blob: 310c8a94cf1007ac9c0d486d1a9586fc22f1125b [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Isotonic regression - RDD-based API - Spark 3.5.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet">
<link href="css/custom.css" rel="stylesheet">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<link rel="stylesheet" href="css/docsearch.min.css" />
<link rel="stylesheet" href="css/docsearch.css">
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body class="global">
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar">
<div class="navbar-brand"><a href="index.html">
<img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.0</span>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarCollapse" aria-controls="navbarCollapse"
aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarCollapse">
<ul class="navbar-nav me-auto">
<li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a>
<div class="dropdown-menu" aria-labelledby="navbarQuickStart">
<a class="dropdown-item" href="quick-start.html">Quick Start</a>
<a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a>
<a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a>
<a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a>
<a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a>
<a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a>
<a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a>
<a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a>
<a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a>
<div class="dropdown-menu" aria-labelledby="navbarAPIDocs">
<a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a>
<a class="dropdown-item" href="api/java/index.html">Java</a>
<a class="dropdown-item" href="api/python/index.html">Python</a>
<a class="dropdown-item" href="api/R/index.html">R</a>
<a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a>
<div class="dropdown-menu" aria-labelledby="navbarDeploying">
<a class="dropdown-item" href="cluster-overview.html">Overview</a>
<a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a>
<a class="dropdown-item" href="running-on-mesos.html">Mesos</a>
<a class="dropdown-item" href="running-on-yarn.html">YARN</a>
<a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarMore">
<a class="dropdown-item" href="configuration.html">Configuration</a>
<a class="dropdown-item" href="monitoring.html">Monitoring</a>
<a class="dropdown-item" href="tuning.html">Tuning Guide</a>
<a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a>
<a class="dropdown-item" href="security.html">Security</a>
<a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a>
<a class="dropdown-item" href="migration-guide.html">Migration Guide</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="building-spark.html">Building Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a>
</div>
</li>
<li class="nav-item">
<input type="text" id="docsearch-input" placeholder="Search the docs…">
</li>
</ul>
<!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.0</span></span>-->
</div>
</nav>
<div class="container">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">MLlib: Main Guide</a></h3>
<ul>
<li>
<a href="ml-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="ml-datasource.html">
Data sources
</a>
</li>
<li>
<a href="ml-pipeline.html">
Pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-frequent-pattern-mining.html">
Frequent Pattern Mining
</a>
</li>
<li>
<a href="ml-tuning.html">
Model selection and tuning
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar mr-3" id="content">
<h1 class="title">Regression - RDD-based API</h1>
<h2 id="isotonic-regression">Isotonic regression</h2>
<p><a href="http://en.wikipedia.org/wiki/Isotonic_regression">Isotonic regression</a>
belongs to the family of regression algorithms. Formally isotonic regression is a problem where
given a finite set of real numbers <code class="language-plaintext highlighter-rouge">$Y = {y_1, y_2, ..., y_n}$</code> representing observed responses
and <code class="language-plaintext highlighter-rouge">$X = {x_1, x_2, ..., x_n}$</code> the unknown response values to be fitted
finding a function that minimizes</p>
<p><code class="language-plaintext highlighter-rouge">\begin{equation}
f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2
\end{equation}</code></p>
<p>with respect to complete order subject to
<code class="language-plaintext highlighter-rouge">$x_1\le x_2\le ...\le x_n$</code> where <code class="language-plaintext highlighter-rouge">$w_i$</code> are positive weights.
The resulting function is called isotonic regression and it is unique.
It can be viewed as least squares problem under order restriction.
Essentially isotonic regression is a
<a href="http://en.wikipedia.org/wiki/Monotonic_function">monotonic function</a>
best fitting the original data points.</p>
<p><code class="language-plaintext highlighter-rouge">spark.mllib</code> supports a
<a href="https://doi.org/10.1198/TECH.2010.10111">pool adjacent violators algorithm</a>
which uses an approach to
<a href="https://doi.org/10.1007/978-3-642-99789-1_10">parallelizing isotonic regression</a>.
The training input is an RDD of tuples of three double values that represent
label, feature and weight in this order. In case there are multiple tuples with
the same feature then these tuples are aggregated into a single tuple as follows:</p>
<ul>
<li>Aggregated label is the weighted average of all labels.</li>
<li>Aggregated feature is the unique feature value.</li>
<li>Aggregated weight is the sum of all weights.</li>
</ul>
<p>Additionally, IsotonicRegression algorithm has one
optional parameter called $isotonic$ defaulting to true.
This argument specifies if the isotonic regression is
isotonic (monotonically increasing) or antitonic (monotonically decreasing).</p>
<p>Training returns an IsotonicRegressionModel that can be used to predict
labels for both known and unknown features. The result of isotonic regression
is treated as piecewise linear function. The rules for prediction therefore are:</p>
<ul>
<li>If the prediction input exactly matches a training feature
then associated prediction is returned.</li>
<li>If the prediction input is lower or higher than all training features
then prediction with lowest or highest feature is returned respectively.</li>
<li>If the prediction input falls between two training features then prediction is treated
as piecewise linear function and interpolated value is calculated from the
predictions of the two closest features.</li>
</ul>
<h3 id="examples">Examples</h3>
<div class="codetabs">
<div data-lang="python">
<p>Data are read from a file where each line has a format label,feature
i.e. 4710.28,500.00. The data are split to training and testing set.
Model is created using the training set and a mean squared error is calculated from the predicted
labels and real labels in the test set.</p>
<p>Refer to the <a href="api/python/reference/api/pyspark.mllib.regression.IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.regression.IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">math</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">IsotonicRegression</span><span class="p">,</span> <span class="n">IsotonicRegressionModel</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span>
<span class="c1"># Load and parse the data
</span><span class="k">def</span> <span class="nf">parsePoint</span><span class="p">(</span><span class="n">labeledData</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="n">labeledData</span><span class="p">.</span><span class="n">label</span><span class="p">,</span> <span class="n">labeledData</span><span class="p">.</span><span class="n">features</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="p">.</span><span class="n">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Create label, feature, weight tuples from input data with weight set to default value 1.0.
</span><span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="n">parsePoint</span><span class="p">)</span>
<span class="c1"># Split data into training (60%) and test (40%) sets.
</span><span class="n">training</span><span class="p">,</span> <span class="n">test</span> <span class="o">=</span> <span class="n">parsedData</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="mi">11</span><span class="p">)</span>
<span class="c1"># Create isotonic regression model from training data.
# Isotonic parameter defaults to true so it is only shown for demonstration
</span><span class="n">model</span> <span class="o">=</span> <span class="n">IsotonicRegression</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Create tuples of predicted and real labels.
</span><span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">p</span><span class="p">:</span> <span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span>
<span class="c1"># Calculate mean squared error between predicted and real labels.
</span><span class="n">meanSquaredError</span> <span class="o">=</span> <span class="n">predictionAndLabel</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">pl</span><span class="p">:</span> <span class="n">math</span><span class="p">.</span><span class="nb">pow</span><span class="p">((</span><span class="n">pl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">pl</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">)).</span><span class="n">mean</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Mean Squared Error = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">meanSquaredError</span><span class="p">))</span>
<span class="c1"># Save and load model
</span><span class="n">model</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="p">)</span>
<span class="n">sameModel</span> <span class="o">=</span> <span class="n">IsotonicRegressionModel</span><span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/mllib/isotonic_regression_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="scala">
<p>Data are read from a file where each line has a format label,feature
i.e. 4710.28,500.00. The data are split to training and testing set.
Model is created using the training set and a mean squared error is calculated from the predicted
labels and real labels in the test set.</p>
<p>Refer to the <a href="api/scala/org/apache/spark/mllib/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/regression/IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.</span><span class="o">{</span><span class="nc">IsotonicRegression</span><span class="o">,</span> <span class="nc">IsotonicRegressionModel</span><span class="o">}</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">MLUtils</span><span class="o">.</span><span class="py">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span>
<span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">).</span><span class="py">cache</span><span class="o">()</span>
<span class="c1">// Create label, feature, weight tuples from input data with weight set to default value 1.0.</span>
<span class="k">val</span> <span class="nv">parsedData</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="n">labeledPoint</span> <span class="k">=&gt;</span>
<span class="o">(</span><span class="nv">labeledPoint</span><span class="o">.</span><span class="py">label</span><span class="o">,</span> <span class="nv">labeledPoint</span><span class="o">.</span><span class="py">features</span><span class="o">(</span><span class="mi">0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">)</span>
<span class="o">}</span>
<span class="c1">// Split data into training (60%) and test (40%) sets.</span>
<span class="k">val</span> <span class="nv">splits</span> <span class="k">=</span> <span class="nv">parsedData</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">),</span> <span class="n">seed</span> <span class="k">=</span> <span class="mi">11L</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">test</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">1</span><span class="o">)</span>
<span class="c1">// Create isotonic regression model from training data.</span>
<span class="c1">// Isotonic parameter defaults to true so it is only shown for demonstration</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">().</span><span class="py">setIsotonic</span><span class="o">(</span><span class="kc">true</span><span class="o">).</span><span class="py">run</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Create tuples of predicted and real labels.</span>
<span class="k">val</span> <span class="nv">predictionAndLabel</span> <span class="k">=</span> <span class="nv">test</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="n">point</span> <span class="k">=&gt;</span>
<span class="k">val</span> <span class="nv">predictedLabel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">predict</span><span class="o">(</span><span class="nv">point</span><span class="o">.</span><span class="py">_2</span><span class="o">)</span>
<span class="o">(</span><span class="n">predictedLabel</span><span class="o">,</span> <span class="nv">point</span><span class="o">.</span><span class="py">_1</span><span class="o">)</span>
<span class="o">}</span>
<span class="c1">// Calculate mean squared error between predicted and real labels.</span>
<span class="k">val</span> <span class="nv">meanSquaredError</span> <span class="k">=</span> <span class="nv">predictionAndLabel</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">p</span><span class="o">,</span> <span class="n">l</span><span class="o">)</span> <span class="k">=&gt;</span> <span class="nv">math</span><span class="o">.</span><span class="py">pow</span><span class="o">((</span><span class="n">p</span> <span class="o">-</span> <span class="n">l</span><span class="o">),</span> <span class="mi">2</span><span class="o">)</span> <span class="o">}.</span><span class="py">mean</span><span class="o">()</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Mean Squared Error = $meanSquaredError"</span><span class="o">)</span>
<span class="c1">// Save and load model</span>
<span class="nv">model</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">IsotonicRegressionModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Data are read from a file where each line has a format label,feature
i.e. 4710.28,500.00. The data are split to training and testing set.
Model is created using the training set and a mean squared error is calculated from the predicted
labels and real labels in the test set.</p>
<p>Refer to the <a href="api/java/org/apache/spark/mllib/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/regression/IsotonicRegressionModel.html"><code class="language-plaintext highlighter-rouge">IsotonicRegressionModel</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">scala.Tuple3</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.IsotonicRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.IsotonicRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">LabeledPoint</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="nc">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span>
<span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">();</span>
<span class="c1">// Create label, feature, weight tuples from input data with weight set to default value 1.0.</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Tuple3</span><span class="o">&lt;</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">&gt;&gt;</span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="n">point</span> <span class="o">-&gt;</span>
<span class="k">new</span> <span class="nc">Tuple3</span><span class="o">&lt;&gt;(</span><span class="n">point</span><span class="o">.</span><span class="na">label</span><span class="o">(),</span> <span class="n">point</span><span class="o">.</span><span class="na">features</span><span class="o">().</span><span class="na">apply</span><span class="o">(</span><span class="mi">0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">));</span>
<span class="c1">// Split data into training (60%) and test (40%) sets.</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Tuple3</span><span class="o">&lt;</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">&gt;&gt;[]</span> <span class="n">splits</span> <span class="o">=</span>
<span class="n">parsedData</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">},</span> <span class="mi">11L</span><span class="o">);</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Tuple3</span><span class="o">&lt;</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">&gt;&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">JavaRDD</span><span class="o">&lt;</span><span class="nc">Tuple3</span><span class="o">&lt;</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">&gt;&gt;</span> <span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Create isotonic regression model from training data.</span>
<span class="c1">// Isotonic parameter defaults to true so it is only shown for demonstration</span>
<span class="nc">IsotonicRegressionModel</span> <span class="n">model</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">().</span><span class="na">setIsotonic</span><span class="o">(</span><span class="kc">true</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Create tuples of predicted and real labels.</span>
<span class="nc">JavaPairRDD</span><span class="o">&lt;</span><span class="nc">Double</span><span class="o">,</span> <span class="nc">Double</span><span class="o">&gt;</span> <span class="n">predictionAndLabel</span> <span class="o">=</span> <span class="n">test</span><span class="o">.</span><span class="na">mapToPair</span><span class="o">(</span><span class="n">point</span> <span class="o">-&gt;</span>
<span class="k">new</span> <span class="nc">Tuple2</span><span class="o">&lt;&gt;(</span><span class="n">model</span><span class="o">.</span><span class="na">predict</span><span class="o">(</span><span class="n">point</span><span class="o">.</span><span class="na">_2</span><span class="o">()),</span> <span class="n">point</span><span class="o">.</span><span class="na">_1</span><span class="o">()));</span>
<span class="c1">// Calculate mean squared error between predicted and real labels.</span>
<span class="kt">double</span> <span class="n">meanSquaredError</span> <span class="o">=</span> <span class="n">predictionAndLabel</span><span class="o">.</span><span class="na">mapToDouble</span><span class="o">(</span><span class="n">pl</span> <span class="o">-&gt;</span> <span class="o">{</span>
<span class="kt">double</span> <span class="n">diff</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="na">_1</span><span class="o">()</span> <span class="o">-</span> <span class="n">pl</span><span class="o">.</span><span class="na">_2</span><span class="o">();</span>
<span class="k">return</span> <span class="n">diff</span> <span class="o">*</span> <span class="n">diff</span><span class="o">;</span>
<span class="o">}).</span><span class="na">mean</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Mean Squared Error = "</span> <span class="o">+</span> <span class="n">meanSquaredError</span><span class="o">);</span>
<span class="c1">// Save and load model</span>
<span class="n">model</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">);</span>
<span class="nc">IsotonicRegressionModel</span> <span class="n">sameModel</span> <span class="o">=</span>
<span class="nc">IsotonicRegressionModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/tmp/myIsotonicRegressionModel"</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java" in the Spark repo.</small></div>
</div>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-3.5.1.min.js"></script>
<script src="js/vendor/bootstrap.bundle.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<script type="text/javascript" src="js/vendor/docsearch.min.js"></script>
<script type="text/javascript">
// DocSearch is entirely free and automated. DocSearch is built in two parts:
// 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link
// in your website and extract content from every page it traverses. It then pushes this
// content to an Algolia index.
// 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index
// to your search input and display its results in a dropdown UI. If you want to find more
// details on how works DocSearch, check the docs of DocSearch.
docsearch({
apiKey: 'd62f962a82bc9abb53471cb7b89da35e',
appId: 'RAI69RXRSK',
indexName: 'apache_spark',
inputSelector: '#docsearch-input',
enhancedSearchInput: true,
algoliaOptions: {
'facetFilters': ["version:3.5.0"]
},
debug: false // Set debug to true if you want to inspect the dropdown
});
</script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>