blob: 28e52537adf50216da92ba9072a9d38158ec7f27 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.mllib.evaluation &#8212; PySpark 3.3.3 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.mllib.evaluation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Generic</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">TypeVar</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">callMLlibFunc</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Matrix</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SQLContext</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">ArrayType</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">,</span> <span class="n">StructField</span><span class="p">,</span> <span class="n">StructType</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">&quot;BinaryClassificationMetrics&quot;</span><span class="p">,</span>
<span class="s2">&quot;RegressionMetrics&quot;</span><span class="p">,</span>
<span class="s2">&quot;MulticlassMetrics&quot;</span><span class="p">,</span>
<span class="s2">&quot;RankingMetrics&quot;</span><span class="p">,</span>
<span class="p">]</span>
<span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">&quot;T&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="BinaryClassificationMetrics"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.BinaryClassificationMetrics.html#pyspark.mllib.evaluation.BinaryClassificationMetrics">[docs]</a><span class="k">class</span> <span class="nc">BinaryClassificationMetrics</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for binary classification.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> scoreAndLabels : :py:class:`pyspark.RDD`</span>
<span class="sd"> an RDD of score, label and optional weight.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = sc.parallelize([</span>
<span class="sd"> ... (0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)], 2)</span>
<span class="sd"> &gt;&gt;&gt; metrics = BinaryClassificationMetrics(scoreAndLabels)</span>
<span class="sd"> &gt;&gt;&gt; metrics.areaUnderROC</span>
<span class="sd"> 0.70...</span>
<span class="sd"> &gt;&gt;&gt; metrics.areaUnderPR</span>
<span class="sd"> 0.83...</span>
<span class="sd"> &gt;&gt;&gt; metrics.unpersist()</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabelsWithOptWeight = sc.parallelize([</span>
<span class="sd"> ... (0.1, 0.0, 1.0), (0.1, 1.0, 0.4), (0.4, 0.0, 0.2), (0.6, 0.0, 0.6), (0.6, 1.0, 0.9),</span>
<span class="sd"> ... (0.6, 1.0, 0.5), (0.8, 1.0, 0.7)], 2)</span>
<span class="sd"> &gt;&gt;&gt; metrics = BinaryClassificationMetrics(scoreAndLabelsWithOptWeight)</span>
<span class="sd"> &gt;&gt;&gt; metrics.areaUnderROC</span>
<span class="sd"> 0.79...</span>
<span class="sd"> &gt;&gt;&gt; metrics.areaUnderPR</span>
<span class="sd"> 0.88...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scoreAndLabels</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]):</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">scoreAndLabels</span><span class="o">.</span><span class="n">ctx</span>
<span class="n">sql_ctx</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="n">numCol</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">scoreAndLabels</span><span class="o">.</span><span class="n">first</span><span class="p">())</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;score&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="p">]</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">numCol</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span>
<span class="n">schema</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">sql_ctx</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">scoreAndLabels</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_class</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">BinaryClassificationMetrics</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">java_class</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="nb">super</span><span class="p">(</span><span class="n">BinaryClassificationMetrics</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">areaUnderROC</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Computes the area under the receiver operating characteristic</span>
<span class="sd"> (ROC) curve.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;areaUnderROC&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">areaUnderPR</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Computes the area under the precision-recall curve.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;areaUnderPR&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="BinaryClassificationMetrics.unpersist"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.BinaryClassificationMetrics.html#pyspark.mllib.evaluation.BinaryClassificationMetrics.unpersist">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">unpersist</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Unpersists intermediate RDDs used in the computation.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;unpersist&quot;</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="RegressionMetrics"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RegressionMetrics.html#pyspark.mllib.evaluation.RegressionMetrics">[docs]</a><span class="k">class</span> <span class="nc">RegressionMetrics</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for regression.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> predictionAndObservations : :py:class:`pyspark.RDD`</span>
<span class="sd"> an RDD of prediction, observation and optional weight.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; predictionAndObservations = sc.parallelize([</span>
<span class="sd"> ... (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)])</span>
<span class="sd"> &gt;&gt;&gt; metrics = RegressionMetrics(predictionAndObservations)</span>
<span class="sd"> &gt;&gt;&gt; metrics.explainedVariance</span>
<span class="sd"> 8.859...</span>
<span class="sd"> &gt;&gt;&gt; metrics.meanAbsoluteError</span>
<span class="sd"> 0.5...</span>
<span class="sd"> &gt;&gt;&gt; metrics.meanSquaredError</span>
<span class="sd"> 0.37...</span>
<span class="sd"> &gt;&gt;&gt; metrics.rootMeanSquaredError</span>
<span class="sd"> 0.61...</span>
<span class="sd"> &gt;&gt;&gt; metrics.r2</span>
<span class="sd"> 0.94...</span>
<span class="sd"> &gt;&gt;&gt; predictionAndObservationsWithOptWeight = sc.parallelize([</span>
<span class="sd"> ... (2.5, 3.0, 0.5), (0.0, -0.5, 1.0), (2.0, 2.0, 0.3), (8.0, 7.0, 0.9)])</span>
<span class="sd"> &gt;&gt;&gt; metrics = RegressionMetrics(predictionAndObservationsWithOptWeight)</span>
<span class="sd"> &gt;&gt;&gt; metrics.rootMeanSquaredError</span>
<span class="sd"> 0.68...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictionAndObservations</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]):</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">predictionAndObservations</span><span class="o">.</span><span class="n">ctx</span>
<span class="n">sql_ctx</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="n">numCol</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">predictionAndObservations</span><span class="o">.</span><span class="n">first</span><span class="p">())</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;prediction&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;observation&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="p">]</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">numCol</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span>
<span class="n">schema</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">sql_ctx</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">predictionAndObservations</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_class</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">RegressionMetrics</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">java_class</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RegressionMetrics</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">explainedVariance</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the explained variance regression score.</span>
<span class="sd"> explainedVariance = :math:`1 - \frac{variance(y - \hat{y})}{variance(y)}`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;explainedVariance&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">meanAbsoluteError</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the mean absolute error, which is a risk function corresponding to the</span>
<span class="sd"> expected value of the absolute error loss or l1-norm loss.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;meanAbsoluteError&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">meanSquaredError</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the mean squared error, which is a risk function corresponding to the</span>
<span class="sd"> expected value of the squared error loss or quadratic loss.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;meanSquaredError&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">rootMeanSquaredError</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the root mean squared error, which is defined as the square root of</span>
<span class="sd"> the mean squared error.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;rootMeanSquaredError&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">r2</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns R^2^, the coefficient of determination.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;r2&quot;</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassMetrics"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics">[docs]</a><span class="k">class</span> <span class="nc">MulticlassMetrics</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for multiclass classification.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> predictionAndLabels : :py:class:`pyspark.RDD`</span>
<span class="sd"> an RDD of prediction, label, optional weight and optional probability.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; predictionAndLabels = sc.parallelize([(0.0, 0.0), (0.0, 1.0), (0.0, 0.0),</span>
<span class="sd"> ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)])</span>
<span class="sd"> &gt;&gt;&gt; metrics = MulticlassMetrics(predictionAndLabels)</span>
<span class="sd"> &gt;&gt;&gt; metrics.confusionMatrix().toArray()</span>
<span class="sd"> array([[ 2., 1., 1.],</span>
<span class="sd"> [ 1., 3., 0.],</span>
<span class="sd"> [ 0., 0., 1.]])</span>
<span class="sd"> &gt;&gt;&gt; metrics.falsePositiveRate(0.0)</span>
<span class="sd"> 0.2...</span>
<span class="sd"> &gt;&gt;&gt; metrics.precision(1.0)</span>
<span class="sd"> 0.75...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recall(2.0)</span>
<span class="sd"> 1.0...</span>
<span class="sd"> &gt;&gt;&gt; metrics.fMeasure(0.0, 2.0)</span>
<span class="sd"> 0.52...</span>
<span class="sd"> &gt;&gt;&gt; metrics.accuracy</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFalsePositiveRate</span>
<span class="sd"> 0.19...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedPrecision</span>
<span class="sd"> 0.68...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedRecall</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFMeasure()</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFMeasure(2.0)</span>
<span class="sd"> 0.65...</span>
<span class="sd"> &gt;&gt;&gt; predAndLabelsWithOptWeight = sc.parallelize([(0.0, 0.0, 1.0), (0.0, 1.0, 1.0),</span>
<span class="sd"> ... (0.0, 0.0, 1.0), (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0),</span>
<span class="sd"> ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)])</span>
<span class="sd"> &gt;&gt;&gt; metrics = MulticlassMetrics(predAndLabelsWithOptWeight)</span>
<span class="sd"> &gt;&gt;&gt; metrics.confusionMatrix().toArray()</span>
<span class="sd"> array([[ 2., 1., 1.],</span>
<span class="sd"> [ 1., 3., 0.],</span>
<span class="sd"> [ 0., 0., 1.]])</span>
<span class="sd"> &gt;&gt;&gt; metrics.falsePositiveRate(0.0)</span>
<span class="sd"> 0.2...</span>
<span class="sd"> &gt;&gt;&gt; metrics.precision(1.0)</span>
<span class="sd"> 0.75...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recall(2.0)</span>
<span class="sd"> 1.0...</span>
<span class="sd"> &gt;&gt;&gt; metrics.fMeasure(0.0, 2.0)</span>
<span class="sd"> 0.52...</span>
<span class="sd"> &gt;&gt;&gt; metrics.accuracy</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFalsePositiveRate</span>
<span class="sd"> 0.19...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedPrecision</span>
<span class="sd"> 0.68...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedRecall</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFMeasure()</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.weightedFMeasure(2.0)</span>
<span class="sd"> 0.65...</span>
<span class="sd"> &gt;&gt;&gt; predictionAndLabelsWithProbabilities = sc.parallelize([</span>
<span class="sd"> ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]),</span>
<span class="sd"> ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])])</span>
<span class="sd"> &gt;&gt;&gt; metrics = MulticlassMetrics(predictionAndLabelsWithProbabilities)</span>
<span class="sd"> &gt;&gt;&gt; metrics.logLoss()</span>
<span class="sd"> 0.9682...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictionAndLabels</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]):</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">predictionAndLabels</span><span class="o">.</span><span class="n">ctx</span>
<span class="n">sql_ctx</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="n">numCol</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">predictionAndLabels</span><span class="o">.</span><span class="n">first</span><span class="p">())</span>
<span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;prediction&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">StructField</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="n">nullable</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="p">]</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">numCol</span> <span class="o">&gt;=</span> <span class="mi">3</span><span class="p">:</span>
<span class="n">schema</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">DoubleType</span><span class="p">(),</span> <span class="kc">False</span><span class="p">)</span>
<span class="k">if</span> <span class="n">numCol</span> <span class="o">==</span> <span class="mi">4</span><span class="p">:</span>
<span class="n">schema</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">&quot;probability&quot;</span><span class="p">,</span> <span class="n">ArrayType</span><span class="p">(</span><span class="n">DoubleType</span><span class="p">(),</span> <span class="kc">False</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">sql_ctx</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">predictionAndLabels</span><span class="p">,</span> <span class="n">schema</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_class</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">MulticlassMetrics</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">java_class</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="nb">super</span><span class="p">(</span><span class="n">MulticlassMetrics</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<div class="viewcode-block" id="MulticlassMetrics.confusionMatrix"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.confusionMatrix">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">confusionMatrix</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Matrix</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns confusion matrix: predicted classes are in columns,</span>
<span class="sd"> they are ordered by class label ascending, as in &quot;labels&quot;.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;confusionMatrix&quot;</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassMetrics.truePositiveRate"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.truePositiveRate">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">truePositiveRate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns true positive rate for a given label (category).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;truePositiveRate&quot;</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassMetrics.falsePositiveRate"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.falsePositiveRate">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">falsePositiveRate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns false positive rate for a given label (category).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;falsePositiveRate&quot;</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassMetrics.precision"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.precision">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">precision</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns precision.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;precision&quot;</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">label</span><span class="p">))</span></div>
<div class="viewcode-block" id="MulticlassMetrics.recall"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.recall">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recall</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns recall.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recall&quot;</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">label</span><span class="p">))</span></div>
<div class="viewcode-block" id="MulticlassMetrics.fMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.fMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">fMeasure</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">beta</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns f-measure.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">beta</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;fMeasure&quot;</span><span class="p">,</span> <span class="n">label</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;fMeasure&quot;</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span></div>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns accuracy (equals to the total number of correctly classified instances</span>
<span class="sd"> out of the total number of instances).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;accuracy&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">weightedTruePositiveRate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted true positive rate.</span>
<span class="sd"> (equals to precision, recall and f-measure)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedTruePositiveRate&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">weightedFalsePositiveRate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted false positive rate.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedFalsePositiveRate&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">weightedRecall</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted averaged recall.</span>
<span class="sd"> (equals to precision, recall and f-measure)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedRecall&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">weightedPrecision</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted averaged precision.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedPrecision&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="MulticlassMetrics.weightedFMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.weightedFMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">weightedFMeasure</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">beta</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted averaged f-measure.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">beta</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedFMeasure&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;weightedFMeasure&quot;</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassMetrics.logLoss"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html#pyspark.mllib.evaluation.MulticlassMetrics.logLoss">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">logLoss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-15</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns weighted logLoss.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;logLoss&quot;</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="RankingMetrics"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RankingMetrics.html#pyspark.mllib.evaluation.RankingMetrics">[docs]</a><span class="k">class</span> <span class="nc">RankingMetrics</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">Generic</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for ranking algorithms.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> predictionAndLabels : :py:class:`pyspark.RDD`</span>
<span class="sd"> an RDD of (predicted ranking, ground truth set) pairs.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; predictionAndLabels = sc.parallelize([</span>
<span class="sd"> ... ([1, 6, 2, 7, 8, 3, 9, 10, 4, 5], [1, 2, 3, 4, 5]),</span>
<span class="sd"> ... ([4, 1, 5, 6, 2, 7, 3, 8, 9, 10], [1, 2, 3]),</span>
<span class="sd"> ... ([1, 2, 3, 4, 5], [])])</span>
<span class="sd"> &gt;&gt;&gt; metrics = RankingMetrics(predictionAndLabels)</span>
<span class="sd"> &gt;&gt;&gt; metrics.precisionAt(1)</span>
<span class="sd"> 0.33...</span>
<span class="sd"> &gt;&gt;&gt; metrics.precisionAt(5)</span>
<span class="sd"> 0.26...</span>
<span class="sd"> &gt;&gt;&gt; metrics.precisionAt(15)</span>
<span class="sd"> 0.17...</span>
<span class="sd"> &gt;&gt;&gt; metrics.meanAveragePrecision</span>
<span class="sd"> 0.35...</span>
<span class="sd"> &gt;&gt;&gt; metrics.meanAveragePrecisionAt(1)</span>
<span class="sd"> 0.3333333333333333...</span>
<span class="sd"> &gt;&gt;&gt; metrics.meanAveragePrecisionAt(2)</span>
<span class="sd"> 0.25...</span>
<span class="sd"> &gt;&gt;&gt; metrics.ndcgAt(3)</span>
<span class="sd"> 0.33...</span>
<span class="sd"> &gt;&gt;&gt; metrics.ndcgAt(10)</span>
<span class="sd"> 0.48...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recallAt(1)</span>
<span class="sd"> 0.06...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recallAt(5)</span>
<span class="sd"> 0.35...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recallAt(15)</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictionAndLabels</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">List</span><span class="p">[</span><span class="n">T</span><span class="p">]]]):</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">predictionAndLabels</span><span class="o">.</span><span class="n">ctx</span>
<span class="n">sql_ctx</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">sql_ctx</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span>
<span class="n">predictionAndLabels</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">sql_ctx</span><span class="o">.</span><span class="n">_inferSchema</span><span class="p">(</span><span class="n">predictionAndLabels</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;newRankingMetrics&quot;</span><span class="p">,</span> <span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RankingMetrics</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<div class="viewcode-block" id="RankingMetrics.precisionAt"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RankingMetrics.html#pyspark.mllib.evaluation.RankingMetrics.precisionAt">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">precisionAt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute the average precision of all the queries, truncated at ranking position k.</span>
<span class="sd"> If for a query, the ranking algorithm returns n (n &lt; k) results, the precision value</span>
<span class="sd"> will be computed as #(relevant items retrieved) / k. This formula also applies when</span>
<span class="sd"> the size of the ground truth set is less than k.</span>
<span class="sd"> If a query has an empty ground truth set, zero will be used as precision together</span>
<span class="sd"> with a log warning.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;precisionAt&quot;</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">k</span><span class="p">))</span></div>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">meanAveragePrecision</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the mean average precision (MAP) of all the queries.</span>
<span class="sd"> If a query has an empty ground truth set, the average precision will be zero and</span>
<span class="sd"> a log warning is generated.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;meanAveragePrecision&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="RankingMetrics.meanAveragePrecisionAt"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RankingMetrics.html#pyspark.mllib.evaluation.RankingMetrics.meanAveragePrecisionAt">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">meanAveragePrecisionAt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the mean average precision (MAP) at first k ranking of all the queries.</span>
<span class="sd"> If a query has an empty ground truth set, the average precision will be zero and</span>
<span class="sd"> a log warning is generated.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;meanAveragePrecisionAt&quot;</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">k</span><span class="p">))</span></div>
<div class="viewcode-block" id="RankingMetrics.ndcgAt"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RankingMetrics.html#pyspark.mllib.evaluation.RankingMetrics.ndcgAt">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">ndcgAt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute the average NDCG value of all the queries, truncated at ranking position k.</span>
<span class="sd"> The discounted cumulative gain at position k is computed as:</span>
<span class="sd"> sum,,i=1,,^k^ (2^{relevance of &#39;&#39;i&#39;&#39;th item}^ - 1) / log(i + 1),</span>
<span class="sd"> and the NDCG is obtained by dividing the DCG value on the ground truth set.</span>
<span class="sd"> In the current implementation, the relevance value is binary.</span>
<span class="sd"> If a query has an empty ground truth set, zero will be used as NDCG together with</span>
<span class="sd"> a log warning.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;ndcgAt&quot;</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">k</span><span class="p">))</span></div>
<div class="viewcode-block" id="RankingMetrics.recallAt"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.evaluation.RankingMetrics.html#pyspark.mllib.evaluation.RankingMetrics.recallAt">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recallAt</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute the average recall of all the queries, truncated at ranking position k.</span>
<span class="sd"> If for a query, the ranking algorithm returns n results, the recall value</span>
<span class="sd"> will be computed as #(relevant items retrieved) / #(ground truth set).</span>
<span class="sd"> This formula also applies when the size of the ground truth set is less than k.</span>
<span class="sd"> If a query has an empty ground truth set, zero will be used as recall together</span>
<span class="sd"> with a log warning.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recallAt&quot;</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">k</span><span class="p">))</span></div></div>
<span class="k">class</span> <span class="nc">MultilabelMetrics</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for multilabel classification.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> predictionAndLabels : :py:class:`pyspark.RDD`</span>
<span class="sd"> an RDD of (predictions, labels) pairs,</span>
<span class="sd"> both are non-null Arrays, each with unique elements.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; predictionAndLabels = sc.parallelize([([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]),</span>
<span class="sd"> ... ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]),</span>
<span class="sd"> ... ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])])</span>
<span class="sd"> &gt;&gt;&gt; metrics = MultilabelMetrics(predictionAndLabels)</span>
<span class="sd"> &gt;&gt;&gt; metrics.precision(0.0)</span>
<span class="sd"> 1.0</span>
<span class="sd"> &gt;&gt;&gt; metrics.recall(1.0)</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.f1Measure(2.0)</span>
<span class="sd"> 0.5</span>
<span class="sd"> &gt;&gt;&gt; metrics.precision()</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.recall()</span>
<span class="sd"> 0.64...</span>
<span class="sd"> &gt;&gt;&gt; metrics.f1Measure()</span>
<span class="sd"> 0.63...</span>
<span class="sd"> &gt;&gt;&gt; metrics.microPrecision</span>
<span class="sd"> 0.72...</span>
<span class="sd"> &gt;&gt;&gt; metrics.microRecall</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; metrics.microF1Measure</span>
<span class="sd"> 0.69...</span>
<span class="sd"> &gt;&gt;&gt; metrics.hammingLoss</span>
<span class="sd"> 0.33...</span>
<span class="sd"> &gt;&gt;&gt; metrics.subsetAccuracy</span>
<span class="sd"> 0.28...</span>
<span class="sd"> &gt;&gt;&gt; metrics.accuracy</span>
<span class="sd"> 0.54...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictionAndLabels</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span> <span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]]]):</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">predictionAndLabels</span><span class="o">.</span><span class="n">ctx</span>
<span class="n">sql_ctx</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">sql_ctx</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span>
<span class="n">predictionAndLabels</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="n">sql_ctx</span><span class="o">.</span><span class="n">_inferSchema</span><span class="p">(</span><span class="n">predictionAndLabels</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_class</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="n">MultilabelMetrics</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">java_class</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="nb">super</span><span class="p">(</span><span class="n">MultilabelMetrics</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">precision</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns precision or precision for a given label (category) if specified.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">label</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;precision&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;precision&quot;</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">label</span><span class="p">))</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recall</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns recall or recall for a given label (category) if specified.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">label</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recall&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recall&quot;</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">label</span><span class="p">))</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">f1Measure</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns f1Measure or f1Measure for a given label (category) if specified.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">label</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;f1Measure&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;f1Measure&quot;</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">label</span><span class="p">))</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">microPrecision</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns micro-averaged label-based precision.</span>
<span class="sd"> (equals to micro-averaged document-based precision)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;microPrecision&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">microRecall</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns micro-averaged label-based recall.</span>
<span class="sd"> (equals to micro-averaged document-based recall)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;microRecall&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">microF1Measure</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns micro-averaged label-based f1-measure.</span>
<span class="sd"> (equals to micro-averaged document-based f1-measure)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;microF1Measure&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hammingLoss</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns Hamming-loss.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;hammingLoss&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">subsetAccuracy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns subset accuracy.</span>
<span class="sd"> (for equal sets of labels)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;subsetAccuracy&quot;</span><span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns accuracy.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;accuracy&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">numpy</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.mllib.evaluation</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># Numpy 1.14+ changed it&#39;s string format.</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">set_printoptions</span><span class="p">(</span><span class="n">legacy</span><span class="o">=</span><span class="s2">&quot;1.13&quot;</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">pass</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;mllib.evaluation tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>