blob: de9222d07412d42187c453f5ab51e20eceec5de4 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>CrossValidatorModel &#8212; PySpark 3.1.1 documentation</title>
<link rel="stylesheet" href="../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script src="../../_static/language_data.js"></script>
<script src="../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.tuning.CrossValidatorModel.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="TrainValidationSplit" href="pyspark.ml.tuning.TrainValidationSplit.html" />
<link rel="prev" title="CrossValidator" href="pyspark.ml.tuning.CrossValidator.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../index.html">
<img src="../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="../index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="">
<a href="../pyspark.sql.html">Spark SQL</a>
</li>
<li class="">
<a href="../pyspark.ss.html">Structured Streaming</a>
</li>
<li class="active">
<a href="../pyspark.ml.html">MLlib (DataFrame-based)</a>
</li>
<li class="">
<a href="../pyspark.streaming.html">Spark Streaming</a>
</li>
<li class="">
<a href="../pyspark.mllib.html">MLlib (RDD-based)</a>
</li>
<li class="">
<a href="../pyspark.html">Spark Core</a>
</li>
<li class="">
<a href="../pyspark.resource.html">Resource Management</a>
</li>
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<div class="section" id="crossvalidatormodel">
<h1>CrossValidatorModel<a class="headerlink" href="#crossvalidatormodel" title="Permalink to this headline"></a></h1>
<dl class="py class">
<dt id="pyspark.ml.tuning.CrossValidatorModel">
<em class="property">class </em><code class="sig-prename descclassname">pyspark.ml.tuning.</code><code class="sig-name descname">CrossValidatorModel</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">bestModel</span></em>, <em class="sig-param"><span class="n">avgMetrics</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">subModels</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/ml/tuning.html#CrossValidatorModel"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel" title="Permalink to this definition"></a></dt>
<dd><p>CrossValidatorModel contains the model with the highest average cross-validation
metric across folds and uses this model to transform input data. CrossValidatorModel
also tracks the metrics for each param map evaluated.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.4.0.</span></p>
</div>
<p class="rubric">Methods</p>
<table class="longtable table autosummary">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.clear" title="pyspark.ml.tuning.CrossValidatorModel.clear"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clear</span></code></a>(param)</p></td>
<td><p>Clears a param from the param map if it has been explicitly set.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.copy" title="pyspark.ml.tuning.CrossValidatorModel.copy"><code class="xref py py-obj docutils literal notranslate"><span class="pre">copy</span></code></a>([extra])</p></td>
<td><p>Creates a copy of this instance with a randomly generated uid and some extra params.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.explainParam" title="pyspark.ml.tuning.CrossValidatorModel.explainParam"><code class="xref py py-obj docutils literal notranslate"><span class="pre">explainParam</span></code></a>(param)</p></td>
<td><p>Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.explainParams" title="pyspark.ml.tuning.CrossValidatorModel.explainParams"><code class="xref py py-obj docutils literal notranslate"><span class="pre">explainParams</span></code></a>()</p></td>
<td><p>Returns the documentation of all params with their optionally default values and user-supplied values.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.extractParamMap" title="pyspark.ml.tuning.CrossValidatorModel.extractParamMap"><code class="xref py py-obj docutils literal notranslate"><span class="pre">extractParamMap</span></code></a>([extra])</p></td>
<td><p>Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values &lt; user-supplied values &lt; extra.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getEstimator" title="pyspark.ml.tuning.CrossValidatorModel.getEstimator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getEstimator</span></code></a>()</p></td>
<td><p>Gets the value of estimator or its default value.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getEstimatorParamMaps" title="pyspark.ml.tuning.CrossValidatorModel.getEstimatorParamMaps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getEstimatorParamMaps</span></code></a>()</p></td>
<td><p>Gets the value of estimatorParamMaps or its default value.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getEvaluator" title="pyspark.ml.tuning.CrossValidatorModel.getEvaluator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getEvaluator</span></code></a>()</p></td>
<td><p>Gets the value of evaluator or its default value.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getFoldCol" title="pyspark.ml.tuning.CrossValidatorModel.getFoldCol"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getFoldCol</span></code></a>()</p></td>
<td><p>Gets the value of foldCol or its default value.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getNumFolds" title="pyspark.ml.tuning.CrossValidatorModel.getNumFolds"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getNumFolds</span></code></a>()</p></td>
<td><p>Gets the value of numFolds or its default value.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getOrDefault" title="pyspark.ml.tuning.CrossValidatorModel.getOrDefault"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getOrDefault</span></code></a>(param)</p></td>
<td><p>Gets the value of a param in the user-supplied param map or its default value.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getParam" title="pyspark.ml.tuning.CrossValidatorModel.getParam"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getParam</span></code></a>(paramName)</p></td>
<td><p>Gets a param by its name.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.getSeed" title="pyspark.ml.tuning.CrossValidatorModel.getSeed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">getSeed</span></code></a>()</p></td>
<td><p>Gets the value of seed or its default value.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.hasDefault" title="pyspark.ml.tuning.CrossValidatorModel.hasDefault"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hasDefault</span></code></a>(param)</p></td>
<td><p>Checks whether a param has a default value.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.hasParam" title="pyspark.ml.tuning.CrossValidatorModel.hasParam"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hasParam</span></code></a>(paramName)</p></td>
<td><p>Tests whether this instance contains a param with a given (string) name.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.isDefined" title="pyspark.ml.tuning.CrossValidatorModel.isDefined"><code class="xref py py-obj docutils literal notranslate"><span class="pre">isDefined</span></code></a>(param)</p></td>
<td><p>Checks whether a param is explicitly set by user or has a default value.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.isSet" title="pyspark.ml.tuning.CrossValidatorModel.isSet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">isSet</span></code></a>(param)</p></td>
<td><p>Checks whether a param is explicitly set by user.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.load" title="pyspark.ml.tuning.CrossValidatorModel.load"><code class="xref py py-obj docutils literal notranslate"><span class="pre">load</span></code></a>(path)</p></td>
<td><p>Reads an ML instance from the input path, a shortcut of <cite>read().load(path)</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.read" title="pyspark.ml.tuning.CrossValidatorModel.read"><code class="xref py py-obj docutils literal notranslate"><span class="pre">read</span></code></a>()</p></td>
<td><p>Returns an MLReader instance for this class.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.save" title="pyspark.ml.tuning.CrossValidatorModel.save"><code class="xref py py-obj docutils literal notranslate"><span class="pre">save</span></code></a>(path)</p></td>
<td><p>Save this ML instance to the given path, a shortcut of ‘write().save(path)’.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.set" title="pyspark.ml.tuning.CrossValidatorModel.set"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set</span></code></a>(param, value)</p></td>
<td><p>Sets a parameter in the embedded param map.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.transform" title="pyspark.ml.tuning.CrossValidatorModel.transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">transform</span></code></a>(dataset[, params])</p></td>
<td><p>Transforms the input dataset with optional parameters.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.write" title="pyspark.ml.tuning.CrossValidatorModel.write"><code class="xref py py-obj docutils literal notranslate"><span class="pre">write</span></code></a>()</p></td>
<td><p>Returns an MLWriter instance for this ML instance.</p></td>
</tr>
</tbody>
</table>
<p class="rubric">Attributes</p>
<table class="longtable table autosummary">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.estimator" title="pyspark.ml.tuning.CrossValidatorModel.estimator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">estimator</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.estimatorParamMaps" title="pyspark.ml.tuning.CrossValidatorModel.estimatorParamMaps"><code class="xref py py-obj docutils literal notranslate"><span class="pre">estimatorParamMaps</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.evaluator" title="pyspark.ml.tuning.CrossValidatorModel.evaluator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">evaluator</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.foldCol" title="pyspark.ml.tuning.CrossValidatorModel.foldCol"><code class="xref py py-obj docutils literal notranslate"><span class="pre">foldCol</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.numFolds" title="pyspark.ml.tuning.CrossValidatorModel.numFolds"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numFolds</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.params" title="pyspark.ml.tuning.CrossValidatorModel.params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">params</span></code></a></p></td>
<td><p>Returns all params ordered by name.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel.seed" title="pyspark.ml.tuning.CrossValidatorModel.seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">seed</span></code></a></p></td>
<td><p></p></td>
</tr>
</tbody>
</table>
<p class="rubric">Methods Documentation</p>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.clear">
<code class="sig-name descname">clear</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.clear" title="Permalink to this definition"></a></dt>
<dd><p>Clears a param from the param map if it has been explicitly set.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.copy">
<code class="sig-name descname">copy</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">extra</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/ml/tuning.html#CrossValidatorModel.copy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.copy" title="Permalink to this definition"></a></dt>
<dd><p>Creates a copy of this instance with a randomly generated uid
and some extra params. This copies the underlying bestModel,
creates a deep copy of the embedded paramMap, and
copies the embedded and extra parameters over.
It does not copy the extra Params into the subModels.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.4.0.</span></p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>extra</strong><span class="classifier">dict, optional</span></dt><dd><p>Extra parameters to copy to the new instance</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><dl class="simple">
<dt><a class="reference internal" href="#pyspark.ml.tuning.CrossValidatorModel" title="pyspark.ml.tuning.CrossValidatorModel"><code class="xref py py-class docutils literal notranslate"><span class="pre">CrossValidatorModel</span></code></a></dt><dd><p>Copy of this instance</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.explainParam">
<code class="sig-name descname">explainParam</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.explainParam" title="Permalink to this definition"></a></dt>
<dd><p>Explains a single param and returns its name, doc, and optional
default value and user-supplied value in a string.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.explainParams">
<code class="sig-name descname">explainParams</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.explainParams" title="Permalink to this definition"></a></dt>
<dd><p>Returns the documentation of all params with their optionally
default values and user-supplied values.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.extractParamMap">
<code class="sig-name descname">extractParamMap</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">extra</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.extractParamMap" title="Permalink to this definition"></a></dt>
<dd><p>Extracts the embedded default param values and user-supplied
values, and then merges them with extra values from input into
a flat param map, where the latter value is used if there exist
conflicts, i.e., with ordering: default param values &lt;
user-supplied values &lt; extra.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>extra</strong><span class="classifier">dict, optional</span></dt><dd><p>extra param values</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><dl class="simple">
<dt>dict</dt><dd><p>merged param map</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getEstimator">
<code class="sig-name descname">getEstimator</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getEstimator" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of estimator or its default value.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 2.0.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getEstimatorParamMaps">
<code class="sig-name descname">getEstimatorParamMaps</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getEstimatorParamMaps" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of estimatorParamMaps or its default value.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 2.0.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getEvaluator">
<code class="sig-name descname">getEvaluator</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getEvaluator" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of evaluator or its default value.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 2.0.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getFoldCol">
<code class="sig-name descname">getFoldCol</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getFoldCol" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of foldCol or its default value.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 3.1.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getNumFolds">
<code class="sig-name descname">getNumFolds</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getNumFolds" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of numFolds or its default value.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.4.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getOrDefault">
<code class="sig-name descname">getOrDefault</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getOrDefault" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of a param in the user-supplied param map or its
default value. Raises an error if neither is set.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getParam">
<code class="sig-name descname">getParam</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">paramName</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getParam" title="Permalink to this definition"></a></dt>
<dd><p>Gets a param by its name.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.getSeed">
<code class="sig-name descname">getSeed</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.getSeed" title="Permalink to this definition"></a></dt>
<dd><p>Gets the value of seed or its default value.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.hasDefault">
<code class="sig-name descname">hasDefault</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.hasDefault" title="Permalink to this definition"></a></dt>
<dd><p>Checks whether a param has a default value.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.hasParam">
<code class="sig-name descname">hasParam</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">paramName</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.hasParam" title="Permalink to this definition"></a></dt>
<dd><p>Tests whether this instance contains a param with a given
(string) name.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.isDefined">
<code class="sig-name descname">isDefined</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.isDefined" title="Permalink to this definition"></a></dt>
<dd><p>Checks whether a param is explicitly set by user or has
a default value.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.isSet">
<code class="sig-name descname">isSet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.isSet" title="Permalink to this definition"></a></dt>
<dd><p>Checks whether a param is explicitly set by user.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.load">
<em class="property">classmethod </em><code class="sig-name descname">load</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">path</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.load" title="Permalink to this definition"></a></dt>
<dd><p>Reads an ML instance from the input path, a shortcut of <cite>read().load(path)</cite>.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.read">
<em class="property">classmethod </em><code class="sig-name descname">read</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/ml/tuning.html#CrossValidatorModel.read"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.read" title="Permalink to this definition"></a></dt>
<dd><p>Returns an MLReader instance for this class.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 2.3.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.save">
<code class="sig-name descname">save</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">path</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.save" title="Permalink to this definition"></a></dt>
<dd><p>Save this ML instance to the given path, a shortcut of ‘write().save(path)’.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.set">
<code class="sig-name descname">set</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">param</span></em>, <em class="sig-param"><span class="n">value</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.set" title="Permalink to this definition"></a></dt>
<dd><p>Sets a parameter in the embedded param map.</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.transform">
<code class="sig-name descname">transform</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">params</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.transform" title="Permalink to this definition"></a></dt>
<dd><p>Transforms the input dataset with optional parameters.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.0.</span></p>
</div>
<dl class="field-list">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl>
<dt><strong>dataset</strong><span class="classifier"><a class="reference internal" href="pyspark.sql.DataFrame.html#pyspark.sql.DataFrame" title="pyspark.sql.DataFrame"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.sql.DataFrame</span></code></a></span></dt><dd><p>input dataset</p>
</dd>
<dt><strong>params</strong><span class="classifier">dict, optional</span></dt><dd><p>an optional param map that overrides embedded params.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><dl class="simple">
<dt><a class="reference internal" href="pyspark.sql.DataFrame.html#pyspark.sql.DataFrame" title="pyspark.sql.DataFrame"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.sql.DataFrame</span></code></a></dt><dd><p>transformed dataset</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyspark.ml.tuning.CrossValidatorModel.write">
<code class="sig-name descname">write</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/ml/tuning.html#CrossValidatorModel.write"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.write" title="Permalink to this definition"></a></dt>
<dd><p>Returns an MLWriter instance for this ML instance.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 2.3.0.</span></p>
</div>
</dd></dl>
<p class="rubric">Attributes Documentation</p>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.estimator">
<code class="sig-name descname">estimator</code><em class="property"> = Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.estimator" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.estimatorParamMaps">
<code class="sig-name descname">estimatorParamMaps</code><em class="property"> = Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.estimatorParamMaps" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.evaluator">
<code class="sig-name descname">evaluator</code><em class="property"> = Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.evaluator" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.foldCol">
<code class="sig-name descname">foldCol</code><em class="property"> = Param(parent='undefined', name='foldCol', doc=&quot;Param for the column name of user specified fold number. Once this is specified, :py:class:`CrossValidator` won't do random k-fold split. Note that this column should be integer type with range [0, numFolds) and Spark will throw exception on out-of-range fold numbers.&quot;)</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.foldCol" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.numFolds">
<code class="sig-name descname">numFolds</code><em class="property"> = Param(parent='undefined', name='numFolds', doc='number of folds for cross validation')</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.numFolds" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.params">
<code class="sig-name descname">params</code><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.params" title="Permalink to this definition"></a></dt>
<dd><p>Returns all params ordered by name. The default implementation
uses <code class="xref py py-func docutils literal notranslate"><span class="pre">dir()</span></code> to get all attributes of type
<code class="xref py py-class docutils literal notranslate"><span class="pre">Param</span></code>.</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyspark.ml.tuning.CrossValidatorModel.seed">
<code class="sig-name descname">seed</code><em class="property"> = Param(parent='undefined', name='seed', doc='random seed.')</em><a class="headerlink" href="#pyspark.ml.tuning.CrossValidatorModel.seed" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="pyspark.ml.tuning.CrossValidator.html" title="previous page">CrossValidator</a>
<a class='right-next' id="next-link" href="pyspark.ml.tuning.TrainValidationSplit.html" title="next page">TrainValidationSplit</a>
</div>
</main>
</div>
</div>
<script src="../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>