blob: cf4649880380ec14d238c16141ebcaba4f7f8917 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>LinearRegressionWithSGD &#8212; PySpark 3.1.1 documentation</title>
<link rel="stylesheet" href="../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script src="../../_static/language_data.js"></script>
<script src="../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.regression.LinearRegressionWithSGD.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="RidgeRegressionModel" href="pyspark.mllib.regression.RidgeRegressionModel.html" />
<link rel="prev" title="LinearRegressionModel" href="pyspark.mllib.regression.LinearRegressionModel.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../index.html">
<img src="../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="../index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="">
<a href="../pyspark.sql.html">Spark SQL</a>
</li>
<li class="">
<a href="../pyspark.ss.html">Structured Streaming</a>
</li>
<li class="">
<a href="../pyspark.ml.html">MLlib (DataFrame-based)</a>
</li>
<li class="">
<a href="../pyspark.streaming.html">Spark Streaming</a>
</li>
<li class="active">
<a href="../pyspark.mllib.html">MLlib (RDD-based)</a>
</li>
<li class="">
<a href="../pyspark.html">Spark Core</a>
</li>
<li class="">
<a href="../pyspark.resource.html">Resource Management</a>
</li>
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<div class="section" id="linearregressionwithsgd">
<h1>LinearRegressionWithSGD<a class="headerlink" href="#linearregressionwithsgd" title="Permalink to this headline"></a></h1>
<dl class="py class">
<dt id="pyspark.mllib.regression.LinearRegressionWithSGD">
<em class="property">class </em><code class="sig-prename descclassname">pyspark.mllib.regression.</code><code class="sig-name descname">LinearRegressionWithSGD</code><a class="reference internal" href="../../_modules/pyspark/mllib/regression.html#LinearRegressionWithSGD"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.regression.LinearRegressionWithSGD" title="Permalink to this definition"></a></dt>
<dd><p>Train a linear regression model with no regularization using Stochastic Gradient Descent.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.9.0.</span></p>
</div>
<div class="deprecated">
<p><span class="versionmodified deprecated">Deprecated since version 2.0.0: </span>Use <a class="reference internal" href="pyspark.ml.regression.LinearRegression.html#pyspark.ml.regression.LinearRegression" title="pyspark.ml.regression.LinearRegression"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.ml.regression.LinearRegression</span></code></a>.</p>
</div>
<p class="rubric">Methods</p>
<table class="longtable table autosummary">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.mllib.regression.LinearRegressionWithSGD.train" title="pyspark.mllib.regression.LinearRegressionWithSGD.train"><code class="xref py py-obj docutils literal notranslate"><span class="pre">train</span></code></a>(data[, iterations, step, …])</p></td>
<td><p>Train a linear regression model using Stochastic Gradient Descent (SGD).</p></td>
</tr>
</tbody>
</table>
<p class="rubric">Methods Documentation</p>
<dl class="py method">
<dt id="pyspark.mllib.regression.LinearRegressionWithSGD.train">
<em class="property">classmethod </em><code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">iterations</span><span class="o">=</span><span class="default_value">100</span></em>, <em class="sig-param"><span class="n">step</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="n">miniBatchFraction</span><span class="o">=</span><span class="default_value">1.0</span></em>, <em class="sig-param"><span class="n">initialWeights</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">regParam</span><span class="o">=</span><span class="default_value">0.0</span></em>, <em class="sig-param"><span class="n">regType</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">intercept</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">validateData</span><span class="o">=</span><span class="default_value">True</span></em>, <em class="sig-param"><span class="n">convergenceTol</span><span class="o">=</span><span class="default_value">0.001</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/regression.html#LinearRegressionWithSGD.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.regression.LinearRegressionWithSGD.train" title="Permalink to this definition"></a></dt>
<dd><p>Train a linear regression model using Stochastic Gradient
Descent (SGD). This solves the least squares regression
formulation</p>
<blockquote>
<div><p>f(weights) = 1/(2n) ||A weights - y||^2</p>
</div></blockquote>
<p>which is the mean squared error. Here the data matrix has n rows,
and the input RDD holds the set of rows of A, each with its
corresponding right hand side label y.
See also the documentation for the precise formulation.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.9.0.</span></p>
</div>
<dl class="field-list">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl>
<dt><strong>data</strong><span class="classifier"><a class="reference internal" href="pyspark.RDD.html#pyspark.RDD" title="pyspark.RDD"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.RDD</span></code></a></span></dt><dd><p>The training data, an RDD of LabeledPoint.</p>
</dd>
<dt><strong>iterations</strong><span class="classifier">int, optional</span></dt><dd><p>The number of iterations.
(default: 100)</p>
</dd>
<dt><strong>step</strong><span class="classifier">float, optional</span></dt><dd><p>The step parameter used in SGD.
(default: 1.0)</p>
</dd>
<dt><strong>miniBatchFraction</strong><span class="classifier">float, optional</span></dt><dd><p>Fraction of data to be used for each SGD iteration.
(default: 1.0)</p>
</dd>
<dt><strong>initialWeights</strong><span class="classifier"><a class="reference internal" href="pyspark.mllib.linalg.Vector.html#pyspark.mllib.linalg.Vector" title="pyspark.mllib.linalg.Vector"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.mllib.linalg.Vector</span></code></a> or convertible, optional</span></dt><dd><p>The initial weights.
(default: None)</p>
</dd>
<dt><strong>regParam</strong><span class="classifier">float, optional</span></dt><dd><p>The regularizer parameter.
(default: 0.0)</p>
</dd>
<dt><strong>regType</strong><span class="classifier">str, optional</span></dt><dd><p>The type of regularizer used for training our model.
Supported values:</p>
<ul class="simple">
<li><p>“l1” for using L1 regularization</p></li>
<li><p>“l2” for using L2 regularization</p></li>
<li><p>None for no regularization (default)</p></li>
</ul>
</dd>
<dt><strong>intercept</strong><span class="classifier">bool, optional</span></dt><dd><p>Boolean parameter which indicates the use or not of the
augmented representation for training data (i.e., whether bias
features are activated or not).
(default: False)</p>
</dd>
<dt><strong>validateData</strong><span class="classifier">bool, optional</span></dt><dd><p>Boolean parameter which indicates if the algorithm should
validate data before training.
(default: True)</p>
</dd>
<dt><strong>convergenceTol</strong><span class="classifier">float, optional</span></dt><dd><p>A condition which decides iteration termination.
(default: 0.001)</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="pyspark.mllib.regression.LinearRegressionModel.html" title="previous page">LinearRegressionModel</a>
<a class='right-next' id="next-link" href="pyspark.mllib.regression.RidgeRegressionModel.html" title="next page">RidgeRegressionModel</a>
</div>
</main>
</div>
</div>
<script src="../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>