| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| |
| <title>Isotonic regression - RDD-based API - Spark 3.5.3 Documentation</title> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <link rel="preconnect" href="https://fonts.googleapis.com"> |
| <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> |
| <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> |
| <link href="css/custom.css" rel="stylesheet"> |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| <link rel="stylesheet" href="css/docsearch.min.css" /> |
| <link rel="stylesheet" href="css/docsearch.css"> |
| |
| |
| <!-- Matomo --> |
| <script> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| |
| </head> |
| <body class="global"> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> |
| <div class="navbar-brand"><a href="index.html"> |
| <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.3</span> |
| </div> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" |
| data-target="#navbarCollapse" aria-controls="navbarCollapse" |
| aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| <div class="collapse navbar-collapse" id="navbarCollapse"> |
| <ul class="navbar-nav me-auto"> |
| <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> |
| <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> |
| <a class="dropdown-item" href="quick-start.html">Quick Start</a> |
| <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> |
| <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> |
| <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> |
| <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> |
| <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> |
| <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> |
| <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> |
| <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> |
| <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> |
| <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> |
| <a class="dropdown-item" href="api/java/index.html">Java</a> |
| <a class="dropdown-item" href="api/python/index.html">Python</a> |
| <a class="dropdown-item" href="api/R/index.html">R</a> |
| <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> |
| <div class="dropdown-menu" aria-labelledby="navbarDeploying"> |
| <a class="dropdown-item" href="cluster-overview.html">Overview</a> |
| <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> |
| <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> |
| <a class="dropdown-item" href="running-on-yarn.html">YARN</a> |
| <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> |
| <div class="dropdown-menu" aria-labelledby="navbarMore"> |
| <a class="dropdown-item" href="configuration.html">Configuration</a> |
| <a class="dropdown-item" href="monitoring.html">Monitoring</a> |
| <a class="dropdown-item" href="tuning.html">Tuning Guide</a> |
| <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> |
| <a class="dropdown-item" href="security.html">Security</a> |
| <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> |
| <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="building-spark.html">Building Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> |
| </div> |
| </li> |
| |
| <li class="nav-item"> |
| <input type="text" id="docsearch-input" placeholder="Search the docs…"> |
| </li> |
| </ul> |
| <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.3</span></span>--> |
| </div> |
| </nav> |
| |
| |
| |
| <div class="container"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="ml-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-datasource.html"> |
| |
| Data sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-pipeline.html"> |
| |
| Pipelines |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-features.html"> |
| |
| Extracting, transforming and selecting features |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-classification-regression.html"> |
| |
| Classification and Regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-frequent-pattern-mining.html"> |
| |
| Frequent Pattern Mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-tuning.html"> |
| |
| Model selection and tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-advanced.html"> |
| |
| Advanced topics |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-data-types.html"> |
| |
| Data types |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-classification-regression.html"> |
| |
| Classification and regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-dimensionality-reduction.html"> |
| |
| Dimensionality reduction |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-feature-extraction.html"> |
| |
| Feature extraction and transformation |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-frequent-pattern-mining.html"> |
| |
| Frequent pattern mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-evaluation-metrics.html"> |
| |
| Evaluation metrics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-pmml-model-export.html"> |
| |
| PMML model export |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-optimization.html"> |
| |
| Optimization (developer) |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar mr-3" id="content"> |
| |
| <h1 class="title">Regression - RDD-based API</h1> |
| |
| |
| <h2 id="isotonic-regression">Isotonic regression</h2> |
| <p><a href="http://en.wikipedia.org/wiki/Isotonic_regression">Isotonic regression</a> |
| belongs to the family of regression algorithms. Formally isotonic regression is a problem where |
| given a finite set of real numbers <code class="language-plaintext highlighter-rouge">$Y = {y_1, y_2, ..., y_n}$</code> representing observed responses |
| and <code class="language-plaintext highlighter-rouge">$X = {x_1, x_2, ..., x_n}$</code> the unknown response values to be fitted |
| finding a function that minimizes</p> |
| |
| <p><code class="language-plaintext highlighter-rouge">\begin{equation} |
| f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2 |
| \end{equation}</code></p> |
| |
| <p>with respect to complete order subject to |
| <code class="language-plaintext highlighter-rouge">$x_1\le x_2\le ...\le x_n$</code> where <code class="language-plaintext highlighter-rouge">$w_i$</code> are positive weights. |
| The resulting function is called isotonic regression and it is unique. |
| It can be viewed as least squares problem under order restriction. |
| Essentially isotonic regression is a |
| <a href="http://en.wikipedia.org/wiki/Monotonic_function">monotonic function</a> |
| best fitting the original data points.</p> |
| |
| <p><code class="language-plaintext highlighter-rouge">spark.mllib</code> supports a |
| <a href="https://doi.org/10.1198/TECH.2010.10111">pool adjacent violators algorithm</a> |
| which uses an approach to |
| <a href="https://doi.org/10.1007/978-3-642-99789-1_10">parallelizing isotonic regression</a>. |
| The training input is an RDD of tuples of three double values that represent |
| label, feature and weight in this order. In case there are multiple tuples with |
| the same feature then these tuples are aggregated into a single tuple as follows:</p> |
| |
| <ul> |
| <li>Aggregated label is the weighted average of all labels.</li> |
| <li>Aggregated feature is the unique feature value.</li> |
| <li>Aggregated weight is the sum of all weights.</li> |
| </ul> |
| |
| <p>Additionally, IsotonicRegression algorithm has one |
| optional parameter called $isotonic$ defaulting to true. |
| This argument specifies if the isotonic regression is |
| isotonic (monotonically increasing) or antitonic (monotonically decreasing).</p> |
| |
| <p>Training returns an IsotonicRegressionModel that can be used to predict |
| labels for both known and unknown features. The result of isotonic regression |
| is treated as piecewise linear function. The rules for prediction therefore are:</p> |
| |
| <ul> |
| <li>If the prediction input exactly matches a training feature |
| then associated prediction is returned.</li> |
| <li>If the prediction input is lower or higher than all training features |
| then prediction with lowest or highest feature is returned respectively.</li> |
| <li>If the prediction input falls between two training features then prediction is treated |
| as piecewise linear function and interpolated value is calculated from the |
| predictions of the two closest features.</li> |
| </ul> |
| |
| <h3 id="examples">Examples</h3> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>Data are read from a file where each line has a format label,feature |
| i.e. 4710.28,500.00. The data are split to training and testing set. |
| Model is created using the training set and a mean squared error is calculated from the predicted |
| labels and real labels in the test set.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.regression.IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.regression.IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">math</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">IsotonicRegression</span><span class="p">,</span> <span class="n">IsotonicRegressionModel</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="k">def</span> <span class="nf">parsePoint</span><span class="p">(</span><span class="n">labeledData</span><span class="p">):</span> |
| <span class="k">return</span> <span class="p">(</span><span class="n">labeledData</span><span class="p">.</span><span class="n">label</span><span class="p">,</span> <span class="n">labeledData</span><span class="p">.</span><span class="n">features</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mf">1.0</span><span class="p">)</span> |
| |
| <span class="n">data</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="p">.</span><span class="n">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="p">)</span> |
| |
| <span class="c1"># Create label, feature, weight tuples from input data with weight set to default value 1.0. |
| </span><span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="n">parsePoint</span><span class="p">)</span> |
| |
| <span class="c1"># Split data into training (60%) and test (40%) sets. |
| </span><span class="n">training</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">parsedData</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="mi">11</span><span class="p">)</span> |
| |
| <span class="c1"># Create isotonic regression model from training data. |
| # Isotonic parameter defaults to true so it is only shown for demonstration |
| </span><span class="n">model</span> <span class="o">=</span> <span class="n">IsotonicRegression</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">training</span><span class="p">)</span> |
| |
| <span class="c1"># Create tuples of predicted and real labels. |
| </span><span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">:</span> <span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> |
| |
| <span class="c1"># Calculate mean squared error between predicted and real labels. |
| </span><span class="n">meanSquaredError</span> <span class="o">=</span> <span class="n">predictionAndLabel</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">pl</span><span class="p">:</span> <span class="n">math</span><span class="p">.</span><span class="nb">pow</span><span class="p">((</span><span class="n">pl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">pl</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">)).</span><span class="n">mean</span><span class="p">()</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Mean Squared Error = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">meanSquaredError</span><span class="p">))</span> |
| |
| <span class="c1"># Save and load model |
| </span><span class="n">model</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="p">)</span> |
| <span class="n">sameModel</span> <span class="o">=</span> <span class="n">IsotonicRegressionModel</span><span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/isotonic_regression_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>Data are read from a file where each line has a format label,feature |
| i.e. 4710.28,500.00. The data are split to training and testing set. |
| Model is created using the training set and a mean squared error is calculated from the predicted |
| labels and real labels in the test set.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/regression/IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.</span><span class="o">{</span><span class="nc">IsotonicRegression</span><span class="o">,</span> <span class="nc">IsotonicRegressionModel</span><span class="o">}</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span> |
| |
| <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">MLUtils</span><span class="o">.</span><span class="py">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> |
| <span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">).</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Create label, feature, weight tuples from input data with weight set to default value 1.0.</span> |
| <span class="k">val</span> <span class="nv">parsedData</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="n">labeledPoint</span> <span class="k">=></span> |
| <span class="o">(</span><span class="nv">labeledPoint</span><span class="o">.</span><span class="py">label</span><span class="o">,</span> <span class="nv">labeledPoint</span><span class="o">.</span><span class="py">features</span><span class="o">(</span><span class="mi">0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">)</span> |
| <span class="o">}</span> |
| |
| <span class="c1">// Split data into training (60%) and test (40%) sets.</span> |
| <span class="k">val</span> <span class="nv">splits</span> <span class="k">=</span> <span class="nv">parsedData</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">),</span> <span class="n">seed</span> <span class="k">=</span> <span class="mi">11L</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">test</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">1</span><span class="o">)</span> |
| |
| <span class="c1">// Create isotonic regression model from training data.</span> |
| <span class="c1">// Isotonic parameter defaults to true so it is only shown for demonstration</span> |
| <span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">().</span><span class="py">setIsotonic</span><span class="o">(</span><span class="kc">true</span><span class="o">).</span><span class="py">run</span><span class="o">(</span><span class="n">training</span><span class="o">)</span> |
| |
| <span class="c1">// Create tuples of predicted and real labels.</span> |
| <span class="k">val</span> <span class="nv">predictionAndLabel</span> <span class="k">=</span> <span class="nv">test</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="n">point</span> <span class="k">=></span> |
| <span class="k">val</span> <span class="nv">predictedLabel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">predict</span><span class="o">(</span><span class="nv">point</span><span class="o">.</span><span class="py">_2</span><span class="o">)</span> |
| <span class="o">(</span><span class="n">predictedLabel</span><span class="o">,</span> <span class="nv">point</span><span class="o">.</span><span class="py">_1</span><span class="o">)</span> |
| <span class="o">}</span> |
| |
| <span class="c1">// Calculate mean squared error between predicted and real labels.</span> |
| <span class="k">val</span> <span class="nv">meanSquaredError</span> <span class="k">=</span> <span class="nv">predictionAndLabel</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">p</span><span class="o">,</span> <span class="n">l</span><span class="o">)</span> <span class="k">=></span> <span class="nv">math</span><span class="o">.</span><span class="py">pow</span><span class="o">((</span><span class="n">p</span> <span class="o">-</span> <span class="n">l</span><span class="o">),</span> <span class="mi">2</span><span class="o">)</span> <span class="o">}.</span><span class="py">mean</span><span class="o">()</span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Mean Squared Error = $meanSquaredError"</span><span class="o">)</span> |
| |
| <span class="c1">// Save and load model</span> |
| <span class="nv">model</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">IsotonicRegressionModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala" in the Spark repo.</small></div> |
| </div> |
| <div data-lang="java"> |
| <p>Data are read from a file where each line has a format label,feature |
| i.e. 4710.28,500.00. The data are split to training and testing set. |
| Model is created using the training set and a mean squared error is calculated from the predicted |
| labels and real labels in the test set.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/regression/IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">scala.Tuple3</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.IsotonicRegression</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.IsotonicRegressionModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">LabeledPoint</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="nc">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span> |
| <span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">();</span> |
| |
| <span class="c1">// Create label, feature, weight tuples from input data with weight set to default value 1.0.</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Tuple3</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">>></span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="n">point</span> <span class="o">-></span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="n">point</span><span class="o">.</span><span class="na">label</span><span class="o">(),</span> <span class="n">point</span><span class="o">.</span><span class="na">features</span><span class="o">().</span><span class="na">apply</span><span class="o">(</span><span class="mi">0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">));</span> |
| |
| <span class="c1">// Split data into training (60%) and test (40%) sets.</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Tuple3</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">>>[]</span> <span class="n">splits</span> <span class="o">=</span> |
| <span class="n">parsedData</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">},</span> <span class="mi">11L</span><span class="o">);</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Tuple3</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">>></span> <span class="n">training</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Tuple3</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">>></span> <span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span> |
| |
| <span class="c1">// Create isotonic regression model from training data.</span> |
| <span class="c1">// Isotonic parameter defaults to true so it is only shown for demonstration</span> |
| <span class="nc">IsotonicRegressionModel</span> <span class="n">model</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">().</span><span class="na">setIsotonic</span><span class="o">(</span><span class="kc">true</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">training</span><span class="o">);</span> |
| |
| <span class="c1">// Create tuples of predicted and real labels.</span> |
| <span class="nc">JavaPairRDD</span><span class="o"><</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">></span> <span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="o">.</span><span class="na">mapToPair</span><span class="o">(</span><span class="n">point</span> <span class="o">-></span> |
| <span class="k">new</span> <span class="nc">Tuple2</span><span class="o"><>(</span><span class="n">model</span><span class="o">.</span><span class="na">predict</span><span class="o">(</span><span class="n">point</span><span class="o">.</span><span class="na">_2</span><span class="o">()),</span> <span class="n">point</span><span class="o">.</span><span class="na">_1</span><span class="o">()));</span> |
| |
| <span class="c1">// Calculate mean squared error between predicted and real labels.</span> |
| <span class="kt">double</span> <span class="n">meanSquaredError</span> <span class="o">=</span> <span class="n">predictionAndLabel</span><span class="o">.</span><span class="na">mapToDouble</span><span class="o">(</span><span class="n">pl</span> <span class="o">-></span> <span class="o">{</span> |
| <span class="kt">double</span> <span class="n">diff</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="na">_1</span><span class="o">()</span> <span class="o">-</span> <span class="n">pl</span><span class="o">.</span><span class="na">_2</span><span class="o">();</span> |
| <span class="k">return</span> <span class="n">diff</span> <span class="o">*</span> <span class="n">diff</span><span class="o">;</span> |
| <span class="o">}).</span><span class="na">mean</span><span class="o">();</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Mean Squared Error = "</span> <span class="o">+</span> <span class="n">meanSquaredError</span><span class="o">);</span> |
| |
| <span class="c1">// Save and load model</span> |
| <span class="n">model</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">);</span> |
| <span class="nc">IsotonicRegressionModel</span> <span class="n">sameModel</span> <span class="o">=</span> |
| <span class="nc">IsotonicRegressionModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">);</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-3.5.1.min.js"></script> |
| <script src="js/vendor/bootstrap.bundle.min.js"></script> |
| |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> |
| <script type="text/javascript"> |
| // DocSearch is entirely free and automated. DocSearch is built in two parts: |
| // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link |
| // in your website and extract content from every page it traverses. It then pushes this |
| // content to an Algolia index. |
| // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index |
| // to your search input and display its results in a dropdown UI. If you want to find more |
| // details on how works DocSearch, check the docs of DocSearch. |
| docsearch({ |
| apiKey: 'd62f962a82bc9abb53471cb7b89da35e', |
| appId: 'RAI69RXRSK', |
| indexName: 'apache_spark', |
| inputSelector: '#docsearch-input', |
| enhancedSearchInput: true, |
| algoliaOptions: { |
| 'facetFilters': ["version:3.5.3"] |
| }, |
| debug: false // Set debug to true if you want to inspect the dropdown |
| }); |
| |
| </script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |