| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| |
| <title>Text Files - Spark 3.5.3 Documentation</title> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <link rel="preconnect" href="https://fonts.googleapis.com"> |
| <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> |
| <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> |
| <link href="css/custom.css" rel="stylesheet"> |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| <link rel="stylesheet" href="css/docsearch.min.css" /> |
| <link rel="stylesheet" href="css/docsearch.css"> |
| |
| |
| <!-- Matomo --> |
| <script> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| |
| </head> |
| <body class="global"> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> |
| <div class="navbar-brand"><a href="index.html"> |
| <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.3</span> |
| </div> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" |
| data-target="#navbarCollapse" aria-controls="navbarCollapse" |
| aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| <div class="collapse navbar-collapse" id="navbarCollapse"> |
| <ul class="navbar-nav me-auto"> |
| <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> |
| <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> |
| <a class="dropdown-item" href="quick-start.html">Quick Start</a> |
| <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> |
| <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> |
| <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> |
| <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> |
| <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> |
| <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> |
| <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> |
| <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> |
| <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> |
| <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> |
| <a class="dropdown-item" href="api/java/index.html">Java</a> |
| <a class="dropdown-item" href="api/python/index.html">Python</a> |
| <a class="dropdown-item" href="api/R/index.html">R</a> |
| <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> |
| <div class="dropdown-menu" aria-labelledby="navbarDeploying"> |
| <a class="dropdown-item" href="cluster-overview.html">Overview</a> |
| <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> |
| <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> |
| <a class="dropdown-item" href="running-on-yarn.html">YARN</a> |
| <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> |
| <div class="dropdown-menu" aria-labelledby="navbarMore"> |
| <a class="dropdown-item" href="configuration.html">Configuration</a> |
| <a class="dropdown-item" href="monitoring.html">Monitoring</a> |
| <a class="dropdown-item" href="tuning.html">Tuning Guide</a> |
| <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> |
| <a class="dropdown-item" href="security.html">Security</a> |
| <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> |
| <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="building-spark.html">Building Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> |
| </div> |
| </li> |
| |
| <li class="nav-item"> |
| <input type="text" id="docsearch-input" placeholder="Search the docs…"> |
| </li> |
| </ul> |
| <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.3</span></span>--> |
| </div> |
| </nav> |
| |
| |
| |
| <div class="container"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="sql-programming-guide.html">Spark SQL Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="sql-getting-started.html"> |
| |
| Getting Started |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources.html"> |
| |
| Data Sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <ul> |
| |
| <li> |
| <a href="sql-data-sources-load-save-functions.html"> |
| |
| Generic Load/Save Functions |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-generic-options.html"> |
| |
| Generic File Source Options |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-parquet.html"> |
| |
| Parquet Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-orc.html"> |
| |
| ORC Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-json.html"> |
| |
| JSON Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-csv.html"> |
| |
| CSV Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-text.html"> |
| |
| Text Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-hive-tables.html"> |
| |
| Hive Tables |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-jdbc.html"> |
| |
| JDBC To Other Databases |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-avro.html"> |
| |
| Avro Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-protobuf.html"> |
| |
| Protobuf data |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-binaryFile.html"> |
| |
| Whole Binary Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-troubleshooting.html"> |
| |
| Troubleshooting |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| |
| |
| <li> |
| <a href="sql-performance-tuning.html"> |
| |
| Performance Tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-distributed-sql-engine.html"> |
| |
| Distributed SQL Engine |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-pyspark-pandas-with-arrow.html"> |
| |
| PySpark Usage Guide for Pandas with Apache Arrow |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-migration-guide.html"> |
| |
| Migration Guide |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-ref.html"> |
| |
| SQL Reference |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-error-conditions.html"> |
| |
| Error Conditions |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar mr-3" id="content"> |
| |
| <h1 class="title">Text Files</h1> |
| |
| |
| <p>Spark SQL provides <code class="language-plaintext highlighter-rouge">spark.read().text("file_name")</code> to read a file or directory of text files into a Spark DataFrame, and <code class="language-plaintext highlighter-rouge">dataframe.write().text("path")</code> to write to a text file. When reading a text file, each line becomes each row that has string “value” column by default. The line separator can be changed as shown in the example below. The <code class="language-plaintext highlighter-rouge">option()</code> function can be used to customize the behavior of reading or writing, such as controlling behavior of the line separator, compression, and so on.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <div class="highlight"><pre class="codehilite"><code><span class="c1"># spark is from the previous example |
| </span><span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">sparkContext</span> |
| |
| <span class="c1"># A text dataset is pointed to by path. |
| # The path can be either a single text file or a directory of text files |
| </span><span class="n">path</span> <span class="o">=</span> <span class="s">"examples/src/main/resources/people.txt"</span> |
| |
| <span class="n">df1</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">)</span> |
| <span class="n">df1</span><span class="p">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-----------+ |
| # | value| |
| # +-----------+ |
| # |Michael, 29| |
| # | Andy, 30| |
| # | Justin, 19| |
| # +-----------+ |
| </span> |
| <span class="c1"># You can use 'lineSep' option to define the line separator. |
| # The line separator handles all `\r`, `\r\n` and `\n` by default. |
| </span><span class="n">df2</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">lineSep</span><span class="o">=</span><span class="s">","</span><span class="p">)</span> |
| <span class="n">df2</span><span class="p">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +-----------+ |
| # | value| |
| # +-----------+ |
| # | Michael| |
| # | 29\nAndy| |
| # | 30\nJustin| |
| # | 19\n| |
| # +-----------+ |
| </span> |
| <span class="c1"># You can also use 'wholetext' option to read each input file as a single row. |
| </span><span class="n">df3</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">wholetext</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> |
| <span class="n">df3</span><span class="p">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +--------------------+ |
| # | value| |
| # +--------------------+ |
| # |Michael, 29\nAndy...| |
| # +--------------------+ |
| </span> |
| <span class="c1"># "output" is a folder which contains multiple text files and a _SUCCESS file. |
| </span><span class="n">df1</span><span class="p">.</span><span class="n">write</span><span class="p">.</span><span class="n">csv</span><span class="p">(</span><span class="s">"output"</span><span class="p">)</span> |
| |
| <span class="c1"># You can specify the compression format using the 'compression' option. |
| </span><span class="n">df1</span><span class="p">.</span><span class="n">write</span><span class="p">.</span><span class="n">text</span><span class="p">(</span><span class="s">"output_compressed"</span><span class="p">,</span> <span class="n">compression</span><span class="o">=</span><span class="s">"gzip"</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/sql/datasource.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <div class="highlight"><pre class="codehilite"><code><span class="c1">// A text dataset is pointed to by path.</span> |
| <span class="c1">// The path can be either a single text file or a directory of text files</span> |
| <span class="k">val</span> <span class="nv">path</span> <span class="k">=</span> <span class="s">"examples/src/main/resources/people.txt"</span> |
| |
| <span class="k">val</span> <span class="nv">df1</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span> |
| <span class="nv">df1</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// |Michael, 29|</span> |
| <span class="c1">// | Andy, 30|</span> |
| <span class="c1">// | Justin, 19|</span> |
| <span class="c1">// +-----------+</span> |
| |
| <span class="c1">// You can use 'lineSep' option to define the line separator.</span> |
| <span class="c1">// The line separator handles all `\r`, `\r\n` and `\n` by default.</span> |
| <span class="k">val</span> <span class="nv">df2</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"lineSep"</span><span class="o">,</span> <span class="s">","</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span> |
| <span class="nv">df2</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | Michael|</span> |
| <span class="c1">// | 29\nAndy|</span> |
| <span class="c1">// | 30\nJustin|</span> |
| <span class="c1">// | 19\n|</span> |
| <span class="c1">// +-----------+</span> |
| |
| <span class="c1">// You can also use 'wholetext' option to read each input file as a single row.</span> |
| <span class="k">val</span> <span class="nv">df3</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"wholetext"</span><span class="o">,</span> <span class="kc">true</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="n">path</span><span class="o">)</span> |
| <span class="nv">df3</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> |
| <span class="c1">// +--------------------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +--------------------+</span> |
| <span class="c1">// |Michael, 29\nAndy...|</span> |
| <span class="c1">// +--------------------+</span> |
| |
| <span class="c1">// "output" is a folder which contains multiple text files and a _SUCCESS file.</span> |
| <span class="nv">df1</span><span class="o">.</span><span class="py">write</span><span class="o">.</span><span class="py">text</span><span class="o">(</span><span class="s">"output"</span><span class="o">)</span> |
| |
| <span class="c1">// You can specify the compression format using the 'compression' option.</span> |
| <span class="nv">df1</span><span class="o">.</span><span class="py">write</span><span class="o">.</span><span class="py">option</span><span class="o">(</span><span class="s">"compression"</span><span class="o">,</span> <span class="s">"gzip"</span><span class="o">).</span><span class="py">text</span><span class="o">(</span><span class="s">"output_compressed"</span><span class="o">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| |
| <span class="c1">// A text dataset is pointed to by path.</span> |
| <span class="c1">// The path can be either a single text file or a directory of text files</span> |
| <span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"examples/src/main/resources/people.txt"</span><span class="o">;</span> |
| |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df1</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="n">df1</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// |Michael, 29|</span> |
| <span class="c1">// | Andy, 30|</span> |
| <span class="c1">// | Justin, 19|</span> |
| <span class="c1">// +-----------+</span> |
| |
| <span class="c1">// You can use 'lineSep' option to define the line separator.</span> |
| <span class="c1">// The line separator handles all `\r`, `\r\n` and `\n` by default.</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df2</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"lineSep"</span><span class="o">,</span> <span class="s">","</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="n">df2</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +-----------+</span> |
| <span class="c1">// | Michael|</span> |
| <span class="c1">// | 29\nAndy|</span> |
| <span class="c1">// | 30\nJustin|</span> |
| <span class="c1">// | 19\n|</span> |
| <span class="c1">// +-----------+</span> |
| |
| <span class="c1">// You can also use 'wholetext' option to read each input file as a single row.</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df3</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"wholetext"</span><span class="o">,</span> <span class="s">"true"</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="n">df3</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="c1">// +--------------------+</span> |
| <span class="c1">// | value|</span> |
| <span class="c1">// +--------------------+</span> |
| <span class="c1">// |Michael, 29\nAndy...|</span> |
| <span class="c1">// +--------------------+</span> |
| |
| <span class="c1">// "output" is a folder which contains multiple text files and a _SUCCESS file.</span> |
| <span class="n">df1</span><span class="o">.</span><span class="na">write</span><span class="o">().</span><span class="na">text</span><span class="o">(</span><span class="s">"output"</span><span class="o">);</span> |
| |
| <span class="c1">// You can specify the compression format using the 'compression' option.</span> |
| <span class="n">df1</span><span class="o">.</span><span class="na">write</span><span class="o">().</span><span class="na">option</span><span class="o">(</span><span class="s">"compression"</span><span class="o">,</span> <span class="s">"gzip"</span><span class="o">).</span><span class="na">text</span><span class="o">(</span><span class="s">"output_compressed"</span><span class="o">);</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="data-source-option">Data Source Option</h2> |
| |
| <p>Data source options of text can be set via:</p> |
| <ul> |
| <li>the <code class="language-plaintext highlighter-rouge">.option</code>/<code class="language-plaintext highlighter-rouge">.options</code> methods of |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">DataFrameReader</code></li> |
| <li><code class="language-plaintext highlighter-rouge">DataFrameWriter</code></li> |
| <li><code class="language-plaintext highlighter-rouge">DataStreamReader</code></li> |
| <li><code class="language-plaintext highlighter-rouge">DataStreamWriter</code></li> |
| </ul> |
| </li> |
| <li><code class="language-plaintext highlighter-rouge">OPTIONS</code> clause at <a href="sql-ref-syntax-ddl-create-table-datasource.html">CREATE TABLE USING DATA_SOURCE</a></li> |
| </ul> |
| |
| <table> |
| <thead><tr><th><b>Property Name</b></th><th><b>Default</b></th><th><b>Meaning</b></th><th><b>Scope</b></th></tr></thead> |
| <tr> |
| <td><code>wholetext</code></td> |
| <td><code>false</code></td> |
| <td>If true, read each file from input path(s) as a single row.</td> |
| <td>read</td> |
| </tr> |
| <tr> |
| <td><code>lineSep</code></td> |
| <td><code>\r</code>, <code>\r\n</code>, <code>\n</code> (for reading), <code>\n</code> (for writing)</td> |
| <td>Defines the line separator that should be used for reading or writing.</td> |
| <td>read/write</td> |
| </tr> |
| <tr> |
| <td><code>compression</code></td> |
| <td>(none)</td> |
| <td>Compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate).</td> |
| <td>write</td> |
| </tr> |
| </table> |
| <p>Other generic options can be found in <a href="https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html"> Generic File Source Options</a>.</p> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-3.5.1.min.js"></script> |
| <script src="js/vendor/bootstrap.bundle.min.js"></script> |
| |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> |
| <script type="text/javascript"> |
| // DocSearch is entirely free and automated. DocSearch is built in two parts: |
| // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link |
| // in your website and extract content from every page it traverses. It then pushes this |
| // content to an Algolia index. |
| // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index |
| // to your search input and display its results in a dropdown UI. If you want to find more |
| // details on how works DocSearch, check the docs of DocSearch. |
| docsearch({ |
| apiKey: 'd62f962a82bc9abb53471cb7b89da35e', |
| appId: 'RAI69RXRSK', |
| indexName: 'apache_spark', |
| inputSelector: '#docsearch-input', |
| enhancedSearchInput: true, |
| algoliaOptions: { |
| 'facetFilters': ["version:3.5.3"] |
| }, |
| debug: false // Set debug to true if you want to inspect the dropdown |
| }); |
| |
| </script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |