blob: dcbc4f8d708eb645307b5c05dc7548c675e81a1d [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Text Files - Spark 3.5.3 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet">
<link href="css/custom.css" rel="stylesheet">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<link rel="stylesheet" href="css/docsearch.min.css" />
<link rel="stylesheet" href="css/docsearch.css">
<!-- Matomo -->
<script>
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body class="global">
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar">
<div class="navbar-brand"><a href="index.html">
<img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.3</span>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarCollapse" aria-controls="navbarCollapse"
aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarCollapse">
<ul class="navbar-nav me-auto">
<li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a>
<div class="dropdown-menu" aria-labelledby="navbarQuickStart">
<a class="dropdown-item" href="quick-start.html">Quick Start</a>
<a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a>
<a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a>
<a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a>
<a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a>
<a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a>
<a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a>
<a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a>
<a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a>
<div class="dropdown-menu" aria-labelledby="navbarAPIDocs">
<a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a>
<a class="dropdown-item" href="api/java/index.html">Java</a>
<a class="dropdown-item" href="api/python/index.html">Python</a>
<a class="dropdown-item" href="api/R/index.html">R</a>
<a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a>
<div class="dropdown-menu" aria-labelledby="navbarDeploying">
<a class="dropdown-item" href="cluster-overview.html">Overview</a>
<a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a>
<a class="dropdown-item" href="running-on-mesos.html">Mesos</a>
<a class="dropdown-item" href="running-on-yarn.html">YARN</a>
<a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarMore">
<a class="dropdown-item" href="configuration.html">Configuration</a>
<a class="dropdown-item" href="monitoring.html">Monitoring</a>
<a class="dropdown-item" href="tuning.html">Tuning Guide</a>
<a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a>
<a class="dropdown-item" href="security.html">Security</a>
<a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a>
<a class="dropdown-item" href="migration-guide.html">Migration Guide</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="building-spark.html">Building Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a>
</div>
</li>
<li class="nav-item">
<input type="text" id="docsearch-input" placeholder="Search the docs…">
</li>
</ul>
<!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.3</span></span>-->
</div>
</nav>
<div class="container">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="sql-programming-guide.html">Spark SQL Guide</a></h3>
<ul>
<li>
<a href="sql-getting-started.html">
Getting Started
</a>
</li>
<li>
<a href="sql-data-sources.html">
Data Sources
</a>
</li>
<ul>
<li>
<a href="sql-data-sources-load-save-functions.html">
Generic Load/Save Functions
</a>
</li>
<li>
<a href="sql-data-sources-generic-options.html">
Generic File Source Options
</a>
</li>
<li>
<a href="sql-data-sources-parquet.html">
Parquet Files
</a>
</li>
<li>
<a href="sql-data-sources-orc.html">
ORC Files
</a>
</li>
<li>
<a href="sql-data-sources-json.html">
JSON Files
</a>
</li>
<li>
<a href="sql-data-sources-csv.html">
CSV Files
</a>
</li>
<li>
<a href="sql-data-sources-text.html">
Text Files
</a>
</li>
<li>
<a href="sql-data-sources-hive-tables.html">
Hive Tables
</a>
</li>
<li>
<a href="sql-data-sources-jdbc.html">
JDBC To Other Databases
</a>
</li>
<li>
<a href="sql-data-sources-avro.html">
Avro Files
</a>
</li>
<li>
<a href="sql-data-sources-protobuf.html">
Protobuf data
</a>
</li>
<li>
<a href="sql-data-sources-binaryFile.html">
Whole Binary Files
</a>
</li>
<li>
<a href="sql-data-sources-troubleshooting.html">
Troubleshooting
</a>
</li>
</ul>
<li>
<a href="sql-performance-tuning.html">
Performance Tuning
</a>
</li>
<li>
<a href="sql-distributed-sql-engine.html">
Distributed SQL Engine
</a>
</li>
<li>
<a href="sql-pyspark-pandas-with-arrow.html">
PySpark Usage Guide for Pandas with Apache Arrow
</a>
</li>
<li>
<a href="sql-migration-guide.html">
Migration Guide
</a>
</li>
<li>
<a href="sql-ref.html">
SQL Reference
</a>
</li>
<li>
<a href="sql-error-conditions.html">
Error Conditions
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar mr-3" id="content">
<h1 class="title">Text Files</h1>
<p>Spark SQL provides <code class="language-plaintext highlighter-rouge">spark.read().text("file_name")</code> to read a file or directory of text files into a Spark DataFrame, and <code class="language-plaintext highlighter-rouge">dataframe.write().text("path")</code> to write to a text file. When reading a text file, each line becomes each row that has string &#8220;value&#8221; column by default. The line separator can be changed as shown in the example below. The <code class="language-plaintext highlighter-rouge">option()</code> function can be used to customize the behavior of reading or writing, such as controlling behavior of the line separator, compression, and so on.</p>
<div class="codetabs">
<div data-lang="python">
<div class="highlight"><pre class="codehilite"><code><span class="c1"># spark is from the previous example
</span><span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">sparkContext</span>
<span class="c1"># A text dataset is pointed to by path.
# The path can be either a single text file or a directory of text files
</span><span class="n">path</span> <span class="o">=</span> <span class="s">"examples/src/main/resources/people.txt"</span>
<span class="n">df1</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="n">df1</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># +-----------+
# | value|
# +-----------+
# |Michael, 29|
# | Andy, 30|
# | Justin, 19|
# +-----------+
</span>
<span class="c1"># You can use 'lineSep' option to define the line separator.
# The line separator handles all `\r`, `\r\n` and `\n` by default.
</span><span class="n">df2</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">lineSep</span><span class="o">=</span><span class="s">","</span><span class="p">)</span>
<span class="n">df2</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># +-----------+
# | value|
# +-----------+
# | Michael|
# | 29\nAndy|
# | 30\nJustin|
# | 19\n|
# +-----------+
</span>
<span class="c1"># You can also use 'wholetext' option to read each input file as a single row.
</span><span class="n">df3</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">wholetext</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">df3</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># +--------------------+
# | value|
# +--------------------+
# |Michael, 29\nAndy...|
# +--------------------+
</span>
<span class="c1"># "output" is a folder which contains multiple text files and a _SUCCESS file.
</span><span class="n">df1</span><span class="p">.</span><span class="n">write</span><span class="p">.</span><span class="n">csv</span><span class="p">(</span><span class="s">"output"</span><span class="p">)</span>
<span class="c1"># You can specify the compression format using the 'compression' option.
</span><span class="n">df1</span><span class="p">.</span><span class="n">write</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="s">"output_compressed"</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s">"gzip"</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/sql/datasource.py" in the Spark repo.</small></div>
</div>
<div data-lang="scala">
<div class="highlight"><pre class="codehilite"><code><span class="c1">// A text dataset is pointed to by path.</span>
<span class="c1">// The path can be either a single text file or a directory of text files</span>
<span class="k">val</span> <span class="nv">path</span> <span class="k">=</span> <span class="s">"examples/src/main/resources/people.txt"</span>
<span class="k">val</span> <span class="nv">df1</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span>
<span class="nv">df1</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// |Michael, 29|</span>
<span class="c1">// | Andy, 30|</span>
<span class="c1">// | Justin, 19|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// You can use 'lineSep' option to define the line separator.</span>
<span class="c1">// The line separator handles all `\r`, `\r\n` and `\n` by default.</span>
<span class="k">val</span> <span class="nv">df2</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"lineSep"</span><span class="o">,</span> <span class="s">","</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span>
<span class="nv">df2</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | Michael|</span>
<span class="c1">// | 29\nAndy|</span>
<span class="c1">// | 30\nJustin|</span>
<span class="c1">// | 19\n|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// You can also use 'wholetext' option to read each input file as a single row.</span>
<span class="k">val</span> <span class="nv">df3</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"wholetext"</span><span class="o">,</span> <span class="kc">true</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span>
<span class="nv">df3</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// |Michael, 29\nAndy...|</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// "output" is a folder which contains multiple text files and a _SUCCESS file.</span>
<span class="nv">df1</span><span class="o">.</span><span class="py">write</span><span class="o">.</span><span class="py">text</span><span class="o">(</span><span class="s">"output"</span><span class="o">)</span>
<span class="c1">// You can specify the compression format using the 'compression' option.</span>
<span class="nv">df1</span><span class="o">.</span><span class="py">write</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"compression"</span><span class="o">,</span> <span class="s">"gzip"</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="s">"output_compressed"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// A text dataset is pointed to by path.</span>
<span class="c1">// The path can be either a single text file or a directory of text files</span>
<span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"examples/src/main/resources/people.txt"</span><span class="o">;</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">df1</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
<span class="n">df1</span><span class="o">.</span><span class="na">show</span><span class="o">();</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// |Michael, 29|</span>
<span class="c1">// | Andy, 30|</span>
<span class="c1">// | Justin, 19|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// You can use 'lineSep' option to define the line separator.</span>
<span class="c1">// The line separator handles all `\r`, `\r\n` and `\n` by default.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">df2</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"lineSep"</span><span class="o">,</span> <span class="s">","</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
<span class="n">df2</span><span class="o">.</span><span class="na">show</span><span class="o">();</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// | Michael|</span>
<span class="c1">// | 29\nAndy|</span>
<span class="c1">// | 30\nJustin|</span>
<span class="c1">// | 19\n|</span>
<span class="c1">// +-----------+</span>
<span class="c1">// You can also use 'wholetext' option to read each input file as a single row.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">df3</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"wholetext"</span><span class="o">,</span> <span class="s">"true"</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
<span class="n">df3</span><span class="o">.</span><span class="na">show</span><span class="o">();</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// | value|</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// |Michael, 29\nAndy...|</span>
<span class="c1">// +--------------------+</span>
<span class="c1">// "output" is a folder which contains multiple text files and a _SUCCESS file.</span>
<span class="n">df1</span><span class="o">.</span><span class="na">write</span><span class="o">().</span><span class="na">text</span><span class="o">(</span><span class="s">"output"</span><span class="o">);</span>
<span class="c1">// You can specify the compression format using the 'compression' option.</span>
<span class="n">df1</span><span class="o">.</span><span class="na">write</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"compression"</span><span class="o">,</span> <span class="s">"gzip"</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="s">"output_compressed"</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java" in the Spark repo.</small></div>
</div>
</div>
<h2 id="data-source-option">Data Source Option</h2>
<p>Data source options of text can be set via:</p>
<ul>
<li>the <code class="language-plaintext highlighter-rouge">.option</code>/<code class="language-plaintext highlighter-rouge">.options</code> methods of
<ul>
<li><code class="language-plaintext highlighter-rouge">DataFrameReader</code></li>
<li><code class="language-plaintext highlighter-rouge">DataFrameWriter</code></li>
<li><code class="language-plaintext highlighter-rouge">DataStreamReader</code></li>
<li><code class="language-plaintext highlighter-rouge">DataStreamWriter</code></li>
</ul>
</li>
<li><code class="language-plaintext highlighter-rouge">OPTIONS</code> clause at <a href="sql-ref-syntax-ddl-create-table-datasource.html">CREATE TABLE USING DATA_SOURCE</a></li>
</ul>
<table>
<thead><tr><th><b>Property Name</b></th><th><b>Default</b></th><th><b>Meaning</b></th><th><b>Scope</b></th></tr></thead>
<tr>
<td><code>wholetext</code></td>
<td><code>false</code></td>
<td>If true, read each file from input path(s) as a single row.</td>
<td>read</td>
</tr>
<tr>
<td><code>lineSep</code></td>
<td><code>\r</code>, <code>\r\n</code>, <code>\n</code> (for reading), <code>\n</code> (for writing)</td>
<td>Defines the line separator that should be used for reading or writing.</td>
<td>read/write</td>
</tr>
<tr>
<td><code>compression</code></td>
<td>(none)</td>
<td>Compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate).</td>
<td>write</td>
</tr>
</table>
<p>Other generic options can be found in <a href="https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html"> Generic File Source Options</a>.</p>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-3.5.1.min.js"></script>
<script src="js/vendor/bootstrap.bundle.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<script type="text/javascript" src="js/vendor/docsearch.min.js"></script>
<script type="text/javascript">
// DocSearch is entirely free and automated. DocSearch is built in two parts:
// 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link
// in your website and extract content from every page it traverses. It then pushes this
// content to an Algolia index.
// 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index
// to your search input and display its results in a dropdown UI. If you want to find more
// details on how works DocSearch, check the docs of DocSearch.
docsearch({
apiKey: 'd62f962a82bc9abb53471cb7b89da35e',
appId: 'RAI69RXRSK',
indexName: 'apache_spark',
inputSelector: '#docsearch-input',
enhancedSearchInput: true,
algoliaOptions: {
'facetFilters': ["version:3.5.3"]
},
debug: false // Set debug to true if you want to inspect the dropdown
});
</script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>