| |
| |
| |
| |
| <!DOCTYPE html> |
| <html class="no-js"> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| |
| <title>Data Types - RDD-based API - Spark 4.1.0-preview1 Documentation</title> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <link rel="preconnect" href="https://fonts.googleapis.com"> |
| <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> |
| <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> |
| <link href="css/custom.css" rel="stylesheet"> |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| <link rel="stylesheet" href="css/docsearch.min.css" /> |
| <link rel="stylesheet" href="css/docsearch.css"> |
| |
| |
| <!-- Matomo --> |
| <script> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| |
| </head> |
| <body class="global"> |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> |
| <div class="navbar-brand"><a href="index.html"> |
| <img src="https://spark.apache.org/images/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">4.1.0-preview1</span> |
| </div> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" |
| data-target="#navbarCollapse" aria-controls="navbarCollapse" |
| aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| <div class="collapse navbar-collapse" id="navbarCollapse"> |
| <ul class="navbar-nav me-auto"> |
| <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> |
| <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> |
| <a class="dropdown-item" href="quick-start.html">Quick Start</a> |
| <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> |
| <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> |
| <a class="dropdown-item" href="streaming/index.html">Structured Streaming</a> |
| <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> |
| <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> |
| <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> |
| <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> |
| <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> |
| <a class="dropdown-item" href="declarative-pipelines-programming-guide.html">Declarative Pipelines</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> |
| <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> |
| <a class="dropdown-item" href="api/python/index.html">Python</a> |
| <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> |
| <a class="dropdown-item" href="api/java/index.html">Java</a> |
| <a class="dropdown-item" href="api/R/index.html">R</a> |
| <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> |
| <div class="dropdown-menu" aria-labelledby="navbarDeploying"> |
| <a class="dropdown-item" href="cluster-overview.html">Overview</a> |
| <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> |
| <a class="dropdown-item" href="running-on-yarn.html">YARN</a> |
| <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> |
| <div class="dropdown-menu" aria-labelledby="navbarMore"> |
| <a class="dropdown-item" href="configuration.html">Configuration</a> |
| <a class="dropdown-item" href="monitoring.html">Monitoring</a> |
| <a class="dropdown-item" href="tuning.html">Tuning Guide</a> |
| <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> |
| <a class="dropdown-item" href="security.html">Security</a> |
| <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> |
| <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="building-spark.html">Building Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> |
| </div> |
| </li> |
| |
| <li class="nav-item"> |
| <input type="text" id="docsearch-input" placeholder="Search the docs…"> |
| </li> |
| </ul> |
| <!--<span class="navbar-text navbar-right"><span class="version-text">v4.1.0-preview1</span></span>--> |
| </div> |
| </nav> |
| |
| |
| |
| <div class="container"> |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="ml-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-datasource.html"> |
| |
| Data sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-pipeline.html"> |
| |
| Pipelines |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-features.html"> |
| |
| Extracting, transforming and selecting features |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-classification-regression.html"> |
| |
| Classification and Regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-frequent-pattern-mining.html"> |
| |
| Frequent Pattern Mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-tuning.html"> |
| |
| Model selection and tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-advanced.html"> |
| |
| Advanced topics |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-data-types.html"> |
| |
| Data types |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-classification-regression.html"> |
| |
| Classification and regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-dimensionality-reduction.html"> |
| |
| Dimensionality reduction |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-feature-extraction.html"> |
| |
| Feature extraction and transformation |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-frequent-pattern-mining.html"> |
| |
| Frequent pattern mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-evaluation-metrics.html"> |
| |
| Evaluation metrics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-pmml-model-export.html"> |
| |
| PMML model export |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-optimization.html"> |
| |
| Optimization (developer) |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar mr-3" id="content"> |
| |
| <h1 class="title">Data Types - RDD-based API</h1> |
| |
| |
| <ul id="markdown-toc"> |
| <li><a href="#local-vector" id="markdown-toc-local-vector">Local vector</a></li> |
| <li><a href="#labeled-point" id="markdown-toc-labeled-point">Labeled point</a></li> |
| <li><a href="#local-matrix" id="markdown-toc-local-matrix">Local matrix</a></li> |
| <li><a href="#distributed-matrix" id="markdown-toc-distributed-matrix">Distributed matrix</a> <ul> |
| <li><a href="#rowmatrix" id="markdown-toc-rowmatrix">RowMatrix</a></li> |
| <li><a href="#indexedrowmatrix" id="markdown-toc-indexedrowmatrix">IndexedRowMatrix</a></li> |
| <li><a href="#coordinatematrix" id="markdown-toc-coordinatematrix">CoordinateMatrix</a></li> |
| <li><a href="#blockmatrix" id="markdown-toc-blockmatrix">BlockMatrix</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| <p>MLlib supports local vectors and matrices stored on a single machine, |
| as well as distributed matrices backed by one or more RDDs. |
| Local vectors and local matrices are simple data models |
| that serve as public interfaces. The underlying linear algebra operations are provided by |
| <a href="http://www.scalanlp.org/">Breeze</a>. |
| A training example used in supervised learning is called a “labeled point” in MLlib.</p> |
| |
| <h2 id="local-vector">Local vector</h2> |
| |
| <p>A local vector has integer-typed and 0-based indices and double-typed values, stored on a single |
| machine. MLlib supports two types of local vectors: dense and sparse. A dense vector is backed by |
| a double array representing its entry values, while a sparse vector is backed by two parallel |
| arrays: indices and values. For example, a vector <code class="language-plaintext highlighter-rouge">(1.0, 0.0, 3.0)</code> can be represented in dense |
| format as <code class="language-plaintext highlighter-rouge">[1.0, 0.0, 3.0]</code> or in sparse format as <code class="language-plaintext highlighter-rouge">(3, [0, 2], [1.0, 3.0])</code>, where <code class="language-plaintext highlighter-rouge">3</code> is the size |
| of the vector.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>MLlib recognizes the following types as dense vectors:</p> |
| |
| <ul> |
| <li>NumPy’s <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html"><code class="language-plaintext highlighter-rouge">array</code></a></li> |
| <li>Python’s list, e.g., <code class="language-plaintext highlighter-rouge">[1, 2, 3]</code></li> |
| </ul> |
| |
| <p>and the following as sparse vectors:</p> |
| |
| <ul> |
| <li>MLlib’s <a href="api/python/reference/api/pyspark.mllib.linalg.SparseVector.html"><code class="language-plaintext highlighter-rouge">SparseVector</code></a>.</li> |
| <li>SciPy’s |
| <a href="http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix"><code class="language-plaintext highlighter-rouge">csc_matrix</code></a> |
| with a single column</li> |
| </ul> |
| |
| <p>We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented |
| in <a href="api/python/reference/api/pyspark.mllib.linalg.Vectors.html"><code class="language-plaintext highlighter-rouge">Vectors</code></a> to create sparse vectors.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.Vectors.html"><code class="language-plaintext highlighter-rouge">Vectors</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">import</span> <span class="n">numpy</span> <span class="k">as</span> <span class="n">np</span> |
| <span class="kn">import</span> <span class="n">scipy.sparse</span> <span class="k">as</span> <span class="n">sps</span> |
| <span class="kn">from</span> <span class="n">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> |
| |
| <span class="c1"># Use a NumPy array as a dense vector. |
| </span><span class="n">dv1</span> <span class="o">=</span> <span class="n">np</span><span class="p">.</span><span class="nf">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">])</span> |
| <span class="c1"># Use a Python list as a dense vector. |
| </span><span class="n">dv2</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">]</span> |
| <span class="c1"># Create a SparseVector. |
| </span><span class="n">sv1</span> <span class="o">=</span> <span class="n">Vectors</span><span class="p">.</span><span class="nf">sparse</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">])</span> |
| <span class="c1"># Use a single-column SciPy csc_matrix as a sparse vector. |
| </span><span class="n">sv2</span> <span class="o">=</span> <span class="n">sps</span><span class="p">.</span><span class="nf">csc_matrix</span><span class="p">((</span><span class="n">np</span><span class="p">.</span><span class="nf">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">]),</span> <span class="n">np</span><span class="p">.</span><span class="nf">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]),</span> <span class="n">np</span><span class="p">.</span><span class="nf">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])),</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>The base class of local vectors is |
| <a href="api/scala/org/apache/spark/mllib/linalg/Vector.html"><code class="language-plaintext highlighter-rouge">Vector</code></a>, and we provide two |
| implementations: <a href="api/scala/org/apache/spark/mllib/linalg/DenseVector.html"><code class="language-plaintext highlighter-rouge">DenseVector</code></a> and |
| <a href="api/scala/org/apache/spark/mllib/linalg/SparseVector.html"><code class="language-plaintext highlighter-rouge">SparseVector</code></a>. We recommend |
| using the factory methods implemented in |
| <a href="api/scala/org/apache/spark/mllib/linalg/Vectors$.html"><code class="language-plaintext highlighter-rouge">Vectors</code></a> to create local vectors.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/Vector.html"><code class="language-plaintext highlighter-rouge">Vector</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/linalg/Vectors$.html"><code class="language-plaintext highlighter-rouge">Vectors</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.</span><span class="o">{</span><span class="nc">Vector</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> |
| |
| <span class="c1">// Create a dense vector (1.0, 0.0, 3.0).</span> |
| <span class="k">val</span> <span class="nv">dv</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">)</span> |
| <span class="c1">// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.</span> |
| <span class="k">val</span> <span class="nv">sv1</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">))</span> |
| <span class="c1">// Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries.</span> |
| <span class="k">val</span> <span class="nv">sv2</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">0</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">2</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">)))</span></code></pre></figure> |
| |
| <p><strong><em>Note:</em></strong> |
| Scala imports <code class="language-plaintext highlighter-rouge">scala.collection.immutable.Vector</code> by default, so you have to import |
| <code class="language-plaintext highlighter-rouge">org.apache.spark.mllib.linalg.Vector</code> explicitly to use MLlib’s <code class="language-plaintext highlighter-rouge">Vector</code>.</p> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>The base class of local vectors is |
| <a href="api/java/org/apache/spark/mllib/linalg/Vector.html"><code class="language-plaintext highlighter-rouge">Vector</code></a>, and we provide two |
| implementations: <a href="api/java/org/apache/spark/mllib/linalg/DenseVector.html"><code class="language-plaintext highlighter-rouge">DenseVector</code></a> and |
| <a href="api/java/org/apache/spark/mllib/linalg/SparseVector.html"><code class="language-plaintext highlighter-rouge">SparseVector</code></a>. We recommend |
| using the factory methods implemented in |
| <a href="api/java/org/apache/spark/mllib/linalg/Vectors.html"><code class="language-plaintext highlighter-rouge">Vectors</code></a> to create local vectors.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/Vector.html"><code class="language-plaintext highlighter-rouge">Vector</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/linalg/Vectors.html"><code class="language-plaintext highlighter-rouge">Vectors</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="c1">// Create a dense vector (1.0, 0.0, 3.0).</span> |
| <span class="nc">Vector</span> <span class="n">dv</span> <span class="o">=</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">);</span> |
| <span class="c1">// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.</span> |
| <span class="nc">Vector</span> <span class="n">sv</span> <span class="o">=</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">});</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h2 id="labeled-point">Labeled point</h2> |
| |
| <p>A labeled point is a local vector, either dense or sparse, associated with a label/response. |
| In MLlib, labeled points are used in supervised learning algorithms. |
| We use a double to store a label, so we can use labeled points in both regression and classification. |
| For binary classification, a label should be either <code class="language-plaintext highlighter-rouge">0</code> (negative) or <code class="language-plaintext highlighter-rouge">1</code> (positive). |
| For multiclass classification, labels should be class indices starting from zero: <code class="language-plaintext highlighter-rouge">0, 1, 2, ...</code>.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>A labeled point is represented by |
| <a href="api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code></a>.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">SparseVector</span> |
| <span class="kn">from</span> <span class="n">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| |
| <span class="c1"># Create a labeled point with a positive label and a dense feature vector. |
| </span><span class="n">pos</span> <span class="o">=</span> <span class="nc">LabeledPoint</span><span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">])</span> |
| |
| <span class="c1"># Create a labeled point with a negative label and a sparse feature vector. |
| </span><span class="n">neg</span> <span class="o">=</span> <span class="nc">LabeledPoint</span><span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="nc">SparseVector</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">]))</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>A labeled point is represented by the case class |
| <a href="api/scala/org/apache/spark/mllib/regression/LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code></a>.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/regression/LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span> |
| |
| <span class="c1">// Create a labeled point with a positive label and a dense feature vector.</span> |
| <span class="k">val</span> <span class="nv">pos</span> <span class="k">=</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">))</span> |
| |
| <span class="c1">// Create a labeled point with a negative label and a sparse feature vector.</span> |
| <span class="k">val</span> <span class="nv">neg</span> <span class="k">=</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">)))</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>A labeled point is represented by |
| <a href="api/java/org/apache/spark/mllib/regression/LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code></a>.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/regression/LabeledPoint.html"><code class="language-plaintext highlighter-rouge">LabeledPoint</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> |
| |
| <span class="c1">// Create a labeled point with a positive label and a dense feature vector.</span> |
| <span class="nc">LabeledPoint</span> <span class="n">pos</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">));</span> |
| |
| <span class="c1">// Create a labeled point with a negative label and a sparse feature vector.</span> |
| <span class="nc">LabeledPoint</span> <span class="n">neg</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">}));</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <p><strong><em>Sparse data</em></strong></p> |
| |
| <p>It is very common in practice to have sparse training data. MLlib supports reading training |
| examples stored in <code class="language-plaintext highlighter-rouge">LIBSVM</code> format, which is the default format used by |
| <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/"><code class="language-plaintext highlighter-rouge">LIBSVM</code></a> and |
| <a href="http://www.csie.ntu.edu.tw/~cjlin/liblinear/"><code class="language-plaintext highlighter-rouge">LIBLINEAR</code></a>. It is a text format in which each line |
| represents a labeled sparse feature vector using the following format:</p> |
| |
| <div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>label index1:value1 index2:value2 ... |
| </code></pre></div></div> |
| |
| <p>where the indices are one-based and in ascending order. |
| After loading, the feature indices are converted to zero-based.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p><a href="api/python/reference/api/pyspark.mllib.util.MLUtils.html"><code class="language-plaintext highlighter-rouge">MLUtils.loadLibSVMFile</code></a> reads training |
| examples stored in LIBSVM format.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.util.MLUtils.html"><code class="language-plaintext highlighter-rouge">MLUtils</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span> |
| |
| <span class="n">examples</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="p">.</span><span class="nf">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="sh">"</span><span class="s">data/mllib/sample_libsvm_data.txt</span><span class="sh">"</span><span class="p">)</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p><a href="api/scala/org/apache/spark/mllib/util/MLUtils$.html"><code class="language-plaintext highlighter-rouge">MLUtils.loadLibSVMFile</code></a> reads training |
| examples stored in LIBSVM format.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/util/MLUtils$.html"><code class="language-plaintext highlighter-rouge">MLUtils</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.rdd.RDD</span> |
| |
| <span class="k">val</span> <span class="nv">examples</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> <span class="nv">MLUtils</span><span class="o">.</span><span class="py">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| <p><a href="api/java/org/apache/spark/mllib/util/MLUtils.html"><code class="language-plaintext highlighter-rouge">MLUtils.loadLibSVMFile</code></a> reads training |
| examples stored in LIBSVM format.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/util/MLUtils.html"><code class="language-plaintext highlighter-rouge">MLUtils</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">></span> <span class="n">examples</span> <span class="o">=</span> |
| <span class="nc">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">();</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h2 id="local-matrix">Local matrix</h2> |
| |
| <p>A local matrix has integer-typed row and column indices and double-typed values, stored on a single |
| machine. MLlib supports dense matrices, whose entry values are stored in a single double array in |
| column-major order, and sparse matrices, whose non-zero entry values are stored in the Compressed Sparse |
| Column (CSC) format in column-major order. For example, the following dense matrix <code class="language-plaintext highlighter-rouge">\[ \begin{pmatrix} |
| 1.0 & 2.0 \\ |
| 3.0 & 4.0 \\ |
| 5.0 & 6.0 |
| \end{pmatrix} |
| \]</code> |
| is stored in a one-dimensional array <code class="language-plaintext highlighter-rouge">[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]</code> with the matrix size <code class="language-plaintext highlighter-rouge">(3, 2)</code>.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>The base class of local matrices is |
| <a href="api/python/reference/api/pyspark.mllib.linalg.Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code></a>, and we provide two |
| implementations: <a href="api/python/reference/api/pyspark.mllib.linalg.DenseMatrix.html"><code class="language-plaintext highlighter-rouge">DenseMatrix</code></a>, |
| and <a href="api/python/reference/api/pyspark.mllib.linalg.SparseMatrix.html"><code class="language-plaintext highlighter-rouge">SparseMatrix</code></a>. |
| We recommend using the factory methods implemented |
| in <a href="api/python/reference/api/pyspark.mllib.linalg.Matrices.html"><code class="language-plaintext highlighter-rouge">Matrices</code></a> to create local |
| matrices. Remember, local matrices in MLlib are stored in column-major order.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.linalg.Matrices.html"><code class="language-plaintext highlighter-rouge">Matrices</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Matrix</span><span class="p">,</span> <span class="n">Matrices</span> |
| |
| <span class="c1"># Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) |
| </span><span class="n">dm2</span> <span class="o">=</span> <span class="n">Matrices</span><span class="p">.</span><span class="nf">dense</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">])</span> |
| |
| <span class="c1"># Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0)) |
| </span><span class="n">sm</span> <span class="o">=</span> <span class="n">Matrices</span><span class="p">.</span><span class="nf">sparse</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">9</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span><span class="p">])</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>The base class of local matrices is |
| <a href="api/scala/org/apache/spark/mllib/linalg/Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code></a>, and we provide two |
| implementations: <a href="api/scala/org/apache/spark/mllib/linalg/DenseMatrix.html"><code class="language-plaintext highlighter-rouge">DenseMatrix</code></a>, |
| and <a href="api/scala/org/apache/spark/mllib/linalg/SparseMatrix.html"><code class="language-plaintext highlighter-rouge">SparseMatrix</code></a>. |
| We recommend using the factory methods implemented |
| in <a href="api/scala/org/apache/spark/mllib/linalg/Matrices$.html"><code class="language-plaintext highlighter-rouge">Matrices</code></a> to create local |
| matrices. Remember, local matrices in MLlib are stored in column-major order.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/linalg/Matrices$.html"><code class="language-plaintext highlighter-rouge">Matrices</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.</span><span class="o">{</span><span class="nc">Matrix</span><span class="o">,</span> <span class="nc">Matrices</span><span class="o">}</span> |
| |
| <span class="c1">// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))</span> |
| <span class="k">val</span> <span class="nv">dm</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nv">Matrices</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">,</span> <span class="mf">2.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">))</span> |
| |
| <span class="c1">// Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))</span> |
| <span class="k">val</span> <span class="nv">sm</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nv">Matrices</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">3</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="mi">1</span><span class="o">),</span> <span class="nc">Array</span><span class="o">(</span><span class="mi">9</span><span class="o">,</span> <span class="mi">6</span><span class="o">,</span> <span class="mi">8</span><span class="o">))</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>The base class of local matrices is |
| <a href="api/java/org/apache/spark/mllib/linalg/Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code></a>, and we provide two |
| implementations: <a href="api/java/org/apache/spark/mllib/linalg/DenseMatrix.html"><code class="language-plaintext highlighter-rouge">DenseMatrix</code></a>, |
| and <a href="api/java/org/apache/spark/mllib/linalg/SparseMatrix.html"><code class="language-plaintext highlighter-rouge">SparseMatrix</code></a>. |
| We recommend using the factory methods implemented |
| in <a href="api/java/org/apache/spark/mllib/linalg/Matrices.html"><code class="language-plaintext highlighter-rouge">Matrices</code></a> to create local |
| matrices. Remember, local matrices in MLlib are stored in column-major order.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/Matrix.html"><code class="language-plaintext highlighter-rouge">Matrix</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/linalg/Matrices.html"><code class="language-plaintext highlighter-rouge">Matrices</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrices</span><span class="o">;</span> |
| |
| <span class="c1">// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))</span> |
| <span class="nc">Matrix</span> <span class="n">dm</span> <span class="o">=</span> <span class="nc">Matrices</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">,</span> <span class="mf">2.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">});</span> |
| |
| <span class="c1">// Create a sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))</span> |
| <span class="nc">Matrix</span> <span class="n">sm</span> <span class="o">=</span> <span class="nc">Matrices</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">3</span><span class="o">},</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">2</span><span class="o">,</span> <span class="mi">1</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mi">9</span><span class="o">,</span> <span class="mi">6</span><span class="o">,</span> <span class="mi">8</span><span class="o">});</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h2 id="distributed-matrix">Distributed matrix</h2> |
| |
| <p>A distributed matrix has long-typed row and column indices and double-typed values, stored |
| distributively in one or more RDDs. It is very important to choose the right format to store large |
| and distributed matrices. Converting a distributed matrix to a different format may require a |
| global shuffle, which is quite expensive. Four types of distributed matrices have been implemented |
| so far.</p> |
| |
| <p>The basic type is called <code class="language-plaintext highlighter-rouge">RowMatrix</code>. A <code class="language-plaintext highlighter-rouge">RowMatrix</code> is a row-oriented distributed |
| matrix without meaningful row indices, e.g., a collection of feature vectors. |
| It is backed by an RDD of its rows, where each row is a local vector. |
| We assume that the number of columns is not huge for a <code class="language-plaintext highlighter-rouge">RowMatrix</code> so that a single |
| local vector can be reasonably communicated to the driver and can also be stored / |
| operated on using a single node. |
| An <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> is similar to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> but with row indices, |
| which can be used for identifying rows and executing joins. |
| A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> is a distributed matrix stored in <a href="https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29">coordinate list (COO)</a> format, |
| backed by an RDD of its entries. |
| A <code class="language-plaintext highlighter-rouge">BlockMatrix</code> is a distributed matrix backed by an RDD of <code class="language-plaintext highlighter-rouge">MatrixBlock</code> |
| which is a tuple of <code class="language-plaintext highlighter-rouge">(Int, Int, Matrix)</code>.</p> |
| |
| <p><strong><em>Note</em></strong></p> |
| |
| <p>The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size. |
| In general, the use of non-deterministic RDDs can lead to errors.</p> |
| |
| <h3 id="rowmatrix">RowMatrix</h3> |
| |
| <p>A <code class="language-plaintext highlighter-rouge">RowMatrix</code> is a row-oriented distributed matrix without meaningful row indices, backed by an RDD |
| of its rows, where each row is a local vector. |
| Since each row is represented by a local vector, the number of columns is |
| limited by the integer range but it should be much smaller in practice.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>A <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code></a> can be |
| created from an <code class="language-plaintext highlighter-rouge">RDD</code> of vectors.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">RowMatrix</span> |
| |
| <span class="c1"># Create an RDD of vectors. |
| </span><span class="n">rows</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">],</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">],</span> <span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">12</span><span class="p">]])</span> |
| |
| <span class="c1"># Create a RowMatrix from an RDD of vectors. |
| </span><span class="n">mat</span> <span class="o">=</span> <span class="nc">RowMatrix</span><span class="p">(</span><span class="n">rows</span><span class="p">)</span> |
| |
| <span class="c1"># Get its size. |
| </span><span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numRows</span><span class="p">()</span> <span class="c1"># 4 |
| </span><span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numCols</span><span class="p">()</span> <span class="c1"># 3 |
| </span> |
| <span class="c1"># Get the rows as an RDD of vectors again. |
| </span><span class="n">rowsRDD</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">rows</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>A <a href="api/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code></a> can be |
| created from an <code class="language-plaintext highlighter-rouge">RDD[Vector]</code> instance. Then we can compute its column summary statistics and decompositions. |
| <a href="https://en.wikipedia.org/wiki/QR_decomposition">QR decomposition</a> is of the form A = QR where Q is an orthogonal matrix and R is an upper triangular matrix. |
| For <a href="https://en.wikipedia.org/wiki/Singular_value_decomposition">singular value decomposition (SVD)</a> and <a href="https://en.wikipedia.org/wiki/Principal_component_analysis">principal component analysis (PCA)</a>, please refer to <a href="mllib-dimensionality-reduction.html">Dimensionality reduction</a>.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span> |
| |
| <span class="k">val</span> <span class="nv">rows</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Vector</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of local vectors</span> |
| <span class="c1">// Create a RowMatrix from an RDD[Vector].</span> |
| <span class="k">val</span> <span class="nv">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">)</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="k">val</span> <span class="nv">m</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numRows</span><span class="o">()</span> |
| <span class="k">val</span> <span class="nv">n</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numCols</span><span class="o">()</span> |
| |
| <span class="c1">// QR decomposition </span> |
| <span class="k">val</span> <span class="nv">qrResult</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">tallSkinnyQR</span><span class="o">(</span><span class="kc">true</span><span class="o">)</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>A <a href="api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code></a> can be |
| created from a <code class="language-plaintext highlighter-rouge">JavaRDD<Vector></code> instance. Then we can compute its column summary statistics.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">rows</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a JavaRDD of local vectors</span> |
| <span class="c1">// Create a RowMatrix from a JavaRDD<Vector>.</span> |
| <span class="nc">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="kt">long</span> <span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numRows</span><span class="o">();</span> |
| <span class="kt">long</span> <span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numCols</span><span class="o">();</span> |
| |
| <span class="c1">// QR decomposition </span> |
| <span class="nc">QRDecomposition</span><span class="o"><</span><span class="nc">RowMatrix</span><span class="o">,</span> <span class="nc">Matrix</span><span class="o">></span> <span class="n">result</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">tallSkinnyQR</span><span class="o">(</span><span class="kc">true</span><span class="o">);</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h3 id="indexedrowmatrix">IndexedRowMatrix</h3> |
| |
| <p>An <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> is similar to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> but with meaningful row indices. It is backed by |
| an RDD of indexed rows, so that each row is represented by its index (long-typed) and a local |
| vector.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>An <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code></a> |
| can be created from an <code class="language-plaintext highlighter-rouge">RDD</code> of <code class="language-plaintext highlighter-rouge">IndexedRow</code>s, where |
| <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRow.html"><code class="language-plaintext highlighter-rouge">IndexedRow</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(long, vector)</code>. An <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> can be converted to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> by dropping |
| its row indices.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">IndexedRow</span><span class="p">,</span> <span class="n">IndexedRowMatrix</span> |
| |
| <span class="c1"># Create an RDD of indexed rows. |
| # - This can be done explicitly with the IndexedRow class: |
| </span><span class="n">indexedRows</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([</span><span class="nc">IndexedRow</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]),</span> |
| <span class="nc">IndexedRow</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]),</span> |
| <span class="nc">IndexedRow</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">]),</span> |
| <span class="nc">IndexedRow</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">12</span><span class="p">])])</span> |
| <span class="c1"># - or by using (long, vector) tuples: |
| </span><span class="n">indexedRows</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]),</span> |
| <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">]),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">12</span><span class="p">])])</span> |
| |
| <span class="c1"># Create an IndexedRowMatrix from an RDD of IndexedRows. |
| </span><span class="n">mat</span> <span class="o">=</span> <span class="nc">IndexedRowMatrix</span><span class="p">(</span><span class="n">indexedRows</span><span class="p">)</span> |
| |
| <span class="c1"># Get its size. |
| </span><span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numRows</span><span class="p">()</span> <span class="c1"># 4 |
| </span><span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numCols</span><span class="p">()</span> <span class="c1"># 3 |
| </span> |
| <span class="c1"># Get the rows as an RDD of IndexedRows. |
| </span><span class="n">rowsRDD</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">rows</span> |
| |
| <span class="c1"># Convert to a RowMatrix by dropping the row indices. |
| </span><span class="n">rowMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toRowMatrix</span><span class="p">()</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>An |
| <a href="api/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code></a> |
| can be created from an <code class="language-plaintext highlighter-rouge">RDD[IndexedRow]</code> instance, where |
| <a href="api/scala/org/apache/spark/mllib/linalg/distributed/IndexedRow.html"><code class="language-plaintext highlighter-rouge">IndexedRow</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(Long, Vector)</code>. An <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> can be converted to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> by dropping |
| its row indices.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.</span><span class="o">{</span><span class="nc">IndexedRow</span><span class="o">,</span> <span class="nc">IndexedRowMatrix</span><span class="o">,</span> <span class="nc">RowMatrix</span><span class="o">}</span> |
| |
| <span class="k">val</span> <span class="nv">rows</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">IndexedRow</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of indexed rows</span> |
| <span class="c1">// Create an IndexedRowMatrix from an RDD[IndexedRow].</span> |
| <span class="k">val</span> <span class="nv">mat</span><span class="k">:</span> <span class="kt">IndexedRowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexedRowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">)</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="k">val</span> <span class="nv">m</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numRows</span><span class="o">()</span> |
| <span class="k">val</span> <span class="nv">n</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numCols</span><span class="o">()</span> |
| |
| <span class="c1">// Drop its row indices.</span> |
| <span class="k">val</span> <span class="nv">rowMat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">toRowMatrix</span><span class="o">()</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>An |
| <a href="api/java/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code></a> |
| can be created from a <code class="language-plaintext highlighter-rouge">JavaRDD<IndexedRow></code> instance, where |
| <a href="api/java/org/apache/spark/mllib/linalg/distributed/IndexedRow.html"><code class="language-plaintext highlighter-rouge">IndexedRow</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(long, Vector)</code>. An <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> can be converted to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> by dropping |
| its row indices.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html"><code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.IndexedRow</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">IndexedRow</span><span class="o">></span> <span class="n">rows</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a JavaRDD of indexed rows</span> |
| <span class="c1">// Create an IndexedRowMatrix from a JavaRDD<IndexedRow>.</span> |
| <span class="nc">IndexedRowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexedRowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="kt">long</span> <span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numRows</span><span class="o">();</span> |
| <span class="kt">long</span> <span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numCols</span><span class="o">();</span> |
| |
| <span class="c1">// Drop its row indices.</span> |
| <span class="nc">RowMatrix</span> <span class="n">rowMat</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">toRowMatrix</span><span class="o">();</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h3 id="coordinatematrix">CoordinateMatrix</h3> |
| |
| <p>A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> is a distributed matrix backed by an RDD of its entries. Each entry is a tuple |
| of <code class="language-plaintext highlighter-rouge">(i: Long, j: Long, value: Double)</code>, where <code class="language-plaintext highlighter-rouge">i</code> is the row index, <code class="language-plaintext highlighter-rouge">j</code> is the column index, and |
| <code class="language-plaintext highlighter-rouge">value</code> is the entry value. A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> should be used only when both |
| dimensions of the matrix are huge and the matrix is very sparse.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>A <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code></a> |
| can be created from an <code class="language-plaintext highlighter-rouge">RDD</code> of <code class="language-plaintext highlighter-rouge">MatrixEntry</code> entries, where |
| <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.MatrixEntry.html"><code class="language-plaintext highlighter-rouge">MatrixEntry</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(long, long, float)</code>. A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> can be converted to a <code class="language-plaintext highlighter-rouge">RowMatrix</code> by |
| calling <code class="language-plaintext highlighter-rouge">toRowMatrix</code>, or to an <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> with sparse rows by calling <code class="language-plaintext highlighter-rouge">toIndexedRowMatrix</code>.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">CoordinateMatrix</span><span class="p">,</span> <span class="n">MatrixEntry</span> |
| |
| <span class="c1"># Create an RDD of coordinate entries. |
| # - This can be done explicitly with the MatrixEntry class: |
| </span><span class="n">entries</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([</span><span class="nc">MatrixEntry</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">1.2</span><span class="p">),</span> <span class="nc">MatrixEntry</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">),</span> <span class="nc">MatrixEntry</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">3.7</span><span class="p">)])</span> |
| <span class="c1"># - or using (long, long, float) tuples: |
| </span><span class="n">entries</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">1.2</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">2.1</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">3.7</span><span class="p">)])</span> |
| |
| <span class="c1"># Create a CoordinateMatrix from an RDD of MatrixEntries. |
| </span><span class="n">mat</span> <span class="o">=</span> <span class="nc">CoordinateMatrix</span><span class="p">(</span><span class="n">entries</span><span class="p">)</span> |
| |
| <span class="c1"># Get its size. |
| </span><span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numRows</span><span class="p">()</span> <span class="c1"># 3 |
| </span><span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numCols</span><span class="p">()</span> <span class="c1"># 2 |
| </span> |
| <span class="c1"># Get the entries as an RDD of MatrixEntries. |
| </span><span class="n">entriesRDD</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">entries</span> |
| |
| <span class="c1"># Convert to a RowMatrix. |
| </span><span class="n">rowMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toRowMatrix</span><span class="p">()</span> |
| |
| <span class="c1"># Convert to an IndexedRowMatrix. |
| </span><span class="n">indexedRowMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toIndexedRowMatrix</span><span class="p">()</span> |
| |
| <span class="c1"># Convert to a BlockMatrix. |
| </span><span class="n">blockMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toBlockMatrix</span><span class="p">()</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>A |
| <a href="api/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code></a> |
| can be created from an <code class="language-plaintext highlighter-rouge">RDD[MatrixEntry]</code> instance, where |
| <a href="api/scala/org/apache/spark/mllib/linalg/distributed/MatrixEntry.html"><code class="language-plaintext highlighter-rouge">MatrixEntry</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(Long, Long, Double)</code>. A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> can be converted to an <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> |
| with sparse rows by calling <code class="language-plaintext highlighter-rouge">toIndexedRowMatrix</code>. Other computations for |
| <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> are not currently supported.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.</span><span class="o">{</span><span class="nc">CoordinateMatrix</span><span class="o">,</span> <span class="nc">MatrixEntry</span><span class="o">}</span> |
| |
| <span class="k">val</span> <span class="nv">entries</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">MatrixEntry</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of matrix entries</span> |
| <span class="c1">// Create a CoordinateMatrix from an RDD[MatrixEntry].</span> |
| <span class="k">val</span> <span class="nv">mat</span><span class="k">:</span> <span class="kt">CoordinateMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">CoordinateMatrix</span><span class="o">(</span><span class="n">entries</span><span class="o">)</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="k">val</span> <span class="nv">m</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numRows</span><span class="o">()</span> |
| <span class="k">val</span> <span class="nv">n</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">numCols</span><span class="o">()</span> |
| |
| <span class="c1">// Convert it to an IndexRowMatrix whose rows are sparse vectors.</span> |
| <span class="k">val</span> <span class="nv">indexedRowMatrix</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">toIndexedRowMatrix</span><span class="o">()</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>A |
| <a href="api/java/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code></a> |
| can be created from a <code class="language-plaintext highlighter-rouge">JavaRDD<MatrixEntry></code> instance, where |
| <a href="api/java/org/apache/spark/mllib/linalg/distributed/MatrixEntry.html"><code class="language-plaintext highlighter-rouge">MatrixEntry</code></a> is a |
| wrapper over <code class="language-plaintext highlighter-rouge">(long, long, double)</code>. A <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> can be converted to an <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> |
| with sparse rows by calling <code class="language-plaintext highlighter-rouge">toIndexedRowMatrix</code>. Other computations for |
| <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> are not currently supported.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html"><code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.CoordinateMatrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.MatrixEntry</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">MatrixEntry</span><span class="o">></span> <span class="n">entries</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a JavaRDD of matrix entries</span> |
| <span class="c1">// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.</span> |
| <span class="nc">CoordinateMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">CoordinateMatrix</span><span class="o">(</span><span class="n">entries</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| |
| <span class="c1">// Get its size.</span> |
| <span class="kt">long</span> <span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numRows</span><span class="o">();</span> |
| <span class="kt">long</span> <span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">numCols</span><span class="o">();</span> |
| |
| <span class="c1">// Convert it to an IndexRowMatrix whose rows are sparse vectors.</span> |
| <span class="nc">IndexedRowMatrix</span> <span class="n">indexedRowMatrix</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">toIndexedRowMatrix</span><span class="o">();</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| <h3 id="blockmatrix">BlockMatrix</h3> |
| |
| <p>A <code class="language-plaintext highlighter-rouge">BlockMatrix</code> is a distributed matrix backed by an RDD of <code class="language-plaintext highlighter-rouge">MatrixBlock</code>s, where a <code class="language-plaintext highlighter-rouge">MatrixBlock</code> is |
| a tuple of <code class="language-plaintext highlighter-rouge">((Int, Int), Matrix)</code>, where the <code class="language-plaintext highlighter-rouge">(Int, Int)</code> is the index of the block, and <code class="language-plaintext highlighter-rouge">Matrix</code> is |
| the sub-matrix at the given index with size <code class="language-plaintext highlighter-rouge">rowsPerBlock</code> x <code class="language-plaintext highlighter-rouge">colsPerBlock</code>. |
| <code class="language-plaintext highlighter-rouge">BlockMatrix</code> supports methods such as <code class="language-plaintext highlighter-rouge">add</code> and <code class="language-plaintext highlighter-rouge">multiply</code> with another <code class="language-plaintext highlighter-rouge">BlockMatrix</code>. |
| <code class="language-plaintext highlighter-rouge">BlockMatrix</code> also has a helper function <code class="language-plaintext highlighter-rouge">validate</code> which can be used to check whether the |
| <code class="language-plaintext highlighter-rouge">BlockMatrix</code> is set up properly.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p>A <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code></a> |
| can be created from an <code class="language-plaintext highlighter-rouge">RDD</code> of sub-matrix blocks, where a sub-matrix block is a |
| <code class="language-plaintext highlighter-rouge">((blockRowIndex, blockColIndex), sub-matrix)</code> tuple.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code> Python docs</a> for more details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="n">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Matrices</span> |
| <span class="kn">from</span> <span class="n">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">BlockMatrix</span> |
| |
| <span class="c1"># Create an RDD of sub-matrix blocks. |
| </span><span class="n">blocks</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="nf">parallelize</span><span class="p">([((</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">Matrices</span><span class="p">.</span><span class="nf">dense</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">])),</span> |
| <span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">Matrices</span><span class="p">.</span><span class="nf">dense</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">12</span><span class="p">]))])</span> |
| |
| <span class="c1"># Create a BlockMatrix from an RDD of sub-matrix blocks. |
| </span><span class="n">mat</span> <span class="o">=</span> <span class="nc">BlockMatrix</span><span class="p">(</span><span class="n">blocks</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| |
| <span class="c1"># Get its size. |
| </span><span class="n">m</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numRows</span><span class="p">()</span> <span class="c1"># 6 |
| </span><span class="n">n</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">numCols</span><span class="p">()</span> <span class="c1"># 2 |
| </span> |
| <span class="c1"># Get the blocks as an RDD of sub-matrix blocks. |
| </span><span class="n">blocksRDD</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">blocks</span> |
| |
| <span class="c1"># Convert to a LocalMatrix. |
| </span><span class="n">localMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toLocalMatrix</span><span class="p">()</span> |
| |
| <span class="c1"># Convert to an IndexedRowMatrix. |
| </span><span class="n">indexedRowMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toIndexedRowMatrix</span><span class="p">()</span> |
| |
| <span class="c1"># Convert to a CoordinateMatrix. |
| </span><span class="n">coordinateMat</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="nf">toCoordinateMatrix</span><span class="p">()</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p>A <a href="api/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code></a> can be |
| most easily created from an <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> or <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> by calling <code class="language-plaintext highlighter-rouge">toBlockMatrix</code>. |
| <code class="language-plaintext highlighter-rouge">toBlockMatrix</code> creates blocks of size 1024 x 1024 by default. |
| Users may change the block size by supplying the values through <code class="language-plaintext highlighter-rouge">toBlockMatrix(rowsPerBlock, colsPerBlock)</code>.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code> Scala docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.</span><span class="o">{</span><span class="nc">BlockMatrix</span><span class="o">,</span> <span class="nc">CoordinateMatrix</span><span class="o">,</span> <span class="nc">MatrixEntry</span><span class="o">}</span> |
| |
| <span class="k">val</span> <span class="nv">entries</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">MatrixEntry</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of (i, j, v) matrix entries</span> |
| <span class="c1">// Create a CoordinateMatrix from an RDD[MatrixEntry].</span> |
| <span class="k">val</span> <span class="nv">coordMat</span><span class="k">:</span> <span class="kt">CoordinateMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">CoordinateMatrix</span><span class="o">(</span><span class="n">entries</span><span class="o">)</span> |
| <span class="c1">// Transform the CoordinateMatrix to a BlockMatrix</span> |
| <span class="k">val</span> <span class="nv">matA</span><span class="k">:</span> <span class="kt">BlockMatrix</span> <span class="o">=</span> <span class="nv">coordMat</span><span class="o">.</span><span class="py">toBlockMatrix</span><span class="o">().</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.</span> |
| <span class="c1">// Nothing happens if it is valid.</span> |
| <span class="nv">matA</span><span class="o">.</span><span class="py">validate</span><span class="o">()</span> |
| |
| <span class="c1">// Calculate A^T A.</span> |
| <span class="k">val</span> <span class="nv">ata</span> <span class="k">=</span> <span class="nv">matA</span><span class="o">.</span><span class="py">transpose</span><span class="o">.</span><span class="py">multiply</span><span class="o">(</span><span class="n">matA</span><span class="o">)</span></code></pre></figure> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>A <a href="api/java/org/apache/spark/mllib/linalg/distributed/BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code></a> can be |
| most easily created from an <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> or <code class="language-plaintext highlighter-rouge">CoordinateMatrix</code> by calling <code class="language-plaintext highlighter-rouge">toBlockMatrix</code>. |
| <code class="language-plaintext highlighter-rouge">toBlockMatrix</code> creates blocks of size 1024 x 1024 by default. |
| Users may change the block size by supplying the values through <code class="language-plaintext highlighter-rouge">toBlockMatrix(rowsPerBlock, colsPerBlock)</code>.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/BlockMatrix.html"><code class="language-plaintext highlighter-rouge">BlockMatrix</code> Java docs</a> for details on the API.</p> |
| |
| <figure class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.BlockMatrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.CoordinateMatrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">MatrixEntry</span><span class="o">></span> <span class="n">entries</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a JavaRDD of (i, j, v) Matrix Entries</span> |
| <span class="c1">// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.</span> |
| <span class="nc">CoordinateMatrix</span> <span class="n">coordMat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">CoordinateMatrix</span><span class="o">(</span><span class="n">entries</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| <span class="c1">// Transform the CoordinateMatrix to a BlockMatrix</span> |
| <span class="nc">BlockMatrix</span> <span class="n">matA</span> <span class="o">=</span> <span class="n">coordMat</span><span class="o">.</span><span class="na">toBlockMatrix</span><span class="o">().</span><span class="na">cache</span><span class="o">();</span> |
| |
| <span class="c1">// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.</span> |
| <span class="c1">// Nothing happens if it is valid.</span> |
| <span class="n">matA</span><span class="o">.</span><span class="na">validate</span><span class="o">();</span> |
| |
| <span class="c1">// Calculate A^T A.</span> |
| <span class="nc">BlockMatrix</span> <span class="n">ata</span> <span class="o">=</span> <span class="n">matA</span><span class="o">.</span><span class="na">transpose</span><span class="o">().</span><span class="na">multiply</span><span class="o">(</span><span class="n">matA</span><span class="o">);</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-3.5.1.min.js"></script> |
| <script src="js/vendor/bootstrap.bundle.min.js"></script> |
| |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> |
| <script type="text/javascript"> |
| // DocSearch is entirely free and automated. DocSearch is built in two parts: |
| // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link |
| // in your website and extract content from every page it traverses. It then pushes this |
| // content to an Algolia index. |
| // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index |
| // to your search input and display its results in a dropdown UI. If you want to find more |
| // details on how works DocSearch, check the docs of DocSearch. |
| docsearch({ |
| apiKey: 'd62f962a82bc9abb53471cb7b89da35e', |
| appId: 'RAI69RXRSK', |
| indexName: 'apache_spark', |
| inputSelector: '#docsearch-input', |
| enhancedSearchInput: true, |
| algoliaOptions: { |
| 'facetFilters': ["version:4.1.0-preview1"] |
| }, |
| debug: false // Set debug to true if you want to inspect the dropdown |
| }); |
| |
| </script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |