blob: 89e6ed3f442466c832b4def9c25d2c80a19fb866 [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Dimensionality Reduction - RDD-based API - Spark 3.5.3 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet">
<link href="css/custom.css" rel="stylesheet">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<link rel="stylesheet" href="css/docsearch.min.css" />
<link rel="stylesheet" href="css/docsearch.css">
<!-- Matomo -->
<script>
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body class="global">
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar">
<div class="navbar-brand"><a href="index.html">
<img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.3</span>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarCollapse" aria-controls="navbarCollapse"
aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarCollapse">
<ul class="navbar-nav me-auto">
<li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a>
<div class="dropdown-menu" aria-labelledby="navbarQuickStart">
<a class="dropdown-item" href="quick-start.html">Quick Start</a>
<a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a>
<a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a>
<a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a>
<a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a>
<a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a>
<a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a>
<a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a>
<a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a>
<div class="dropdown-menu" aria-labelledby="navbarAPIDocs">
<a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a>
<a class="dropdown-item" href="api/java/index.html">Java</a>
<a class="dropdown-item" href="api/python/index.html">Python</a>
<a class="dropdown-item" href="api/R/index.html">R</a>
<a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a>
<div class="dropdown-menu" aria-labelledby="navbarDeploying">
<a class="dropdown-item" href="cluster-overview.html">Overview</a>
<a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a>
<a class="dropdown-item" href="running-on-mesos.html">Mesos</a>
<a class="dropdown-item" href="running-on-yarn.html">YARN</a>
<a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarMore">
<a class="dropdown-item" href="configuration.html">Configuration</a>
<a class="dropdown-item" href="monitoring.html">Monitoring</a>
<a class="dropdown-item" href="tuning.html">Tuning Guide</a>
<a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a>
<a class="dropdown-item" href="security.html">Security</a>
<a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a>
<a class="dropdown-item" href="migration-guide.html">Migration Guide</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="building-spark.html">Building Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a>
</div>
</li>
<li class="nav-item">
<input type="text" id="docsearch-input" placeholder="Search the docs…">
</li>
</ul>
<!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.3</span></span>-->
</div>
</nav>
<div class="container">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">MLlib: Main Guide</a></h3>
<ul>
<li>
<a href="ml-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="ml-datasource.html">
Data sources
</a>
</li>
<li>
<a href="ml-pipeline.html">
Pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-frequent-pattern-mining.html">
Frequent Pattern Mining
</a>
</li>
<li>
<a href="ml-tuning.html">
Model selection and tuning
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<ul>
<li>
<a href="mllib-dimensionality-reduction.html#singular-value-decomposition-svd">
singular value decomposition (SVD)
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html#principal-component-analysis-pca">
principal component analysis (PCA)
</a>
</li>
</ul>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar mr-3" id="content">
<h1 class="title">Dimensionality Reduction - RDD-based API</h1>
<ul id="markdown-toc">
<li><a href="#singular-value-decomposition-svd" id="markdown-toc-singular-value-decomposition-svd">Singular value decomposition (SVD)</a> <ul>
<li><a href="#performance" id="markdown-toc-performance">Performance</a></li>
<li><a href="#svd-example" id="markdown-toc-svd-example">SVD Example</a></li>
</ul>
</li>
<li><a href="#principal-component-analysis-pca" id="markdown-toc-principal-component-analysis-pca">Principal component analysis (PCA)</a></li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Dimensionality_reduction">Dimensionality reduction</a> is the process
of reducing the number of variables under consideration.
It can be used to extract latent features from raw and noisy features
or compress data while maintaining the structure.
<code class="language-plaintext highlighter-rouge">spark.mllib</code> provides support for dimensionality reduction on the <a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class.</p>
<h2 id="singular-value-decomposition-svd">Singular value decomposition (SVD)</h2>
<p><a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Singular value decomposition (SVD)</a>
factorizes a matrix into three matrices: $U$, $\Sigma$, and $V$ such that</p>
<p><code class="language-plaintext highlighter-rouge">\[
A = U \Sigma V^T,
\]</code></p>
<p>where</p>
<ul>
<li>$U$ is an orthonormal matrix, whose columns are called left singular vectors,</li>
<li>$\Sigma$ is a diagonal matrix with non-negative diagonals in descending order,
whose diagonals are called singular values,</li>
<li>$V$ is an orthonormal matrix, whose columns are called right singular vectors.</li>
</ul>
<p>For large matrices, usually we don&#8217;t need the complete factorization but only the top singular
values and its associated singular vectors. This can save storage, de-noise
and recover the low-rank structure of the matrix.</p>
<p>If we keep the top $k$ singular values, then the dimensions of the resulting low-rank matrix will be:</p>
<ul>
<li><code class="language-plaintext highlighter-rouge">$U$</code>: <code class="language-plaintext highlighter-rouge">$m \times k$</code>,</li>
<li><code class="language-plaintext highlighter-rouge">$\Sigma$</code>: <code class="language-plaintext highlighter-rouge">$k \times k$</code>,</li>
<li><code class="language-plaintext highlighter-rouge">$V$</code>: <code class="language-plaintext highlighter-rouge">$n \times k$</code>.</li>
</ul>
<h3 id="performance">Performance</h3>
<p>We assume $n$ is smaller than $m$. The singular values and the right singular vectors are derived
from the eigenvalues and the eigenvectors of the Gramian matrix $A^T A$. The matrix
storing the left singular vectors $U$, is computed via matrix multiplication as
$U = A (V S^{-1})$, if requested by the user via the computeU parameter.
The actual method to use is determined automatically based on the computational cost:</p>
<ul>
<li>If $n$ is small ($n &lt; 100$) or $k$ is large compared with $n$ ($k &gt; n / 2$), we compute the Gramian matrix
first and then compute its top eigenvalues and eigenvectors locally on the driver.
This requires a single pass with $O(n^2)$ storage on each executor and on the driver, and
$O(n^2 k)$ time on the driver.</li>
<li>Otherwise, we compute $(A^T A) v$ in a distributive way and send it to
<a href="http://www.caam.rice.edu/software/ARPACK/">ARPACK</a> to
compute $(A^T A)$&#8217;s top eigenvalues and eigenvectors on the driver node. This requires $O(k)$
passes, $O(n)$ storage on each executor, and $O(n k)$ storage on the driver.</li>
</ul>
<h3 id="svd-example">SVD Example</h3>
<p><code class="language-plaintext highlighter-rouge">spark.mllib</code> provides SVD functionality to row-oriented matrices, provided in the
<a href="mllib-data-types.html#rowmatrix">RowMatrix</a> class.</p>
<div class="codetabs">
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.SingularValueDecomposition.html"><code class="language-plaintext highlighter-rouge">SingularValueDecomposition</code> Python docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">RowMatrix</span>
<span class="n">rows</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">parallelize</span><span class="p">([</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">sparse</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="p">{</span><span class="mi">1</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mi">3</span><span class="p">:</span> <span class="mf">7.0</span><span class="p">}),</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">5.0</span><span class="p">),</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">6.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">mat</span> <span class="o">=</span> <span class="n">RowMatrix</span><span class="p">(</span><span class="n">rows</span><span class="p">)</span>
<span class="c1"># Compute the top 5 singular values and corresponding singular vectors.
</span><span class="n">svd</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">computeSVD</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">computeU</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">U</span> <span class="o">=</span> <span class="n">svd</span><span class="p">.</span><span class="n">U</span> <span class="c1"># The U factor is a RowMatrix.
</span><span class="n">s</span> <span class="o">=</span> <span class="n">svd</span><span class="p">.</span><span class="n">s</span> <span class="c1"># The singular values are stored in a local dense vector.
</span><span class="n">V</span> <span class="o">=</span> <span class="n">svd</span><span class="p">.</span><span class="n">V</span> <span class="c1"># The V factor is a local dense matrix.</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/mllib/svd_example.py" in the Spark repo.</small></div>
<p>The same code applies to <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> if <code class="language-plaintext highlighter-rouge">U</code> is defined as an
<code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code>.</p>
</div>
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.html"><code class="language-plaintext highlighter-rouge">SingularValueDecomposition</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">(</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">1</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))),</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))</span>
<span class="k">val</span> <span class="nv">rows</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">)</span>
<span class="c1">// Compute the top 5 singular values and corresponding singular vectors.</span>
<span class="k">val</span> <span class="nv">svd</span><span class="k">:</span> <span class="kt">SingularValueDecomposition</span><span class="o">[</span><span class="kt">RowMatrix</span>, <span class="kt">Matrix</span><span class="o">]</span> <span class="k">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">computeSVD</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="n">computeU</span> <span class="k">=</span> <span class="kc">true</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">U</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="nv">svd</span><span class="o">.</span><span class="py">U</span> <span class="c1">// The U factor is a RowMatrix.</span>
<span class="k">val</span> <span class="nv">s</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nv">svd</span><span class="o">.</span><span class="py">s</span> <span class="c1">// The singular values are stored in a local dense vector.</span>
<span class="k">val</span> <span class="nv">V</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nv">svd</span><span class="o">.</span><span class="py">V</span> <span class="c1">// The V factor is a local dense matrix.</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/SVDExample.scala" in the Spark repo.</small></div>
<p>The same code applies to <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> if <code class="language-plaintext highlighter-rouge">U</code> is defined as an
<code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code>.</p>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/SingularValueDecomposition.html"><code class="language-plaintext highlighter-rouge">SingularValueDecomposition</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.SingularValueDecomposition</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
<span class="nc">List</span><span class="o">&lt;</span><span class="nc">Vector</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">1</span><span class="o">,</span> <span class="mi">3</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">}),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">)</span>
<span class="o">);</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Vector</span><span class="o">&gt;</span> <span class="n">rows</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Create a RowMatrix from JavaRDD&lt;Vector&gt;.</span>
<span class="nc">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="c1">// Compute the top 5 singular values and corresponding singular vectors.</span>
<span class="nc">SingularValueDecomposition</span><span class="o">&lt;</span><span class="nc">RowMatrix</span><span class="o">,</span> <span class="nc">Matrix</span><span class="o">&gt;</span> <span class="n">svd</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computeSVD</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="kc">true</span><span class="o">,</span> <span class="mf">1.0</span><span class="no">E</span><span class="o">-</span><span class="mi">9</span><span class="n">d</span><span class="o">);</span>
<span class="nc">RowMatrix</span> <span class="no">U</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">U</span><span class="o">();</span> <span class="c1">// The U factor is a RowMatrix.</span>
<span class="nc">Vector</span> <span class="n">s</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">s</span><span class="o">();</span> <span class="c1">// The singular values are stored in a local dense vector.</span>
<span class="nc">Matrix</span> <span class="no">V</span> <span class="o">=</span> <span class="n">svd</span><span class="o">.</span><span class="na">V</span><span class="o">();</span> <span class="c1">// The V factor is a local dense matrix.</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaSVDExample.java" in the Spark repo.</small></div>
<p>The same code applies to <code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code> if <code class="language-plaintext highlighter-rouge">U</code> is defined as an
<code class="language-plaintext highlighter-rouge">IndexedRowMatrix</code>.</p>
</div>
</div>
<h2 id="principal-component-analysis-pca">Principal component analysis (PCA)</h2>
<p><a href="http://en.wikipedia.org/wiki/Principal_component_analysis">Principal component analysis (PCA)</a> is a
statistical method to find a rotation such that the first coordinate has the largest variance
possible, and each succeeding coordinate, in turn, has the largest variance possible. The columns of
the rotation matrix are called principal components. PCA is used widely in dimensionality reduction.</p>
<p><code class="language-plaintext highlighter-rouge">spark.mllib</code> supports PCA for tall-and-skinny matrices stored in row-oriented format and any Vectors.</p>
<div class="codetabs">
<div data-lang="python">
<p>The following code demonstrates how to compute principal components on a <code class="language-plaintext highlighter-rouge">RowMatrix</code>
and use them to project the vectors into a low-dimensional space.</p>
<p>Refer to the <a href="api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Python docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg.distributed</span> <span class="kn">import</span> <span class="n">RowMatrix</span>
<span class="n">rows</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">parallelize</span><span class="p">([</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">sparse</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="p">{</span><span class="mi">1</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mi">3</span><span class="p">:</span> <span class="mf">7.0</span><span class="p">}),</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">,</span> <span class="mf">4.0</span><span class="p">,</span> <span class="mf">5.0</span><span class="p">),</span>
<span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">6.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">mat</span> <span class="o">=</span> <span class="n">RowMatrix</span><span class="p">(</span><span class="n">rows</span><span class="p">)</span>
<span class="c1"># Compute the top 4 principal components.
# Principal components are stored in a local dense matrix.
</span><span class="n">pc</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">computePrincipalComponents</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="c1"># Project the rows to the linear space spanned by the top 4 principal components.
</span><span class="n">projected</span> <span class="o">=</span> <span class="n">mat</span><span class="p">.</span><span class="n">multiply</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/mllib/pca_rowmatrix_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="scala">
<p>The following code demonstrates how to compute principal components on a <code class="language-plaintext highlighter-rouge">RowMatrix</code>
and use them to project the vectors into a low-dimensional space.</p>
<p>Refer to the <a href="api/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">(</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">1</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))),</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">))</span>
<span class="k">val</span> <span class="nv">rows</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">mat</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">)</span>
<span class="c1">// Compute the top 4 principal components.</span>
<span class="c1">// Principal components are stored in a local dense matrix.</span>
<span class="k">val</span> <span class="nv">pc</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">computePrincipalComponents</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="c1">// Project the rows to the linear space spanned by the top 4 principal components.</span>
<span class="k">val</span> <span class="nv">projected</span><span class="k">:</span> <span class="kt">RowMatrix</span> <span class="o">=</span> <span class="nv">mat</span><span class="o">.</span><span class="py">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PCAOnRowMatrixExample.scala" in the Spark repo.</small></div>
<p>The following code demonstrates how to compute principal components on source vectors
and use them to project the vectors into a low-dimensional space while keeping associated labels:</p>
<p>Refer to the <a href="api/scala/org/apache/spark/mllib/feature/PCA.html"><code class="language-plaintext highlighter-rouge">PCA</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.feature.PCA</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.RDD</span>
<span class="k">val</span> <span class="nv">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">parallelize</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">)),</span>
<span class="k">new</span> <span class="nc">LabeledPoint</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">1</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">,</span> <span class="mi">0</span><span class="o">))))</span>
<span class="c1">// Compute the top 5 principal components.</span>
<span class="k">val</span> <span class="nv">pca</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PCA</span><span class="o">(</span><span class="mi">5</span><span class="o">).</span><span class="py">fit</span><span class="o">(</span><span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">features</span><span class="o">))</span>
<span class="c1">// Project vectors to the linear space spanned by the top 5 principal</span>
<span class="c1">// components, keeping the label</span>
<span class="k">val</span> <span class="nv">projected</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">p</span> <span class="k">=&gt;</span> <span class="nv">p</span><span class="o">.</span><span class="py">copy</span><span class="o">(</span><span class="n">features</span> <span class="k">=</span> <span class="nv">pca</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="nv">p</span><span class="o">.</span><span class="py">features</span><span class="o">)))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PCAOnSourceVectorExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>The following code demonstrates how to compute principal components on a <code class="language-plaintext highlighter-rouge">RowMatrix</code>
and use them to project the vectors into a low-dimensional space.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html"><code class="language-plaintext highlighter-rouge">RowMatrix</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.distributed.RowMatrix</span><span class="o">;</span>
<span class="nc">List</span><span class="o">&lt;</span><span class="nc">Vector</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">5</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">1</span><span class="o">,</span> <span class="mi">3</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">1.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">}),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span>
<span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">)</span>
<span class="o">);</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Vector</span><span class="o">&gt;</span> <span class="n">rows</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Create a RowMatrix from JavaRDD&lt;Vector&gt;.</span>
<span class="nc">RowMatrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RowMatrix</span><span class="o">(</span><span class="n">rows</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="c1">// Compute the top 4 principal components.</span>
<span class="c1">// Principal components are stored in a local dense matrix.</span>
<span class="nc">Matrix</span> <span class="n">pc</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">computePrincipalComponents</span><span class="o">(</span><span class="mi">4</span><span class="o">);</span>
<span class="c1">// Project the rows to the linear space spanned by the top 4 principal components.</span>
<span class="nc">RowMatrix</span> <span class="n">projected</span> <span class="o">=</span> <span class="n">mat</span><span class="o">.</span><span class="na">multiply</span><span class="o">(</span><span class="n">pc</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaPCAExample.java" in the Spark repo.</small></div>
</div>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-3.5.1.min.js"></script>
<script src="js/vendor/bootstrap.bundle.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<script type="text/javascript" src="js/vendor/docsearch.min.js"></script>
<script type="text/javascript">
// DocSearch is entirely free and automated. DocSearch is built in two parts:
// 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link
// in your website and extract content from every page it traverses. It then pushes this
// content to an Algolia index.
// 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index
// to your search input and display its results in a dropdown UI. If you want to find more
// details on how works DocSearch, check the docs of DocSearch.
docsearch({
apiKey: 'd62f962a82bc9abb53471cb7b89da35e',
appId: 'RAI69RXRSK',
indexName: 'apache_spark',
inputSelector: '#docsearch-input',
enhancedSearchInput: true,
algoliaOptions: {
'facetFilters': ["version:3.5.3"]
},
debug: false // Set debug to true if you want to inspect the dropdown
});
</script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>