| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> |
| |
| <title>Clustering - RDD-based API - Spark 3.5.0 Documentation</title> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <link rel="preconnect" href="https://fonts.googleapis.com"> |
| <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> |
| <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> |
| <link href="css/custom.css" rel="stylesheet"> |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| <link rel="stylesheet" href="css/docsearch.min.css" /> |
| <link rel="stylesheet" href="css/docsearch.css"> |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| </head> |
| <body class="global"> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> |
| <div class="navbar-brand"><a href="index.html"> |
| <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.0</span> |
| </div> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" |
| data-target="#navbarCollapse" aria-controls="navbarCollapse" |
| aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| <div class="collapse navbar-collapse" id="navbarCollapse"> |
| <ul class="navbar-nav me-auto"> |
| <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> |
| <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> |
| <a class="dropdown-item" href="quick-start.html">Quick Start</a> |
| <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> |
| <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> |
| <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> |
| <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> |
| <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> |
| <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> |
| <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> |
| <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> |
| <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> |
| <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> |
| <a class="dropdown-item" href="api/java/index.html">Java</a> |
| <a class="dropdown-item" href="api/python/index.html">Python</a> |
| <a class="dropdown-item" href="api/R/index.html">R</a> |
| <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> |
| <div class="dropdown-menu" aria-labelledby="navbarDeploying"> |
| <a class="dropdown-item" href="cluster-overview.html">Overview</a> |
| <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> |
| <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> |
| <a class="dropdown-item" href="running-on-yarn.html">YARN</a> |
| <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> |
| </div> |
| </li> |
| |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> |
| <div class="dropdown-menu" aria-labelledby="navbarMore"> |
| <a class="dropdown-item" href="configuration.html">Configuration</a> |
| <a class="dropdown-item" href="monitoring.html">Monitoring</a> |
| <a class="dropdown-item" href="tuning.html">Tuning Guide</a> |
| <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> |
| <a class="dropdown-item" href="security.html">Security</a> |
| <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> |
| <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> |
| <div class="dropdown-divider"></div> |
| <a class="dropdown-item" href="building-spark.html">Building Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> |
| <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> |
| </div> |
| </li> |
| |
| <li class="nav-item"> |
| <input type="text" id="docsearch-input" placeholder="Search the docs…"> |
| </li> |
| </ul> |
| <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.0</span></span>--> |
| </div> |
| </nav> |
| |
| |
| |
| <div class="container"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="ml-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-datasource.html"> |
| |
| Data sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-pipeline.html"> |
| |
| Pipelines |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-features.html"> |
| |
| Extracting, transforming and selecting features |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-classification-regression.html"> |
| |
| Classification and Regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-frequent-pattern-mining.html"> |
| |
| Frequent Pattern Mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-tuning.html"> |
| |
| Model selection and tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-advanced.html"> |
| |
| Advanced topics |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-data-types.html"> |
| |
| Data types |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-classification-regression.html"> |
| |
| Classification and regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-clustering.html#k-means"> |
| |
| k-means |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html#gaussian-mixture"> |
| |
| Gaussian mixture |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html#power-iteration-clustering-pic"> |
| |
| power iteration clustering (PIC) |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html#latent-dirichlet-allocation-lda"> |
| |
| latent Dirichlet allocation (LDA) |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html#streaming-k-means"> |
| |
| streaming k-means |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| |
| |
| <li> |
| <a href="mllib-dimensionality-reduction.html"> |
| |
| Dimensionality reduction |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-feature-extraction.html"> |
| |
| Feature extraction and transformation |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-frequent-pattern-mining.html"> |
| |
| Frequent pattern mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-evaluation-metrics.html"> |
| |
| Evaluation metrics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-pmml-model-export.html"> |
| |
| PMML model export |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-optimization.html"> |
| |
| Optimization (developer) |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar mr-3" id="content"> |
| |
| <h1 class="title">Clustering - RDD-based API</h1> |
| |
| |
| <p><a href="https://en.wikipedia.org/wiki/Cluster_analysis">Clustering</a> is an unsupervised learning problem whereby we aim to group subsets |
| of entities with one another based on some notion of similarity. Clustering is |
| often used for exploratory analysis and/or as a component of a hierarchical |
| <a href="https://en.wikipedia.org/wiki/Supervised_learning">supervised learning</a> pipeline (in which distinct classifiers or regression |
| models are trained for each cluster).</p> |
| |
| <p>The <code class="language-plaintext highlighter-rouge">spark.mllib</code> package supports the following models:</p> |
| |
| <ul id="markdown-toc"> |
| <li><a href="#k-means" id="markdown-toc-k-means">K-means</a></li> |
| <li><a href="#gaussian-mixture" id="markdown-toc-gaussian-mixture">Gaussian mixture</a></li> |
| <li><a href="#power-iteration-clustering-pic" id="markdown-toc-power-iteration-clustering-pic">Power iteration clustering (PIC)</a></li> |
| <li><a href="#latent-dirichlet-allocation-lda" id="markdown-toc-latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</a></li> |
| <li><a href="#bisecting-k-means" id="markdown-toc-bisecting-k-means">Bisecting k-means</a></li> |
| <li><a href="#streaming-k-means" id="markdown-toc-streaming-k-means">Streaming k-means</a></li> |
| </ul> |
| |
| <h2 id="k-means">K-means</h2> |
| |
| <p><a href="http://en.wikipedia.org/wiki/K-means_clustering">K-means</a> is one of the |
| most commonly used clustering algorithms that clusters the data points into a |
| predefined number of clusters. The <code class="language-plaintext highlighter-rouge">spark.mllib</code> implementation includes a parallelized |
| variant of the <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">k-means++</a> method |
| called <a href="http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf">kmeans||</a>. |
| The implementation in <code class="language-plaintext highlighter-rouge">spark.mllib</code> has the following parameters:</p> |
| |
| <ul> |
| <li><em>k</em> is the number of desired clusters. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster.</li> |
| <li><em>maxIterations</em> is the maximum number of iterations to run.</li> |
| <li><em>initializationMode</em> specifies either random initialization or |
| initialization via k-means||.</li> |
| <li><em>runs</em> This param has no effect since Spark 2.0.0.</li> |
| <li><em>initializationSteps</em> determines the number of steps in the k-means|| algorithm.</li> |
| <li><em>epsilon</em> determines the distance threshold within which we consider k-means to have converged.</li> |
| <li><em>initialModel</em> is an optional set of cluster centers used for initialization. If this parameter is supplied, only one run is performed.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>The following examples can be tested in the PySpark shell.</p> |
| |
| <p>In the following example after loading and parsing data, we use the KMeans object to cluster the |
| data into two clusters. The number of desired clusters is passed to the algorithm. We then compute |
| Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing <em>k</em>. In |
| fact the optimal <em>k</em> is usually one where there is an “elbow” in the WSSSE graph.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.KMeans.html"><code class="language-plaintext highlighter-rouge">KMeans</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.clustering.KMeansModel.html"><code class="language-plaintext highlighter-rouge">KMeansModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span> |
| <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">sqrt</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">KMeans</span><span class="p">,</span> <span class="n">KMeansModel</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/kmeans_data.txt"</span><span class="p">)</span> |
| <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">array</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| |
| <span class="c1"># Build the model (cluster the data) |
| </span><span class="n">clusters</span> <span class="o">=</span> <span class="n">KMeans</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">parsedData</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">maxIterations</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">initializationMode</span><span class="o">=</span><span class="s">"random"</span><span class="p">)</span> |
| |
| <span class="c1"># Evaluate clustering by computing Within Set Sum of Squared Errors |
| </span><span class="k">def</span> <span class="nf">error</span><span class="p">(</span><span class="n">point</span><span class="p">):</span> |
| <span class="n">center</span> <span class="o">=</span> <span class="n">clusters</span><span class="p">.</span><span class="n">centers</span><span class="p">[</span><span class="n">clusters</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">point</span><span class="p">)]</span> |
| <span class="k">return</span> <span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="p">(</span><span class="n">point</span> <span class="o">-</span> <span class="n">center</span><span class="p">)]))</span> |
| |
| <span class="n">WSSSE</span> <span class="o">=</span> <span class="n">parsedData</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">point</span><span class="p">:</span> <span class="n">error</span><span class="p">(</span><span class="n">point</span><span class="p">)).</span><span class="nb">reduce</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Within Set Sum of Squared Error = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">WSSSE</span><span class="p">))</span> |
| |
| <span class="c1"># Save and load model |
| </span><span class="n">clusters</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonKMeansExample/KMeansModel"</span><span class="p">)</span> |
| <span class="n">sameModel</span> <span class="o">=</span> <span class="n">KMeansModel</span><span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonKMeansExample/KMeansModel"</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/k_means_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>The following code snippets can be executed in <code class="language-plaintext highlighter-rouge">spark-shell</code>.</p> |
| |
| <p>In the following example after loading and parsing data, we use the |
| <a href="api/scala/org/apache/spark/mllib/clustering/KMeans.html"><code class="language-plaintext highlighter-rouge">KMeans</code></a> object to cluster the data |
| into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within |
| Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing <em>k</em>. In fact, the |
| optimal <em>k</em> is usually one where there is an “elbow” in the WSSSE graph.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/KMeans.html"><code class="language-plaintext highlighter-rouge">KMeans</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/clustering/KMeansModel.html"><code class="language-plaintext highlighter-rouge">KMeansModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.</span><span class="o">{</span><span class="nc">KMeans</span><span class="o">,</span> <span class="nc">KMeansModel</span><span class="o">}</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span> |
| |
| <span class="c1">// Load and parse the data</span> |
| <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">textFile</span><span class="o">(</span><span class="s">"data/mllib/kmeans_data.txt"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">parsedData</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=></span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="nv">s</span><span class="o">.</span><span class="py">split</span><span class="o">(</span><span class="sc">' '</span><span class="o">).</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">toDouble</span><span class="o">))).</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Cluster the data into two classes using KMeans</span> |
| <span class="k">val</span> <span class="nv">numClusters</span> <span class="k">=</span> <span class="mi">2</span> |
| <span class="k">val</span> <span class="nv">numIterations</span> <span class="k">=</span> <span class="mi">20</span> |
| <span class="k">val</span> <span class="nv">clusters</span> <span class="k">=</span> <span class="nv">KMeans</span><span class="o">.</span><span class="py">train</span><span class="o">(</span><span class="n">parsedData</span><span class="o">,</span> <span class="n">numClusters</span><span class="o">,</span> <span class="n">numIterations</span><span class="o">)</span> |
| |
| <span class="c1">// Evaluate clustering by computing Within Set Sum of Squared Errors</span> |
| <span class="k">val</span> <span class="nv">WSSSE</span> <span class="k">=</span> <span class="nv">clusters</span><span class="o">.</span><span class="py">computeCost</span><span class="o">(</span><span class="n">parsedData</span><span class="o">)</span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Within Set Sum of Squared Errors = $WSSSE"</span><span class="o">)</span> |
| |
| <span class="c1">// Save and load model</span> |
| <span class="nv">clusters</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/org/apache/spark/KMeansExample/KMeansModel"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">KMeansModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/org/apache/spark/KMeansExample/KMeansModel"</span><span class="o">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/KMeansExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>All of MLlib’s methods use Java-friendly types, so you can import and call them there the same |
| way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the |
| Spark Java API uses a separate <code class="language-plaintext highlighter-rouge">JavaRDD</code> class. You can convert a Java RDD to a Scala one by |
| calling <code class="language-plaintext highlighter-rouge">.rdd()</code> on your <code class="language-plaintext highlighter-rouge">JavaRDD</code> object. A self-contained application example |
| that is equivalent to the provided example in Scala is given below:</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/clustering/KMeans.html"><code class="language-plaintext highlighter-rouge">KMeans</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/clustering/KMeansModel.html"><code class="language-plaintext highlighter-rouge">KMeansModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.KMeans</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.KMeansModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="c1">// Load and parse data</span> |
| <span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/kmeans_data.txt"</span><span class="o">;</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="n">s</span> <span class="o">-></span> <span class="o">{</span> |
| <span class="nc">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">);</span> |
| <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="nc">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span> |
| <span class="o">}</span> |
| <span class="k">return</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span> |
| <span class="o">});</span> |
| <span class="n">parsedData</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span> |
| |
| <span class="c1">// Cluster the data into two classes using KMeans</span> |
| <span class="kt">int</span> <span class="n">numClusters</span> <span class="o">=</span> <span class="mi">2</span><span class="o">;</span> |
| <span class="kt">int</span> <span class="n">numIterations</span> <span class="o">=</span> <span class="mi">20</span><span class="o">;</span> |
| <span class="nc">KMeansModel</span> <span class="n">clusters</span> <span class="o">=</span> <span class="nc">KMeans</span><span class="o">.</span><span class="na">train</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">(),</span> <span class="n">numClusters</span><span class="o">,</span> <span class="n">numIterations</span><span class="o">);</span> |
| |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Cluster centers:"</span><span class="o">);</span> |
| <span class="k">for</span> <span class="o">(</span><span class="nc">Vector</span> <span class="nl">center:</span> <span class="n">clusters</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">())</span> <span class="o">{</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">" "</span> <span class="o">+</span> <span class="n">center</span><span class="o">);</span> |
| <span class="o">}</span> |
| <span class="kt">double</span> <span class="n">cost</span> <span class="o">=</span> <span class="n">clusters</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Cost: "</span> <span class="o">+</span> <span class="n">cost</span><span class="o">);</span> |
| |
| <span class="c1">// Evaluate clustering by computing Within Set Sum of Squared Errors</span> |
| <span class="kt">double</span> <span class="no">WSSSE</span> <span class="o">=</span> <span class="n">clusters</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Within Set Sum of Squared Errors = "</span> <span class="o">+</span> <span class="no">WSSSE</span><span class="o">);</span> |
| |
| <span class="c1">// Save and load model</span> |
| <span class="n">clusters</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/org/apache/spark/JavaKMeansExample/KMeansModel"</span><span class="o">);</span> |
| <span class="nc">KMeansModel</span> <span class="n">sameModel</span> <span class="o">=</span> <span class="nc">KMeansModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> |
| <span class="s">"target/org/apache/spark/JavaKMeansExample/KMeansModel"</span><span class="o">);</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaKMeansExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="gaussian-mixture">Gaussian mixture</h2> |
| |
| <p>A <a href="http://en.wikipedia.org/wiki/Mixture_model#Multivariate_Gaussian_mixture_model">Gaussian Mixture Model</a> |
| represents a composite distribution whereby points are drawn from one of <em>k</em> Gaussian sub-distributions, |
| each with its own probability. The <code class="language-plaintext highlighter-rouge">spark.mllib</code> implementation uses the |
| <a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a> |
| algorithm to induce the maximum-likelihood model given a set of samples. The implementation |
| has the following parameters:</p> |
| |
| <ul> |
| <li><em>k</em> is the number of desired clusters.</li> |
| <li><em>convergenceTol</em> is the maximum change in log-likelihood at which we consider convergence achieved.</li> |
| <li><em>maxIterations</em> is the maximum number of iterations to perform without reaching convergence.</li> |
| <li><em>initialModel</em> is an optional starting point from which to start the EM algorithm. If this parameter is omitted, a random starting point will be constructed from the data.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>In the following example after loading and parsing data, we use a |
| <a href="api/python/reference/api/pyspark.mllib.clustering.GaussianMixture.html">GaussianMixture</a> |
| object to cluster the data into two clusters. The number of desired clusters is passed |
| to the algorithm. We then output the parameters of the mixture model.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.GaussianMixture.html"><code class="language-plaintext highlighter-rouge">GaussianMixture</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.clustering.GaussianMixtureModel.html"><code class="language-plaintext highlighter-rouge">GaussianMixtureModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">GaussianMixture</span><span class="p">,</span> <span class="n">GaussianMixtureModel</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/gmm_data.txt"</span><span class="p">)</span> |
| <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">array</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">strip</span><span class="p">().</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| |
| <span class="c1"># Build the model (cluster the data) |
| </span><span class="n">gmm</span> <span class="o">=</span> <span class="n">GaussianMixture</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">parsedData</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> |
| |
| <span class="c1"># Save and load model |
| </span><span class="n">gmm</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonGaussianMixtureExample/GaussianMixtureModel"</span><span class="p">)</span> |
| <span class="n">sameModel</span> <span class="o">=</span> <span class="n">GaussianMixtureModel</span>\ |
| <span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonGaussianMixtureExample/GaussianMixtureModel"</span><span class="p">)</span> |
| |
| <span class="c1"># output parameters of model |
| </span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">):</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"weight = "</span><span class="p">,</span> <span class="n">gmm</span><span class="p">.</span><span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="s">"mu = "</span><span class="p">,</span> <span class="n">gmm</span><span class="p">.</span><span class="n">gaussians</span><span class="p">[</span><span class="n">i</span><span class="p">].</span><span class="n">mu</span><span class="p">,</span> |
| <span class="s">"sigma = "</span><span class="p">,</span> <span class="n">gmm</span><span class="p">.</span><span class="n">gaussians</span><span class="p">[</span><span class="n">i</span><span class="p">].</span><span class="n">sigma</span><span class="p">.</span><span class="n">toArray</span><span class="p">())</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/gaussian_mixture_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>In the following example after loading and parsing data, we use a |
| <a href="api/scala/org/apache/spark/mllib/clustering/GaussianMixture.html">GaussianMixture</a> |
| object to cluster the data into two clusters. The number of desired clusters is passed |
| to the algorithm. We then output the parameters of the mixture model.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/GaussianMixture.html"><code class="language-plaintext highlighter-rouge">GaussianMixture</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.html"><code class="language-plaintext highlighter-rouge">GaussianMixtureModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.</span><span class="o">{</span><span class="nc">GaussianMixture</span><span class="o">,</span> <span class="nc">GaussianMixtureModel</span><span class="o">}</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span> |
| |
| <span class="c1">// Load and parse the data</span> |
| <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">textFile</span><span class="o">(</span><span class="s">"data/mllib/gmm_data.txt"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">parsedData</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=></span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="nv">s</span><span class="o">.</span><span class="py">trim</span><span class="o">.</span><span class="py">split</span><span class="o">(</span><span class="sc">' '</span><span class="o">).</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">toDouble</span><span class="o">))).</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Cluster the data into two classes using GaussianMixture</span> |
| <span class="k">val</span> <span class="nv">gmm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GaussianMixture</span><span class="o">().</span><span class="py">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">run</span><span class="o">(</span><span class="n">parsedData</span><span class="o">)</span> |
| |
| <span class="c1">// Save and load model</span> |
| <span class="nv">gmm</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/org/apache/spark/GaussianMixtureExample/GaussianMixtureModel"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">GaussianMixtureModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> |
| <span class="s">"target/org/apache/spark/GaussianMixtureExample/GaussianMixtureModel"</span><span class="o">)</span> |
| |
| <span class="c1">// output parameters of max-likelihood model</span> |
| <span class="nf">for</span> <span class="o">(</span><span class="n">i</span> <span class="k"><-</span> <span class="mi">0</span> <span class="n">until</span> <span class="nv">gmm</span><span class="o">.</span><span class="py">k</span><span class="o">)</span> <span class="o">{</span> |
| <span class="nf">println</span><span class="o">(</span><span class="s">"weight=%f\nmu=%s\nsigma=\n%s\n"</span> <span class="nf">format</span> |
| <span class="o">(</span><span class="nv">gmm</span><span class="o">.</span><span class="py">weights</span><span class="o">(</span><span class="n">i</span><span class="o">),</span> <span class="nv">gmm</span><span class="o">.</span><span class="py">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="py">mu</span><span class="o">,</span> <span class="nv">gmm</span><span class="o">.</span><span class="py">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="py">sigma</span><span class="o">))</span> |
| <span class="o">}</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/GaussianMixtureExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>All of MLlib’s methods use Java-friendly types, so you can import and call them there the same |
| way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the |
| Spark Java API uses a separate <code class="language-plaintext highlighter-rouge">JavaRDD</code> class. You can convert a Java RDD to a Scala one by |
| calling <code class="language-plaintext highlighter-rouge">.rdd()</code> on your <code class="language-plaintext highlighter-rouge">JavaRDD</code> object. A self-contained application example |
| that is equivalent to the provided example in Scala is given below:</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/clustering/GaussianMixture.html"><code class="language-plaintext highlighter-rouge">GaussianMixture</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/clustering/GaussianMixtureModel.html"><code class="language-plaintext highlighter-rouge">GaussianMixtureModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.GaussianMixture</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.GaussianMixtureModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="c1">// Load and parse data</span> |
| <span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/gmm_data.txt"</span><span class="o">;</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="n">s</span> <span class="o">-></span> <span class="o">{</span> |
| <span class="nc">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">trim</span><span class="o">().</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">);</span> |
| <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="nc">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span> |
| <span class="o">}</span> |
| <span class="k">return</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span> |
| <span class="o">});</span> |
| <span class="n">parsedData</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span> |
| |
| <span class="c1">// Cluster the data into two classes using GaussianMixture</span> |
| <span class="nc">GaussianMixtureModel</span> <span class="n">gmm</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">GaussianMixture</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span> |
| |
| <span class="c1">// Save and load GaussianMixtureModel</span> |
| <span class="n">gmm</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> <span class="s">"target/org/apache/spark/JavaGaussianMixtureExample/GaussianMixtureModel"</span><span class="o">);</span> |
| <span class="nc">GaussianMixtureModel</span> <span class="n">sameModel</span> <span class="o">=</span> <span class="nc">GaussianMixtureModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> |
| <span class="s">"target/org.apache.spark.JavaGaussianMixtureExample/GaussianMixtureModel"</span><span class="o">);</span> |
| |
| <span class="c1">// Output the parameters of the mixture model</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">j</span> <span class="o"><</span> <span class="n">gmm</span><span class="o">.</span><span class="na">k</span><span class="o">();</span> <span class="n">j</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">printf</span><span class="o">(</span><span class="s">"weight=%f\nmu=%s\nsigma=\n%s\n"</span><span class="o">,</span> |
| <span class="n">gmm</span><span class="o">.</span><span class="na">weights</span><span class="o">()[</span><span class="n">j</span><span class="o">],</span> <span class="n">gmm</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">j</span><span class="o">].</span><span class="na">mu</span><span class="o">(),</span> <span class="n">gmm</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">j</span><span class="o">].</span><span class="na">sigma</span><span class="o">());</span> |
| <span class="o">}</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaGaussianMixtureExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="power-iteration-clustering-pic">Power iteration clustering (PIC)</h2> |
| |
| <p>Power iteration clustering (PIC) is a scalable and efficient algorithm for clustering vertices of a |
| graph given pairwise similarities as edge properties, |
| described in <a href="http://www.cs.cmu.edu/~frank/papers/icml2010-pic-final.pdf">Lin and Cohen, Power Iteration Clustering</a>. |
| It computes a pseudo-eigenvector of the normalized affinity matrix of the graph via |
| <a href="http://en.wikipedia.org/wiki/Power_iteration">power iteration</a> and uses it to cluster vertices. |
| <code class="language-plaintext highlighter-rouge">spark.mllib</code> includes an implementation of PIC using GraphX as its backend. |
| It takes an <code class="language-plaintext highlighter-rouge">RDD</code> of <code class="language-plaintext highlighter-rouge">(srcId, dstId, similarity)</code> tuples and outputs a model with the clustering assignments. |
| The similarities must be nonnegative. |
| PIC assumes that the similarity measure is symmetric. |
| A pair <code class="language-plaintext highlighter-rouge">(srcId, dstId)</code> regardless of the ordering should appear at most once in the input data. |
| If a pair is missing from input, their similarity is treated as zero. |
| <code class="language-plaintext highlighter-rouge">spark.mllib</code>’s PIC implementation takes the following (hyper-)parameters:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">k</code>: number of clusters</li> |
| <li><code class="language-plaintext highlighter-rouge">maxIterations</code>: maximum number of power iterations</li> |
| <li><code class="language-plaintext highlighter-rouge">initializationMode</code>: initialization model. This can be either “random”, which is the default, |
| to use a random vector as vertex properties, or “degree” to use normalized sum similarities.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <p>In the following, we show code snippets to demonstrate how to use PIC in <code class="language-plaintext highlighter-rouge">spark.mllib</code>.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| |
| <p><a href="api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code></a> |
| implements the PIC algorithm. |
| It takes an <code class="language-plaintext highlighter-rouge">RDD</code> of <code class="language-plaintext highlighter-rouge">(srcId: Long, dstId: Long, similarity: Double)</code> tuples representing the |
| affinity matrix. |
| Calling <code class="language-plaintext highlighter-rouge">PowerIterationClustering.run</code> returns a |
| <a href="api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code></a>, |
| which contains the computed clustering assignments.</p> |
| |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.clustering.PowerIterationClusteringModel.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">PowerIterationClustering</span><span class="p">,</span> <span class="n">PowerIterationClusteringModel</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/pic_data.txt"</span><span class="p">)</span> |
| <span class="n">similarities</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="nb">tuple</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| |
| <span class="c1"># Cluster the data into two classes using PowerIterationClustering |
| </span><span class="n">model</span> <span class="o">=</span> <span class="n">PowerIterationClustering</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">similarities</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> |
| |
| <span class="n">model</span><span class="p">.</span><span class="n">assignments</span><span class="p">().</span><span class="n">foreach</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="k">print</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">x</span><span class="p">.</span><span class="nb">id</span><span class="p">)</span> <span class="o">+</span> <span class="s">" -> "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">x</span><span class="p">.</span><span class="n">cluster</span><span class="p">)))</span> |
| |
| <span class="c1"># Save and load model |
| </span><span class="n">model</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonPowerIterationClusteringExample/PICModel"</span><span class="p">)</span> |
| <span class="n">sameModel</span> <span class="o">=</span> <span class="n">PowerIterationClusteringModel</span>\ |
| <span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonPowerIterationClusteringExample/PICModel"</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/power_iteration_clustering_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| |
| <p><a href="api/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code></a> |
| implements the PIC algorithm. |
| It takes an <code class="language-plaintext highlighter-rouge">RDD</code> of <code class="language-plaintext highlighter-rouge">(srcId: Long, dstId: Long, similarity: Double)</code> tuples representing the |
| affinity matrix. |
| Calling <code class="language-plaintext highlighter-rouge">PowerIterationClustering.run</code> returns a |
| <a href="api/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringModel.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code></a>, |
| which contains the computed clustering assignments.</p> |
| |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringModel.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClustering</span> |
| |
| <span class="k">val</span> <span class="nv">circlesRdd</span> <span class="k">=</span> <span class="nf">generateCirclesRdd</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="nv">params</span><span class="o">.</span><span class="py">k</span><span class="o">,</span> <span class="nv">params</span><span class="o">.</span><span class="py">numPoints</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PowerIterationClustering</span><span class="o">()</span> |
| <span class="o">.</span><span class="py">setK</span><span class="o">(</span><span class="nv">params</span><span class="o">.</span><span class="py">k</span><span class="o">)</span> |
| <span class="o">.</span><span class="py">setMaxIterations</span><span class="o">(</span><span class="nv">params</span><span class="o">.</span><span class="py">maxIterations</span><span class="o">)</span> |
| <span class="o">.</span><span class="py">setInitializationMode</span><span class="o">(</span><span class="s">"degree"</span><span class="o">)</span> |
| <span class="o">.</span><span class="py">run</span><span class="o">(</span><span class="n">circlesRdd</span><span class="o">)</span> |
| |
| <span class="k">val</span> <span class="nv">clusters</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">assignments</span><span class="o">.</span><span class="py">collect</span><span class="o">().</span><span class="py">groupBy</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">cluster</span><span class="o">).</span><span class="py">mapValues</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">id</span><span class="o">))</span> |
| <span class="k">val</span> <span class="nv">assignments</span> <span class="k">=</span> <span class="nv">clusters</span><span class="o">.</span><span class="py">toList</span><span class="o">.</span><span class="py">sortBy</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">k</span><span class="o">,</span> <span class="n">v</span><span class="o">)</span> <span class="k">=></span> <span class="nv">v</span><span class="o">.</span><span class="py">length</span> <span class="o">}</span> |
| <span class="k">val</span> <span class="nv">assignmentsStr</span> <span class="k">=</span> <span class="n">assignments</span> |
| <span class="o">.</span><span class="py">map</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">k</span><span class="o">,</span> <span class="n">v</span><span class="o">)</span> <span class="k">=></span> |
| <span class="n">s</span><span class="s">"$k -> ${v.sorted.mkString("</span><span class="o">[</span><span class="err">"</span>, <span class="err">"</span>,<span class="err">"</span>, <span class="err">"</span><span class="o">]</span><span class="s">")}"</span> |
| <span class="o">}.</span><span class="py">mkString</span><span class="o">(</span><span class="s">", "</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">sizesStr</span> <span class="k">=</span> <span class="nv">assignments</span><span class="o">.</span><span class="py">map</span> <span class="o">{</span> |
| <span class="nv">_</span><span class="o">.</span><span class="py">_2</span><span class="o">.</span><span class="py">length</span> |
| <span class="o">}.</span><span class="py">sorted</span><span class="o">.</span><span class="py">mkString</span><span class="o">(</span><span class="s">"("</span><span class="o">,</span> <span class="s">","</span><span class="o">,</span> <span class="s">")"</span><span class="o">)</span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Cluster assignments: $assignmentsStr\ncluster sizes: $sizesStr"</span><span class="o">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p><a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code></a> |
| implements the PIC algorithm. |
| It takes a <code class="language-plaintext highlighter-rouge">JavaRDD</code> of <code class="language-plaintext highlighter-rouge">(srcId: Long, dstId: Long, similarity: Double)</code> tuples representing the |
| affinity matrix. |
| Calling <code class="language-plaintext highlighter-rouge">PowerIterationClustering.run</code> returns a |
| <a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClusteringModel.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code></a> |
| which contains the computed clustering assignments.</p> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClustering.html"><code class="language-plaintext highlighter-rouge">PowerIterationClustering</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/clustering/PowerIterationClusteringModel.html"><code class="language-plaintext highlighter-rouge">PowerIterationClusteringModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClustering</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.PowerIterationClusteringModel</span><span class="o">;</span> |
| |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Tuple3</span><span class="o"><</span><span class="nc">Long</span><span class="o">,</span> <span class="nc">Long</span><span class="o">,</span> <span class="nc">Double</span><span class="o">>></span> <span class="n">similarities</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="mi">0L</span><span class="o">,</span> <span class="mi">1L</span><span class="o">,</span> <span class="mf">0.9</span><span class="o">),</span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="mi">1L</span><span class="o">,</span> <span class="mi">2L</span><span class="o">,</span> <span class="mf">0.9</span><span class="o">),</span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="mi">2L</span><span class="o">,</span> <span class="mi">3L</span><span class="o">,</span> <span class="mf">0.9</span><span class="o">),</span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="mi">3L</span><span class="o">,</span> <span class="mi">4L</span><span class="o">,</span> <span class="mf">0.1</span><span class="o">),</span> |
| <span class="k">new</span> <span class="nc">Tuple3</span><span class="o"><>(</span><span class="mi">4L</span><span class="o">,</span> <span class="mi">5L</span><span class="o">,</span> <span class="mf">0.9</span><span class="o">)));</span> |
| |
| <span class="nc">PowerIterationClustering</span> <span class="n">pic</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">PowerIterationClustering</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setMaxIterations</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span> |
| <span class="nc">PowerIterationClusteringModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pic</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">similarities</span><span class="o">);</span> |
| |
| <span class="k">for</span> <span class="o">(</span><span class="nc">PowerIterationClustering</span><span class="o">.</span><span class="na">Assignment</span> <span class="nl">a:</span> <span class="n">model</span><span class="o">.</span><span class="na">assignments</span><span class="o">().</span><span class="na">toJavaRDD</span><span class="o">().</span><span class="na">collect</span><span class="o">())</span> <span class="o">{</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">a</span><span class="o">.</span><span class="na">id</span><span class="o">()</span> <span class="o">+</span> <span class="s">" -> "</span> <span class="o">+</span> <span class="n">a</span><span class="o">.</span><span class="na">cluster</span><span class="o">());</span> |
| <span class="o">}</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaPowerIterationClusteringExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</h2> |
| |
| <p><a href="http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation">Latent Dirichlet allocation (LDA)</a> |
| is a topic model which infers topics from a collection of text documents. |
| LDA can be thought of as a clustering algorithm as follows:</p> |
| |
| <ul> |
| <li>Topics correspond to cluster centers, and documents correspond to |
| examples (rows) in a dataset.</li> |
| <li>Topics and documents both exist in a feature space, where feature |
| vectors are vectors of word counts (bag of words).</li> |
| <li>Rather than estimating a clustering using a traditional distance, LDA |
| uses a function based on a statistical model of how text documents are |
| generated.</li> |
| </ul> |
| |
| <p>LDA supports different inference algorithms via <code class="language-plaintext highlighter-rouge">setOptimizer</code> function. |
| <code class="language-plaintext highlighter-rouge">EMLDAOptimizer</code> learns clustering using |
| <a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a> |
| on the likelihood function and yields comprehensive results, while |
| <code class="language-plaintext highlighter-rouge">OnlineLDAOptimizer</code> uses iterative mini-batch sampling for <a href="https://mimno.infosci.cornell.edu/info6150/readings/HoffmanBleiBach2010b.pdf">online |
| variational |
| inference</a> |
| and is generally memory friendly.</p> |
| |
| <p>LDA takes in a collection of documents as vectors of word counts and the |
| following parameters (set using the builder pattern):</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">k</code>: Number of topics (i.e., cluster centers)</li> |
| <li><code class="language-plaintext highlighter-rouge">optimizer</code>: Optimizer to use for learning the LDA model, either |
| <code class="language-plaintext highlighter-rouge">EMLDAOptimizer</code> or <code class="language-plaintext highlighter-rouge">OnlineLDAOptimizer</code></li> |
| <li><code class="language-plaintext highlighter-rouge">docConcentration</code>: Dirichlet parameter for prior over documents’ |
| distributions over topics. Larger values encourage smoother inferred |
| distributions.</li> |
| <li><code class="language-plaintext highlighter-rouge">topicConcentration</code>: Dirichlet parameter for prior over topics’ |
| distributions over terms (words). Larger values encourage smoother |
| inferred distributions.</li> |
| <li><code class="language-plaintext highlighter-rouge">maxIterations</code>: Limit on the number of iterations.</li> |
| <li><code class="language-plaintext highlighter-rouge">checkpointInterval</code>: If using checkpointing (set in the Spark |
| configuration), this parameter specifies the frequency with which |
| checkpoints will be created. If <code class="language-plaintext highlighter-rouge">maxIterations</code> is large, using |
| checkpointing can help reduce shuffle file sizes on disk and help with |
| failure recovery.</li> |
| </ul> |
| |
| <p>All of <code class="language-plaintext highlighter-rouge">spark.mllib</code>’s LDA models support:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">describeTopics</code>: Returns topics as arrays of most important terms and |
| term weights</li> |
| <li><code class="language-plaintext highlighter-rouge">topicsMatrix</code>: Returns a <code class="language-plaintext highlighter-rouge">vocabSize</code> by <code class="language-plaintext highlighter-rouge">k</code> matrix where each column |
| is a topic</li> |
| </ul> |
| |
| <p><em>Note</em>: LDA is still an experimental feature under active development. |
| As a result, certain features are only available in one of the two |
| optimizers / models generated by the optimizer. Currently, a distributed |
| model can be converted into a local model, but not vice-versa.</p> |
| |
| <p>The following discussion will describe each optimizer/model pair |
| separately.</p> |
| |
| <p><strong>Expectation Maximization</strong></p> |
| |
| <p>Implemented in |
| <a href="api/scala/org/apache/spark/mllib/clustering/EMLDAOptimizer.html"><code class="language-plaintext highlighter-rouge">EMLDAOptimizer</code></a> |
| and |
| <a href="api/scala/org/apache/spark/mllib/clustering/DistributedLDAModel.html"><code class="language-plaintext highlighter-rouge">DistributedLDAModel</code></a>.</p> |
| |
| <p>For the parameters provided to <code class="language-plaintext highlighter-rouge">LDA</code>:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">docConcentration</code>: Only symmetric priors are supported, so all values |
| in the provided <code class="language-plaintext highlighter-rouge">k</code>-dimensional vector must be identical. All values |
| must also be $> 1.0$. Providing <code class="language-plaintext highlighter-rouge">Vector(-1)</code> results in default behavior |
| (uniform <code class="language-plaintext highlighter-rouge">k</code> dimensional vector with value $(50 / k) + 1$</li> |
| <li><code class="language-plaintext highlighter-rouge">topicConcentration</code>: Only symmetric priors supported. Values must be |
| $> 1.0$. Providing <code class="language-plaintext highlighter-rouge">-1</code> results in defaulting to a value of $0.1 + 1$.</li> |
| <li><code class="language-plaintext highlighter-rouge">maxIterations</code>: The maximum number of EM iterations.</li> |
| </ul> |
| |
| <p><em>Note</em>: It is important to do enough iterations. In early iterations, EM often has useless topics, |
| but those topics improve dramatically after more iterations. Using at least 20 and possibly |
| 50-100 iterations is often reasonable, depending on your dataset.</p> |
| |
| <p><code class="language-plaintext highlighter-rouge">EMLDAOptimizer</code> produces a <code class="language-plaintext highlighter-rouge">DistributedLDAModel</code>, which stores not only |
| the inferred topics but also the full training corpus and topic |
| distributions for each document in the training corpus. A |
| <code class="language-plaintext highlighter-rouge">DistributedLDAModel</code> supports:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">topTopicsPerDocument</code>: The top topics and their weights for |
| each document in the training corpus</li> |
| <li><code class="language-plaintext highlighter-rouge">topDocumentsPerTopic</code>: The top documents for each topic and |
| the corresponding weight of the topic in the documents.</li> |
| <li><code class="language-plaintext highlighter-rouge">logPrior</code>: log probability of the estimated topics and |
| document-topic distributions given the hyperparameters |
| <code class="language-plaintext highlighter-rouge">docConcentration</code> and <code class="language-plaintext highlighter-rouge">topicConcentration</code></li> |
| <li><code class="language-plaintext highlighter-rouge">logLikelihood</code>: log likelihood of the training corpus, given the |
| inferred topics and document-topic distributions</li> |
| </ul> |
| |
| <p><strong>Online Variational Bayes</strong></p> |
| |
| <p>Implemented in |
| <a href="api/scala/org/apache/spark/mllib/clustering/OnlineLDAOptimizer.html"><code class="language-plaintext highlighter-rouge">OnlineLDAOptimizer</code></a> |
| and |
| <a href="api/scala/org/apache/spark/mllib/clustering/LocalLDAModel.html"><code class="language-plaintext highlighter-rouge">LocalLDAModel</code></a>.</p> |
| |
| <p>For the parameters provided to <code class="language-plaintext highlighter-rouge">LDA</code>:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">docConcentration</code>: Asymmetric priors can be used by passing in a |
| vector with values equal to the Dirichlet parameter in each of the <code class="language-plaintext highlighter-rouge">k</code> |
| dimensions. Values should be $>= 0$. Providing <code class="language-plaintext highlighter-rouge">Vector(-1)</code> results in |
| default behavior (uniform <code class="language-plaintext highlighter-rouge">k</code> dimensional vector with value $(1.0 / k)$)</li> |
| <li><code class="language-plaintext highlighter-rouge">topicConcentration</code>: Only symmetric priors supported. Values must be |
| $>= 0$. Providing <code class="language-plaintext highlighter-rouge">-1</code> results in defaulting to a value of $(1.0 / k)$.</li> |
| <li><code class="language-plaintext highlighter-rouge">maxIterations</code>: Maximum number of minibatches to submit.</li> |
| </ul> |
| |
| <p>In addition, <code class="language-plaintext highlighter-rouge">OnlineLDAOptimizer</code> accepts the following parameters:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">miniBatchFraction</code>: Fraction of corpus sampled and used at each |
| iteration</li> |
| <li><code class="language-plaintext highlighter-rouge">optimizeDocConcentration</code>: If set to true, performs maximum-likelihood |
| estimation of the hyperparameter <code class="language-plaintext highlighter-rouge">docConcentration</code> (aka <code class="language-plaintext highlighter-rouge">alpha</code>) |
| after each minibatch and sets the optimized <code class="language-plaintext highlighter-rouge">docConcentration</code> in the |
| returned <code class="language-plaintext highlighter-rouge">LocalLDAModel</code></li> |
| <li><code class="language-plaintext highlighter-rouge">tau0</code> and <code class="language-plaintext highlighter-rouge">kappa</code>: Used for learning-rate decay, which is computed by |
| $(\tau_0 + iter)^{-\kappa}$ where $iter$ is the current number of iterations.</li> |
| </ul> |
| |
| <p><code class="language-plaintext highlighter-rouge">OnlineLDAOptimizer</code> produces a <code class="language-plaintext highlighter-rouge">LocalLDAModel</code>, which only stores the |
| inferred topics. A <code class="language-plaintext highlighter-rouge">LocalLDAModel</code> supports:</p> |
| |
| <ul> |
| <li><code class="language-plaintext highlighter-rouge">logLikelihood(documents)</code>: Calculates a lower bound on the provided |
| <code class="language-plaintext highlighter-rouge">documents</code> given the inferred topics.</li> |
| <li><code class="language-plaintext highlighter-rouge">logPerplexity(documents)</code>: Calculates an upper bound on the |
| perplexity of the provided <code class="language-plaintext highlighter-rouge">documents</code> given the inferred topics.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <p>In the following example, we load word count vectors representing a corpus of documents. |
| We then use <a href="api/scala/org/apache/spark/mllib/clustering/LDA.html">LDA</a> |
| to infer three topics from the documents. The number of desired clusters is passed |
| to the algorithm. We then output the topics, represented as probability distributions over words.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.LDA.html"><code class="language-plaintext highlighter-rouge">LDA</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.clustering.LDAModel.html"><code class="language-plaintext highlighter-rouge">LDAModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">LDA</span><span class="p">,</span> <span class="n">LDAModel</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/sample_lda_data.txt"</span><span class="p">)</span> |
| <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">strip</span><span class="p">().</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| <span class="c1"># Index documents with unique IDs |
| </span><span class="n">corpus</span> <span class="o">=</span> <span class="n">parsedData</span><span class="p">.</span><span class="n">zipWithIndex</span><span class="p">().</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]]).</span><span class="n">cache</span><span class="p">()</span> |
| |
| <span class="c1"># Cluster the documents into three topics using LDA |
| </span><span class="n">ldaModel</span> <span class="o">=</span> <span class="n">LDA</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">corpus</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span> |
| |
| <span class="c1"># Output topics. Each is a distribution over words (matching word count vectors) |
| </span><span class="k">print</span><span class="p">(</span><span class="s">"Learned topics (as distributions over vocab of "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">ldaModel</span><span class="p">.</span><span class="n">vocabSize</span><span class="p">())</span> |
| <span class="o">+</span> <span class="s">" words):"</span><span class="p">)</span> |
| <span class="n">topics</span> <span class="o">=</span> <span class="n">ldaModel</span><span class="p">.</span><span class="n">topicsMatrix</span><span class="p">()</span> |
| <span class="k">for</span> <span class="n">topic</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Topic "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">topic</span><span class="p">)</span> <span class="o">+</span> <span class="s">":"</span><span class="p">)</span> |
| <span class="k">for</span> <span class="n">word</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">ldaModel</span><span class="p">.</span><span class="n">vocabSize</span><span class="p">()):</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">" "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">topics</span><span class="p">[</span><span class="n">word</span><span class="p">][</span><span class="n">topic</span><span class="p">]))</span> |
| |
| <span class="c1"># Save and load model |
| </span><span class="n">ldaModel</span><span class="p">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonLatentDirichletAllocationExample/LDAModel"</span><span class="p">)</span> |
| <span class="n">sameModel</span> <span class="o">=</span> <span class="n">LDAModel</span>\ |
| <span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"target/org/apache/spark/PythonLatentDirichletAllocationExample/LDAModel"</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/latent_dirichlet_allocation_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/LDA.html"><code class="language-plaintext highlighter-rouge">LDA</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/clustering/DistributedLDAModel.html"><code class="language-plaintext highlighter-rouge">DistributedLDAModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.</span><span class="o">{</span><span class="nc">DistributedLDAModel</span><span class="o">,</span> <span class="nc">LDA</span><span class="o">}</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span> |
| |
| <span class="c1">// Load and parse the data</span> |
| <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">textFile</span><span class="o">(</span><span class="s">"data/mllib/sample_lda_data.txt"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">parsedData</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">s</span> <span class="k">=></span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="nv">s</span><span class="o">.</span><span class="py">trim</span><span class="o">.</span><span class="py">split</span><span class="o">(</span><span class="sc">' '</span><span class="o">).</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">toDouble</span><span class="o">)))</span> |
| <span class="c1">// Index documents with unique IDs</span> |
| <span class="k">val</span> <span class="nv">corpus</span> <span class="k">=</span> <span class="nv">parsedData</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">swap</span><span class="o">).</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Cluster the documents into three topics using LDA</span> |
| <span class="k">val</span> <span class="nv">ldaModel</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LDA</span><span class="o">().</span><span class="py">setK</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="py">run</span><span class="o">(</span><span class="n">corpus</span><span class="o">)</span> |
| |
| <span class="c1">// Output topics. Each is a distribution over words (matching word count vectors)</span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned topics (as distributions over vocab of ${ldaModel.vocabSize} words):"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">topics</span> <span class="k">=</span> <span class="nv">ldaModel</span><span class="o">.</span><span class="py">topicsMatrix</span> |
| <span class="nf">for</span> <span class="o">(</span><span class="n">topic</span> <span class="k"><-</span> <span class="nc">Range</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="mi">3</span><span class="o">))</span> <span class="o">{</span> |
| <span class="nf">print</span><span class="o">(</span><span class="n">s</span><span class="s">"Topic $topic :"</span><span class="o">)</span> |
| <span class="nf">for</span> <span class="o">(</span><span class="n">word</span> <span class="k"><-</span> <span class="nc">Range</span><span class="o">(</span><span class="mi">0</span><span class="o">,</span> <span class="nv">ldaModel</span><span class="o">.</span><span class="py">vocabSize</span><span class="o">))</span> <span class="o">{</span> |
| <span class="nf">print</span><span class="o">(</span><span class="n">s</span><span class="s">"${topics(word, topic)}"</span><span class="o">)</span> |
| <span class="o">}</span> |
| <span class="nf">println</span><span class="o">()</span> |
| <span class="o">}</span> |
| |
| <span class="c1">// Save and load model.</span> |
| <span class="nv">ldaModel</span><span class="o">.</span><span class="py">save</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"target/org/apache/spark/LatentDirichletAllocationExample/LDAModel"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">sameModel</span> <span class="k">=</span> <span class="nv">DistributedLDAModel</span><span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> |
| <span class="s">"target/org/apache/spark/LatentDirichletAllocationExample/LDAModel"</span><span class="o">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/LatentDirichletAllocationExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/clustering/LDA.html"><code class="language-plaintext highlighter-rouge">LDA</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/clustering/DistributedLDAModel.html"><code class="language-plaintext highlighter-rouge">DistributedLDAModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">scala.Tuple2</span><span class="o">;</span> |
| |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.DistributedLDAModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.LDA</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.LDAModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Matrix</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="c1">// Load and parse the data</span> |
| <span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/sample_lda_data.txt"</span><span class="o">;</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">jsc</span><span class="o">.</span><span class="na">textFile</span><span class="o">(</span><span class="n">path</span><span class="o">);</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">map</span><span class="o">(</span><span class="n">s</span> <span class="o">-></span> <span class="o">{</span> |
| <span class="nc">String</span><span class="o">[]</span> <span class="n">sarray</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="na">trim</span><span class="o">().</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">);</span> |
| <span class="kt">double</span><span class="o">[]</span> <span class="n">values</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[</span><span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">];</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">sarray</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="n">values</span><span class="o">[</span><span class="n">i</span><span class="o">]</span> <span class="o">=</span> <span class="nc">Double</span><span class="o">.</span><span class="na">parseDouble</span><span class="o">(</span><span class="n">sarray</span><span class="o">[</span><span class="n">i</span><span class="o">]);</span> |
| <span class="o">}</span> |
| <span class="k">return</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">values</span><span class="o">);</span> |
| <span class="o">});</span> |
| <span class="c1">// Index documents with unique IDs</span> |
| <span class="nc">JavaPairRDD</span><span class="o"><</span><span class="nc">Long</span><span class="o">,</span> <span class="nc">Vector</span><span class="o">></span> <span class="n">corpus</span> <span class="o">=</span> |
| <span class="nc">JavaPairRDD</span><span class="o">.</span><span class="na">fromJavaRDD</span><span class="o">(</span><span class="n">parsedData</span><span class="o">.</span><span class="na">zipWithIndex</span><span class="o">().</span><span class="na">map</span><span class="o">(</span><span class="nl">Tuple2:</span><span class="o">:</span><span class="n">swap</span><span class="o">));</span> |
| <span class="n">corpus</span><span class="o">.</span><span class="na">cache</span><span class="o">();</span> |
| |
| <span class="c1">// Cluster the documents into three topics using LDA</span> |
| <span class="nc">LDAModel</span> <span class="n">ldaModel</span> <span class="o">=</span> <span class="k">new</span> <span class="no">LDA</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="na">run</span><span class="o">(</span><span class="n">corpus</span><span class="o">);</span> |
| |
| <span class="c1">// Output topics. Each is a distribution over words (matching word count vectors)</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned topics (as distributions over vocab of "</span> <span class="o">+</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">vocabSize</span><span class="o">()</span> |
| <span class="o">+</span> <span class="s">" words):"</span><span class="o">);</span> |
| <span class="nc">Matrix</span> <span class="n">topics</span> <span class="o">=</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">topicsMatrix</span><span class="o">();</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">topic</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">topic</span> <span class="o"><</span> <span class="mi">3</span><span class="o">;</span> <span class="n">topic</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="s">"Topic "</span> <span class="o">+</span> <span class="n">topic</span> <span class="o">+</span> <span class="s">":"</span><span class="o">);</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">word</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">word</span> <span class="o"><</span> <span class="n">ldaModel</span><span class="o">.</span><span class="na">vocabSize</span><span class="o">();</span> <span class="n">word</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">print</span><span class="o">(</span><span class="s">" "</span> <span class="o">+</span> <span class="n">topics</span><span class="o">.</span><span class="na">apply</span><span class="o">(</span><span class="n">word</span><span class="o">,</span> <span class="n">topic</span><span class="o">));</span> |
| <span class="o">}</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">();</span> |
| <span class="o">}</span> |
| |
| <span class="n">ldaModel</span><span class="o">.</span><span class="na">save</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> |
| <span class="s">"target/org/apache/spark/JavaLatentDirichletAllocationExample/LDAModel"</span><span class="o">);</span> |
| <span class="nc">DistributedLDAModel</span> <span class="n">sameModel</span> <span class="o">=</span> <span class="nc">DistributedLDAModel</span><span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="n">jsc</span><span class="o">.</span><span class="na">sc</span><span class="o">(),</span> |
| <span class="s">"target/org/apache/spark/JavaLatentDirichletAllocationExample/LDAModel"</span><span class="o">);</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaLatentDirichletAllocationExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="bisecting-k-means">Bisecting k-means</h2> |
| |
| <p>Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.</p> |
| |
| <p>Bisecting k-means is a kind of <a href="https://en.wikipedia.org/wiki/Hierarchical_clustering">hierarchical clustering</a>. |
| Hierarchical clustering is one of the most commonly used method of cluster analysis which seeks to build a hierarchy of clusters. |
| Strategies for hierarchical clustering generally fall into two types:</p> |
| |
| <ul> |
| <li>Agglomerative: This is a “bottom up” approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.</li> |
| <li>Divisive: This is a “top down” approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.</li> |
| </ul> |
| |
| <p>Bisecting k-means algorithm is a kind of divisive algorithms. |
| The implementation in MLlib has the following parameters:</p> |
| |
| <ul> |
| <li><em>k</em>: the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible leaf clusters.</li> |
| <li><em>maxIterations</em>: the max number of k-means iterations to split clusters (default: 20)</li> |
| <li><em>minDivisibleClusterSize</em>: the minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster (default: 1)</li> |
| <li><em>seed</em>: a random seed (default: hash value of the class name)</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.BisectingKMeans.html"><code class="language-plaintext highlighter-rouge">BisectingKMeans</code> Python docs</a> and <a href="api/python/reference/api/pyspark.mllib.clustering.BisectingKMeansModel.html"><code class="language-plaintext highlighter-rouge">BisectingKMeansModel</code> Python docs</a> for more details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">BisectingKMeans</span> |
| |
| <span class="c1"># Load and parse the data |
| </span><span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/kmeans_data.txt"</span><span class="p">)</span> |
| <span class="n">parsedData</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">array</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| |
| <span class="c1"># Build the model (cluster the data) |
| </span><span class="n">model</span> <span class="o">=</span> <span class="n">BisectingKMeans</span><span class="p">.</span><span class="n">train</span><span class="p">(</span><span class="n">parsedData</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">maxIterations</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> |
| |
| <span class="c1"># Evaluate clustering |
| </span><span class="n">cost</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">computeCost</span><span class="p">(</span><span class="n">parsedData</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Bisecting K-means Cost = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">cost</span><span class="p">))</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/bisecting_k_means_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/BisectingKMeans.html"><code class="language-plaintext highlighter-rouge">BisectingKMeans</code> Scala docs</a> and <a href="api/scala/org/apache/spark/mllib/clustering/BisectingKMeansModel.html"><code class="language-plaintext highlighter-rouge">BisectingKMeansModel</code> Scala docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.BisectingKMeans</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.</span><span class="o">{</span><span class="nc">Vector</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> |
| |
| <span class="c1">// Loads and parses data</span> |
| <span class="k">def</span> <span class="nf">parse</span><span class="o">(</span><span class="n">line</span><span class="k">:</span> <span class="kt">String</span><span class="o">)</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="nv">line</span><span class="o">.</span><span class="py">split</span><span class="o">(</span><span class="s">" "</span><span class="o">).</span><span class="py">map</span><span class="o">(</span><span class="nv">_</span><span class="o">.</span><span class="py">toDouble</span><span class="o">))</span> |
| <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">sc</span><span class="o">.</span><span class="py">textFile</span><span class="o">(</span><span class="s">"data/mllib/kmeans_data.txt"</span><span class="o">).</span><span class="py">map</span><span class="o">(</span><span class="n">parse</span><span class="o">).</span><span class="py">cache</span><span class="o">()</span> |
| |
| <span class="c1">// Clustering the data into 6 clusters by BisectingKMeans.</span> |
| <span class="k">val</span> <span class="nv">bkm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">BisectingKMeans</span><span class="o">().</span><span class="py">setK</span><span class="o">(</span><span class="mi">6</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">bkm</span><span class="o">.</span><span class="py">run</span><span class="o">(</span><span class="n">data</span><span class="o">)</span> |
| |
| <span class="c1">// Show the compute cost and the cluster centers</span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Compute Cost: ${model.computeCost(data)}"</span><span class="o">)</span> |
| <span class="nv">model</span><span class="o">.</span><span class="py">clusterCenters</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">center</span><span class="o">,</span> <span class="n">idx</span><span class="o">)</span> <span class="k">=></span> |
| <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Cluster Center ${idx}: ${center}"</span><span class="o">)</span> |
| <span class="o">}</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/BisectingKMeansExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/mllib/clustering/BisectingKMeans.html"><code class="language-plaintext highlighter-rouge">BisectingKMeans</code> Java docs</a> and <a href="api/java/org/apache/spark/mllib/clustering/BisectingKMeansModel.html"><code class="language-plaintext highlighter-rouge">BisectingKMeansModel</code> Java docs</a> for details on the API.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> |
| |
| <span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.BisectingKMeans</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.clustering.BisectingKMeansModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="nc">List</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">localData</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> |
| <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.1</span><span class="o">,</span> <span class="mf">0.1</span><span class="o">),</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.3</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">),</span> |
| <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">10.1</span><span class="o">,</span> <span class="mf">10.1</span><span class="o">),</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">10.3</span><span class="o">,</span> <span class="mf">10.3</span><span class="o">),</span> |
| <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">20.1</span><span class="o">,</span> <span class="mf">20.1</span><span class="o">),</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">20.3</span><span class="o">,</span> <span class="mf">20.3</span><span class="o">),</span> |
| <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">30.1</span><span class="o">,</span> <span class="mf">30.1</span><span class="o">),</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">30.3</span><span class="o">,</span> <span class="mf">30.3</span><span class="o">)</span> |
| <span class="o">);</span> |
| <span class="nc">JavaRDD</span><span class="o"><</span><span class="nc">Vector</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="na">parallelize</span><span class="o">(</span><span class="n">localData</span><span class="o">,</span> <span class="mi">2</span><span class="o">);</span> |
| |
| <span class="nc">BisectingKMeans</span> <span class="n">bkm</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">BisectingKMeans</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setK</span><span class="o">(</span><span class="mi">4</span><span class="o">);</span> |
| <span class="nc">BisectingKMeansModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">bkm</span><span class="o">.</span><span class="na">run</span><span class="o">(</span><span class="n">data</span><span class="o">);</span> |
| |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Compute Cost: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">data</span><span class="o">));</span> |
| |
| <span class="nc">Vector</span><span class="o">[]</span> <span class="n">clusterCenters</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">();</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">clusterCenters</span><span class="o">.</span><span class="na">length</span><span class="o">;</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="nc">Vector</span> <span class="n">clusterCenter</span> <span class="o">=</span> <span class="n">clusterCenters</span><span class="o">[</span><span class="n">i</span><span class="o">];</span> |
| <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Cluster Center "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">clusterCenter</span><span class="o">);</span> |
| <span class="o">}</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/mllib/JavaBisectingKMeansExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="streaming-k-means">Streaming k-means</h2> |
| |
| <p>When data arrive in a stream, we may want to estimate clusters dynamically, |
| updating them as new data arrive. <code class="language-plaintext highlighter-rouge">spark.mllib</code> provides support for streaming k-means clustering, |
| with parameters to control the decay (or “forgetfulness”) of the estimates. The algorithm |
| uses a generalization of the mini-batch k-means update rule. For each batch of data, we assign |
| all points to their nearest cluster, compute new cluster centers, then update each cluster using:</p> |
| |
| <p><code class="language-plaintext highlighter-rouge">\begin{equation} |
| c_{t+1} = \frac{c_tn_t\alpha + x_tm_t}{n_t\alpha+m_t} |
| \end{equation}</code> |
| <code class="language-plaintext highlighter-rouge">\begin{equation} |
| n_{t+1} = n_t + m_t |
| \end{equation}</code></p> |
| |
| <p>Where <code class="language-plaintext highlighter-rouge">$c_t$</code> is the previous center for the cluster, <code class="language-plaintext highlighter-rouge">$n_t$</code> is the number of points assigned |
| to the cluster thus far, <code class="language-plaintext highlighter-rouge">$x_t$</code> is the new cluster center from the current batch, and <code class="language-plaintext highlighter-rouge">$m_t$</code> |
| is the number of points added to the cluster in the current batch. The decay factor <code class="language-plaintext highlighter-rouge">$\alpha$</code> |
| can be used to ignore the past: with <code class="language-plaintext highlighter-rouge">$\alpha$=1</code> all data will be used from the beginning; |
| with <code class="language-plaintext highlighter-rouge">$\alpha$=0</code> only the most recent data will be used. This is analogous to an |
| exponentially-weighted moving average.</p> |
| |
| <p>The decay can be specified using a <code class="language-plaintext highlighter-rouge">halfLife</code> parameter, which determines the |
| correct decay factor <code class="language-plaintext highlighter-rouge">a</code> such that, for data acquired |
| at time <code class="language-plaintext highlighter-rouge">t</code>, its contribution by time <code class="language-plaintext highlighter-rouge">t + halfLife</code> will have dropped to 0.5. |
| The unit of time can be specified either as <code class="language-plaintext highlighter-rouge">batches</code> or <code class="language-plaintext highlighter-rouge">points</code> and the update rule |
| will be adjusted accordingly.</p> |
| |
| <p><strong>Examples</strong></p> |
| |
| <p>This example shows how to estimate clusters on streaming data.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/reference/api/pyspark.mllib.clustering.StreamingKMeans.html"><code class="language-plaintext highlighter-rouge">StreamingKMeans</code> Python docs</a> for more details on the API. |
| And Refer to <a href="streaming-programming-guide.html#initializing">Spark Streaming Programming Guide</a> for details on StreamingContext.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.clustering</span> <span class="kn">import</span> <span class="n">StreamingKMeans</span> |
| |
| <span class="c1"># we make an input stream of vectors for training, |
| # as well as a stream of vectors for testing |
| </span><span class="k">def</span> <span class="nf">parse</span><span class="p">(</span><span class="n">lp</span><span class="p">):</span> |
| <span class="n">label</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="n">lp</span><span class="p">[</span><span class="n">lp</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="s">'('</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:</span> <span class="n">lp</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="s">')'</span><span class="p">)])</span> |
| <span class="n">vec</span> <span class="o">=</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="n">lp</span><span class="p">[</span><span class="n">lp</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="s">'['</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:</span> <span class="n">lp</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="s">']'</span><span class="p">)].</span><span class="n">split</span><span class="p">(</span><span class="s">','</span><span class="p">))</span> |
| |
| <span class="k">return</span> <span class="n">LabeledPoint</span><span class="p">(</span><span class="n">label</span><span class="p">,</span> <span class="n">vec</span><span class="p">)</span> |
| |
| <span class="n">trainingData</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/kmeans_data.txt"</span><span class="p">)</span>\ |
| <span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">line</span><span class="p">:</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">line</span><span class="p">.</span><span class="n">strip</span><span class="p">().</span><span class="n">split</span><span class="p">(</span><span class="s">' '</span><span class="p">)]))</span> |
| |
| <span class="n">testingData</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">textFile</span><span class="p">(</span><span class="s">"data/mllib/streaming_kmeans_data_test.txt"</span><span class="p">).</span><span class="nb">map</span><span class="p">(</span><span class="n">parse</span><span class="p">)</span> |
| |
| <span class="n">trainingQueue</span> <span class="o">=</span> <span class="p">[</span><span class="n">trainingData</span><span class="p">]</span> |
| <span class="n">testingQueue</span> <span class="o">=</span> <span class="p">[</span><span class="n">testingData</span><span class="p">]</span> |
| |
| <span class="n">trainingStream</span> <span class="o">=</span> <span class="n">ssc</span><span class="p">.</span><span class="n">queueStream</span><span class="p">(</span><span class="n">trainingQueue</span><span class="p">)</span> |
| <span class="n">testingStream</span> <span class="o">=</span> <span class="n">ssc</span><span class="p">.</span><span class="n">queueStream</span><span class="p">(</span><span class="n">testingQueue</span><span class="p">)</span> |
| |
| <span class="c1"># We create a model with random clusters and specify the number of clusters to find |
| </span><span class="n">model</span> <span class="o">=</span> <span class="n">StreamingKMeans</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">decayFactor</span><span class="o">=</span><span class="mf">1.0</span><span class="p">).</span><span class="n">setRandomCenters</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> |
| |
| <span class="c1"># Now register the streams for training and testing and start the job, |
| # printing the predicted cluster assignments on new data points as they arrive. |
| </span><span class="n">model</span><span class="p">.</span><span class="n">trainOn</span><span class="p">(</span><span class="n">trainingStream</span><span class="p">)</span> |
| |
| <span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">predictOnValues</span><span class="p">(</span><span class="n">testingStream</span><span class="p">.</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">lp</span><span class="p">:</span> <span class="p">(</span><span class="n">lp</span><span class="p">.</span><span class="n">label</span><span class="p">,</span> <span class="n">lp</span><span class="p">.</span><span class="n">features</span><span class="p">)))</span> |
| <span class="n">result</span><span class="p">.</span><span class="n">pprint</span><span class="p">()</span> |
| |
| <span class="n">ssc</span><span class="p">.</span><span class="n">start</span><span class="p">()</span> |
| <span class="n">ssc</span><span class="p">.</span><span class="n">stop</span><span class="p">(</span><span class="n">stopSparkContext</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">stopGraceFully</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/python/mllib/streaming_k_means_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/org/apache/spark/mllib/clustering/StreamingKMeans.html"><code class="language-plaintext highlighter-rouge">StreamingKMeans</code> Scala docs</a> for details on the API. |
| And Refer to <a href="streaming-programming-guide.html#initializing">Spark Streaming Programming Guide</a> for details on StreamingContext.</p> |
| |
| <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.mllib.clustering.StreamingKMeans</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.streaming.</span><span class="o">{</span><span class="nc">Seconds</span><span class="o">,</span> <span class="nc">StreamingContext</span><span class="o">}</span> |
| |
| <span class="k">val</span> <span class="nv">conf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">SparkConf</span><span class="o">().</span><span class="py">setAppName</span><span class="o">(</span><span class="s">"StreamingKMeansExample"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">ssc</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StreamingContext</span><span class="o">(</span><span class="n">conf</span><span class="o">,</span> <span class="nc">Seconds</span><span class="o">(</span><span class="nf">args</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">toLong</span><span class="o">))</span> |
| |
| <span class="k">val</span> <span class="nv">trainingData</span> <span class="k">=</span> <span class="nv">ssc</span><span class="o">.</span><span class="py">textFileStream</span><span class="o">(</span><span class="nf">args</span><span class="o">(</span><span class="mi">0</span><span class="o">)).</span><span class="py">map</span><span class="o">(</span><span class="nv">Vectors</span><span class="o">.</span><span class="py">parse</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">testData</span> <span class="k">=</span> <span class="nv">ssc</span><span class="o">.</span><span class="py">textFileStream</span><span class="o">(</span><span class="nf">args</span><span class="o">(</span><span class="mi">1</span><span class="o">)).</span><span class="py">map</span><span class="o">(</span><span class="nv">LabeledPoint</span><span class="o">.</span><span class="py">parse</span><span class="o">)</span> |
| |
| <span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StreamingKMeans</span><span class="o">()</span> |
| <span class="o">.</span><span class="py">setK</span><span class="o">(</span><span class="nf">args</span><span class="o">(</span><span class="mi">3</span><span class="o">).</span><span class="py">toInt</span><span class="o">)</span> |
| <span class="o">.</span><span class="py">setDecayFactor</span><span class="o">(</span><span class="mf">1.0</span><span class="o">)</span> |
| <span class="o">.</span><span class="py">setRandomCenters</span><span class="o">(</span><span class="nf">args</span><span class="o">(</span><span class="mi">4</span><span class="o">).</span><span class="py">toInt</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">)</span> |
| |
| <span class="nv">model</span><span class="o">.</span><span class="py">trainOn</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span> |
| <span class="nv">model</span><span class="o">.</span><span class="py">predictOnValues</span><span class="o">(</span><span class="nv">testData</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="n">lp</span> <span class="k">=></span> <span class="o">(</span><span class="nv">lp</span><span class="o">.</span><span class="py">label</span><span class="o">,</span> <span class="nv">lp</span><span class="o">.</span><span class="py">features</span><span class="o">))).</span><span class="py">print</span><span class="o">()</span> |
| |
| <span class="nv">ssc</span><span class="o">.</span><span class="py">start</span><span class="o">()</span> |
| <span class="nv">ssc</span><span class="o">.</span><span class="py">awaitTermination</span><span class="o">()</span></code></pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/mllib/StreamingKMeansExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <p>As you add new text files with data the cluster centers will update. Each training |
| point should be formatted as <code class="language-plaintext highlighter-rouge">[x1, x2, x3]</code>, and each test data point |
| should be formatted as <code class="language-plaintext highlighter-rouge">(y, [x1, x2, x3])</code>, where <code class="language-plaintext highlighter-rouge">y</code> is some useful label or identifier |
| (e.g. a true category assignment). Anytime a text file is placed in <code class="language-plaintext highlighter-rouge">/training/data/dir</code> |
| the model will update. Anytime a text file is placed in <code class="language-plaintext highlighter-rouge">/testing/data/dir</code> |
| you will see predictions. With new data, the cluster centers will change!</p> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-3.5.1.min.js"></script> |
| <script src="js/vendor/bootstrap.bundle.min.js"></script> |
| |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> |
| <script type="text/javascript"> |
| // DocSearch is entirely free and automated. DocSearch is built in two parts: |
| // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link |
| // in your website and extract content from every page it traverses. It then pushes this |
| // content to an Algolia index. |
| // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index |
| // to your search input and display its results in a dropdown UI. If you want to find more |
| // details on how works DocSearch, check the docs of DocSearch. |
| docsearch({ |
| apiKey: 'd62f962a82bc9abb53471cb7b89da35e', |
| appId: 'RAI69RXRSK', |
| indexName: 'apache_spark', |
| inputSelector: '#docsearch-input', |
| enhancedSearchInput: true, |
| algoliaOptions: { |
| 'facetFilters': ["version:3.5.0"] |
| }, |
| debug: false // Set debug to true if you want to inspect the dropdown |
| }); |
| |
| </script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |