</span>
<span class="sd"> | 4|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="n">tableName</span><span class="p">),</span> <span class="bp">self</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">read</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrameReader</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a :class:`DataFrameReader` that can be used to read data</span>
<span class="sd"> in as a :class:`DataFrame`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrameReader`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.read</span>
<span class="sd"> &lt;...DataFrameReader object ...&gt;</span>
<span class="sd"> Write a DataFrame into a JSON file and read it back.</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # Write a DataFrame into a JSON file</span>
<span class="sd"> ... spark.createDataFrame(</span>
<span class="sd"> ... [{&quot;age&quot;: 100, &quot;name&quot;: &quot;Hyukjin Kwon&quot;}]</span>
<span class="sd"> ... ).write.mode(&quot;overwrite&quot;).format(&quot;json&quot;).save(d)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Read the JSON file as a DataFrame.</span>
<span class="sd"> ... spark.read.format(&#39;json&#39;).load(d).show()</span>
<span class="sd"> +---+------------+</span>
<span class="sd"> |age| name|</span>
<span class="sd"> +---+------------+</span>
<span class="sd"> |100|Hyukjin Kwon|</span>
<span class="sd"> +---+------------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">DataFrameReader</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">readStream</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataStreamReader</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a :class:`DataStreamReader` that can be used to read data streams</span>
<span class="sd"> as a streaming :class:`DataFrame`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> This API is evolving.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataStreamReader`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.readStream</span>
<span class="sd"> &lt;pyspark.sql.streaming.readwriter.DataStreamReader object ...&gt;</span>
<span class="sd"> The example below uses Rate source that generates rows continuously.</span>
<span class="sd"> After that, we operate a modulo by 3, and then write the stream out to the console.</span>
<span class="sd"> The streaming query stops in 3 seconds.</span>
<span class="sd"> &gt;&gt;&gt; import time</span>
<span class="sd"> &gt;&gt;&gt; df = spark.readStream.format(&quot;rate&quot;).load()</span>
<span class="sd"> &gt;&gt;&gt; df = df.selectExpr(&quot;value % 3 as v&quot;)</span>
<span class="sd"> &gt;&gt;&gt; q = df.writeStream.format(&quot;console&quot;).start()</span>
<span class="sd"> &gt;&gt;&gt; time.sleep(3)</span>
<span class="sd"> &gt;&gt;&gt; q.stop()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">DataStreamReader</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">streams</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;StreamingQueryManager&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns a :class:`StreamingQueryManager` that allows managing all the</span>
<span class="sd"> :class:`StreamingQuery` instances active on `this` context.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> This API is evolving.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`StreamingQueryManager`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.streams</span>
<span class="sd"> &lt;pyspark.sql.streaming.query.StreamingQueryManager object ...&gt;</span>
<span class="sd"> Get the list of active streaming queries</span>
<span class="sd"> &gt;&gt;&gt; sq = spark.readStream.format(</span>
<span class="sd"> ... &quot;rate&quot;).load().writeStream.format(&#39;memory&#39;).queryName(&#39;this_query&#39;).start()</span>
<span class="sd"> &gt;&gt;&gt; sqm = spark.streams</span>
<span class="sd"> &gt;&gt;&gt; [q.name for q in sqm.active]</span>
<span class="sd"> [&#39;this_query&#39;]</span>
<span class="sd"> &gt;&gt;&gt; sq.stop()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">StreamingQueryManager</span>
<span class="k">return</span> <span class="n">StreamingQueryManager</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">streams</span><span class="p">())</span>
<div class="viewcode-block" id="SparkSession.stop"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.stop.html#pyspark.sql.SparkSession.stop">[docs]</a> <span class="k">def</span> <span class="nf">stop</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Stop the underlying :class:`SparkContext`.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.stop() # doctest: +SKIP</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.context</span> <span class="kn">import</span> <span class="n">SQLContext</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="c1"># We should clean the default session up. See SPARK-23228.</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">clearDefaultSession</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">clearActiveSession</span><span class="p">()</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">SQLContext</span><span class="o">.</span><span class="n">_instantiatedContext</span> <span class="o">=</span> <span class="kc">None</span></div>
<span class="k">def</span> <span class="fm">__enter__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Enable &#39;with SparkSession.builder.(...).getOrCreate() as session: app&#39; syntax.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; with SparkSession.builder.master(&quot;local&quot;).getOrCreate() as session:</span>
<span class="sd"> ... session.range(5).show() # doctest: +SKIP</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 2|</span>
<span class="sd"> | 3|</span>
<span class="sd"> | 4|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span> <span class="fm">__exit__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">exc_type</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Type</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">]],</span>
<span class="n">exc_val</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">],</span>
<span class="n">exc_tb</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TracebackType</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Enable &#39;with SparkSession.builder.(...).getOrCreate() as session: app&#39; syntax.</span>
<span class="sd"> Specifically stop the SparkSession on exit of the with block.</span>
<span class="sd"> .. versionadded:: 2.0.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; with SparkSession.builder.master(&quot;local&quot;).getOrCreate() as session:</span>
<span class="sd"> ... session.range(5).show() # doctest: +SKIP</span>
<span class="sd"> +---+</span>
<span class="sd"> | id|</span>
<span class="sd"> +---+</span>
<span class="sd"> | 0|</span>
<span class="sd"> | 1|</span>
<span class="sd"> | 2|</span>
<span class="sd"> | 3|</span>
<span class="sd"> | 4|</span>
<span class="sd"> +---+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">pyspark.sql.session</span>
<span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_HOME&quot;</span><span class="p">])</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;sql.session tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span>
<span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">session</span><span class="p">,</span>
<span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span>
<span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>