blob: 6b632c27f39b9fce01da04f705b53fa0d7115864 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.streaming.dstream &#8212; PySpark 3.2.3 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.streaming.dstream</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">operator</span>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">from</span> <span class="nn">itertools</span> <span class="kn">import</span> <span class="n">chain</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span>
<span class="kn">from</span> <span class="nn">py4j.protocol</span> <span class="kn">import</span> <span class="n">Py4JJavaError</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span> <span class="nn">pyspark.storagelevel</span> <span class="kn">import</span> <span class="n">StorageLevel</span>
<span class="kn">from</span> <span class="nn">pyspark.streaming.util</span> <span class="kn">import</span> <span class="n">rddToFileName</span><span class="p">,</span> <span class="n">TransformFunction</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">portable_hash</span>
<span class="kn">from</span> <span class="nn">pyspark.resultiterable</span> <span class="kn">import</span> <span class="n">ResultIterable</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;DStream&quot;</span><span class="p">]</span>
<div class="viewcode-block" id="DStream"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.html#pyspark.streaming.DStream">[docs]</a><span class="k">class</span> <span class="nc">DStream</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A Discretized Stream (DStream), the basic abstraction in Spark Streaming,</span>
<span class="sd"> is a continuous sequence of RDDs (of the same type) representing a</span>
<span class="sd"> continuous stream of data (see :class:`RDD` in the Spark core documentation</span>
<span class="sd"> for more details on RDDs).</span>
<span class="sd"> DStreams can either be created from live data (such as, data from TCP</span>
<span class="sd"> sockets, etc.) using a :class:`StreamingContext` or it can be</span>
<span class="sd"> generated by transforming existing DStreams using operations such as</span>
<span class="sd"> `map`, `window` and `reduceByKeyAndWindow`. While a Spark Streaming</span>
<span class="sd"> program is running, each DStream periodically generates a RDD, either</span>
<span class="sd"> from live data or by transforming the RDD generated by a parent DStream.</span>
<span class="sd"> DStreams internally is characterized by a few basic properties:</span>
<span class="sd"> - A list of other DStreams that the DStream depends on</span>
<span class="sd"> - A time interval at which the DStream generates an RDD</span>
<span class="sd"> - A function that is used to generate an RDD after each time interval</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">jdstream</span><span class="p">,</span> <span class="n">ssc</span><span class="p">,</span> <span class="n">jrdd_deserializer</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span> <span class="o">=</span> <span class="n">jdstream</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span> <span class="o">=</span> <span class="n">ssc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="n">ssc</span><span class="o">.</span><span class="n">_sc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="o">=</span> <span class="n">jrdd_deserializer</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">False</span>
<div class="viewcode-block" id="DStream.context"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.context.html#pyspark.streaming.DStream.context">[docs]</a> <span class="k">def</span> <span class="nf">context</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return the StreamingContext associated with this DStream</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span></div>
<div class="viewcode-block" id="DStream.count"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.count.html#pyspark.streaming.DStream.count">[docs]</a> <span class="k">def</span> <span class="nf">count</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD has a single element</span>
<span class="sd"> generated by counting each RDD of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="k">lambda</span> <span class="n">i</span><span class="p">:</span> <span class="p">[</span><span class="nb">sum</span><span class="p">(</span><span class="mi">1</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">i</span><span class="p">)])</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.filter"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.filter.html#pyspark.streaming.DStream.filter">[docs]</a> <span class="k">def</span> <span class="nf">filter</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream containing only the elements that satisfy predicate.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">filter</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.flatMap"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.flatMap.html#pyspark.streaming.DStream.flatMap">[docs]</a> <span class="k">def</span> <span class="nf">flatMap</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying a function to all elements of</span>
<span class="sd"> this DStream, and then flattening the results</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">iterator</span><span class="p">):</span>
<span class="k">return</span> <span class="n">chain</span><span class="o">.</span><span class="n">from_iterable</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.map"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.map.html#pyspark.streaming.DStream.map">[docs]</a> <span class="k">def</span> <span class="nf">map</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying a function to each element of DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">map</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.mapPartitions"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapPartitions.html#pyspark.streaming.DStream.mapPartitions">[docs]</a> <span class="k">def</span> <span class="nf">mapPartitions</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD is generated by applying</span>
<span class="sd"> mapPartitions() to each RDDs of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">iterator</span><span class="p">):</span>
<span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="n">iterator</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.mapPartitionsWithIndex"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapPartitionsWithIndex.html#pyspark.streaming.DStream.mapPartitionsWithIndex">[docs]</a> <span class="k">def</span> <span class="nf">mapPartitionsWithIndex</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD is generated by applying</span>
<span class="sd"> mapPartitionsWithIndex() to each RDDs of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">))</span></div>
<div class="viewcode-block" id="DStream.reduce"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduce.html#pyspark.streaming.DStream.reduce">[docs]</a> <span class="k">def</span> <span class="nf">reduce</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD has a single element</span>
<span class="sd"> generated by reducing each RDD of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="n">x</span><span class="p">))</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span></div>
<div class="viewcode-block" id="DStream.reduceByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByKey.html#pyspark.streaming.DStream.reduceByKey">[docs]</a> <span class="k">def</span> <span class="nf">reduceByKey</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying reduceByKey to each RDD.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">combineByKey</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.combineByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.combineByKey.html#pyspark.streaming.DStream.combineByKey">[docs]</a> <span class="k">def</span> <span class="nf">combineByKey</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">createCombiner</span><span class="p">,</span> <span class="n">mergeValue</span><span class="p">,</span> <span class="n">mergeCombiners</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying combineByKey to each RDD.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">rdd</span><span class="p">):</span>
<span class="k">return</span> <span class="n">rdd</span><span class="o">.</span><span class="n">combineByKey</span><span class="p">(</span><span class="n">createCombiner</span><span class="p">,</span> <span class="n">mergeValue</span><span class="p">,</span> <span class="n">mergeCombiners</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">func</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.partitionBy"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.partitionBy.html#pyspark.streaming.DStream.partitionBy">[docs]</a> <span class="k">def</span> <span class="nf">partitionBy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">partitionFunc</span><span class="o">=</span><span class="n">portable_hash</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a copy of the DStream in which each RDD are partitioned</span>
<span class="sd"> using the specified partitioner.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">partitionBy</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">,</span> <span class="n">partitionFunc</span><span class="p">))</span></div>
<div class="viewcode-block" id="DStream.foreachRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.foreachRDD.html#pyspark.streaming.DStream.foreachRDD">[docs]</a> <span class="k">def</span> <span class="nf">foreachRDD</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Apply a function to each RDD in this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">old_func</span> <span class="o">=</span> <span class="n">func</span>
<span class="n">func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">old_func</span><span class="p">(</span><span class="n">rdd</span><span class="p">)</span>
<span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">api</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonDStream</span>
<span class="n">api</span><span class="o">.</span><span class="n">callForeachRDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="p">,</span> <span class="n">jfunc</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.pprint"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.pprint.html#pyspark.streaming.DStream.pprint">[docs]</a> <span class="k">def</span> <span class="nf">pprint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Print the first num elements of each RDD generated in this DStream.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> num : int, optional</span>
<span class="sd"> the number of elements from the first will be printed.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">takeAndPrint</span><span class="p">(</span><span class="n">time</span><span class="p">,</span> <span class="n">rdd</span><span class="p">):</span>
<span class="n">taken</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="n">num</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-------------------------------------------&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Time: </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">time</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-------------------------------------------&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">record</span> <span class="ow">in</span> <span class="n">taken</span><span class="p">[:</span><span class="n">num</span><span class="p">]:</span>
<span class="nb">print</span><span class="p">(</span><span class="n">record</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">taken</span><span class="p">)</span> <span class="o">&gt;</span> <span class="n">num</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;...&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">foreachRDD</span><span class="p">(</span><span class="n">takeAndPrint</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.mapValues"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapValues.html#pyspark.streaming.DStream.mapValues">[docs]</a> <span class="k">def</span> <span class="nf">mapValues</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying a map function to the value of</span>
<span class="sd"> each key-value pairs in this DStream without changing the key.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">map_values_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">f</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">map_values_fn</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.flatMapValues"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.flatMapValues.html#pyspark.streaming.DStream.flatMapValues">[docs]</a> <span class="k">def</span> <span class="nf">flatMapValues</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying a flatmap function to the value</span>
<span class="sd"> of each key-value pairs in this DStream without changing the key.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">flat_map_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="p">((</span><span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">f</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">flatMap</span><span class="p">(</span><span class="n">flat_map_fn</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.glom"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.glom.html#pyspark.streaming.DStream.glom">[docs]</a> <span class="k">def</span> <span class="nf">glom</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which RDD is generated by applying glom()</span>
<span class="sd"> to RDD of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">):</span>
<span class="k">yield</span> <span class="nb">list</span><span class="p">(</span><span class="n">iterator</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.cache"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.cache.html#pyspark.streaming.DStream.cache">[docs]</a> <span class="k">def</span> <span class="nf">cache</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Persist the RDDs of this DStream with the default storage level</span>
<span class="sd"> (`MEMORY_ONLY`).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">persist</span><span class="p">(</span><span class="n">StorageLevel</span><span class="o">.</span><span class="n">MEMORY_ONLY</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="DStream.persist"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.persist.html#pyspark.streaming.DStream.persist">[docs]</a> <span class="k">def</span> <span class="nf">persist</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">storageLevel</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Persist the RDDs of this DStream with the given storage level</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">javaStorageLevel</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_getJavaStorageLevel</span><span class="p">(</span><span class="n">storageLevel</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">persist</span><span class="p">(</span><span class="n">javaStorageLevel</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="DStream.checkpoint"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.checkpoint.html#pyspark.streaming.DStream.checkpoint">[docs]</a> <span class="k">def</span> <span class="nf">checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">interval</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Enable periodic checkpointing of RDDs of this DStream</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> interval : int</span>
<span class="sd"> time in seconds, after each period of that, generated</span>
<span class="sd"> RDD will be checkpointed</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">interval</span><span class="p">))</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="DStream.groupByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.groupByKey.html#pyspark.streaming.DStream.groupByKey">[docs]</a> <span class="k">def</span> <span class="nf">groupByKey</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying groupByKey on each RDD.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">groupByKey</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span></div>
<div class="viewcode-block" id="DStream.countByValue"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByValue.html#pyspark.streaming.DStream.countByValue">[docs]</a> <span class="k">def</span> <span class="nf">countByValue</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD contains the counts of each</span>
<span class="sd"> distinct value in each RDD of this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">x</span><span class="o">+</span><span class="n">y</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.saveAsTextFiles"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.saveAsTextFiles.html#pyspark.streaming.DStream.saveAsTextFiles">[docs]</a> <span class="k">def</span> <span class="nf">saveAsTextFiles</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="p">,</span> <span class="n">suffix</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Save each RDD in this DStream as at text file, using string</span>
<span class="sd"> representation of elements.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">saveAsTextFile</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">):</span>
<span class="n">path</span> <span class="o">=</span> <span class="n">rddToFileName</span><span class="p">(</span><span class="n">prefix</span><span class="p">,</span> <span class="n">suffix</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">rdd</span><span class="o">.</span><span class="n">saveAsTextFile</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="k">except</span> <span class="n">Py4JJavaError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="c1"># after recovered from checkpointing, the foreachRDD may</span>
<span class="c1"># be called twice</span>
<span class="k">if</span> <span class="s1">&#39;FileAlreadyExistsException&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">e</span><span class="p">):</span>
<span class="k">raise</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">foreachRDD</span><span class="p">(</span><span class="n">saveAsTextFile</span><span class="p">)</span></div>
<span class="c1"># TODO: uncomment this until we have ssc.pickleFileStream()</span>
<span class="c1"># def saveAsPickleFiles(self, prefix, suffix=None):</span>
<span class="c1"># &quot;&quot;&quot;</span>
<span class="c1"># Save each RDD in this DStream as at binary file, the elements are</span>
<span class="c1"># serialized by pickle.</span>
<span class="c1"># &quot;&quot;&quot;</span>
<span class="c1"># def saveAsPickleFile(t, rdd):</span>
<span class="c1"># path = rddToFileName(prefix, suffix, t)</span>
<span class="c1"># try:</span>
<span class="c1"># rdd.saveAsPickleFile(path)</span>
<span class="c1"># except Py4JJavaError as e:</span>
<span class="c1"># # after recovered from checkpointing, the foreachRDD may</span>
<span class="c1"># # be called twice</span>
<span class="c1"># if &#39;FileAlreadyExistsException&#39; not in str(e):</span>
<span class="c1"># raise</span>
<span class="c1"># return self.foreachRDD(saveAsPickleFile)</span>
<div class="viewcode-block" id="DStream.transform"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.transform.html#pyspark.streaming.DStream.transform">[docs]</a> <span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD is generated by applying a function</span>
<span class="sd"> on each RDD of this DStream.</span>
<span class="sd"> `func` can have one argument of `rdd`, or have two arguments of</span>
<span class="sd"> (`time`, `rdd`)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">oldfunc</span> <span class="o">=</span> <span class="n">func</span>
<span class="n">func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">oldfunc</span><span class="p">(</span><span class="n">rdd</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;func should take one or two arguments&quot;</span>
<span class="k">return</span> <span class="n">TransformedDStream</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.transformWith"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.transformWith.html#pyspark.streaming.DStream.transformWith">[docs]</a> <span class="k">def</span> <span class="nf">transformWith</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">keepSerializer</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD is generated by applying a function</span>
<span class="sd"> on each RDD of this DStream and &#39;other&#39; DStream.</span>
<span class="sd"> `func` can have two arguments of (`rdd_a`, `rdd_b`) or have three</span>
<span class="sd"> arguments of (`time`, `rdd_a`, `rdd_b`)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">oldfunc</span> <span class="o">=</span> <span class="n">func</span>
<span class="n">func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">oldfunc</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;func should take two or three arguments&quot;</span>
<span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">,</span> <span class="n">other</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonTransformed2DStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span>
<span class="n">other</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jfunc</span><span class="p">)</span>
<span class="n">jrdd_serializer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="k">if</span> <span class="n">keepSerializer</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span>
<span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="n">jrdd_serializer</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.repartition"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.repartition.html#pyspark.streaming.DStream.repartition">[docs]</a> <span class="k">def</span> <span class="nf">repartition</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream with an increased or decreased level of parallelism.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">repartition</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">_slideDuration</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return the slideDuration in seconds of this DStream</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">()</span><span class="o">.</span><span class="n">slideDuration</span><span class="p">()</span><span class="o">.</span><span class="n">milliseconds</span><span class="p">()</span> <span class="o">/</span> <span class="mf">1000.0</span>
<div class="viewcode-block" id="DStream.union"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.union.html#pyspark.streaming.DStream.union">[docs]</a> <span class="k">def</span> <span class="nf">union</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by unifying data of another DStream with this DStream.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other : :class:`DStream`</span>
<span class="sd"> Another DStream having the same interval (i.e., slideDuration)</span>
<span class="sd"> as this DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_slideDuration</span> <span class="o">!=</span> <span class="n">other</span><span class="o">.</span><span class="n">_slideDuration</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;the two DStream should have same slide duration&quot;</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">b</span><span class="p">),</span> <span class="n">other</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.cogroup"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.cogroup.html#pyspark.streaming.DStream.cogroup">[docs]</a> <span class="k">def</span> <span class="nf">cogroup</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying &#39;cogroup&#39; between RDDs of this</span>
<span class="sd"> DStream and `other` DStream.</span>
<span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions` partitions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">cogroup</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.join"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.join.html#pyspark.streaming.DStream.join">[docs]</a> <span class="k">def</span> <span class="nf">join</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying &#39;join&#39; between RDDs of this DStream and</span>
<span class="sd"> `other` DStream.</span>
<span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span>
<span class="sd"> partitions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.leftOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.leftOuterJoin.html#pyspark.streaming.DStream.leftOuterJoin">[docs]</a> <span class="k">def</span> <span class="nf">leftOuterJoin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying &#39;left outer join&#39; between RDDs of this DStream and</span>
<span class="sd"> `other` DStream.</span>
<span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span>
<span class="sd"> partitions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">leftOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.rightOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.rightOuterJoin.html#pyspark.streaming.DStream.rightOuterJoin">[docs]</a> <span class="k">def</span> <span class="nf">rightOuterJoin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying &#39;right outer join&#39; between RDDs of this DStream and</span>
<span class="sd"> `other` DStream.</span>
<span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span>
<span class="sd"> partitions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">rightOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.fullOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.fullOuterJoin.html#pyspark.streaming.DStream.fullOuterJoin">[docs]</a> <span class="k">def</span> <span class="nf">fullOuterJoin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying &#39;full outer join&#39; between RDDs of this DStream and</span>
<span class="sd"> `other` DStream.</span>
<span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span>
<span class="sd"> partitions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">fullOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_jtime</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timestamp</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot; Convert datetime or unix_timestamp into Time</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">timestamp</span><span class="p">,</span> <span class="n">datetime</span><span class="p">):</span>
<span class="n">timestamp</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">mktime</span><span class="p">(</span><span class="n">timestamp</span><span class="o">.</span><span class="n">timetuple</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">Time</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">timestamp</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">))</span>
<div class="viewcode-block" id="DStream.slice"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.slice.html#pyspark.streaming.DStream.slice">[docs]</a> <span class="k">def</span> <span class="nf">slice</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">begin</span><span class="p">,</span> <span class="n">end</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return all the RDDs between &#39;begin&#39; to &#39;end&#39; (both included)</span>
<span class="sd"> `begin`, `end` could be datetime.datetime() or unix_timestamp</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jrdds</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jtime</span><span class="p">(</span><span class="n">begin</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jtime</span><span class="p">(</span><span class="n">end</span><span class="p">))</span>
<span class="k">return</span> <span class="p">[</span><span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> <span class="k">for</span> <span class="n">jrdd</span> <span class="ow">in</span> <span class="n">jrdds</span><span class="p">]</span></div>
<span class="k">def</span> <span class="nf">_validate_window_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">window</span><span class="p">,</span> <span class="n">slide</span><span class="p">):</span>
<span class="n">duration</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">()</span><span class="o">.</span><span class="n">slideDuration</span><span class="p">()</span><span class="o">.</span><span class="n">milliseconds</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">int</span><span class="p">(</span><span class="n">window</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span> <span class="o">%</span> <span class="n">duration</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;windowDuration must be multiple of the parent &quot;</span>
<span class="s2">&quot;dstream&#39;s slide (batch) duration (</span><span class="si">%d</span><span class="s2"> ms)&quot;</span>
<span class="o">%</span> <span class="n">duration</span><span class="p">)</span>
<span class="k">if</span> <span class="n">slide</span> <span class="ow">and</span> <span class="nb">int</span><span class="p">(</span><span class="n">slide</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span> <span class="o">%</span> <span class="n">duration</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;slideDuration must be multiple of the parent &quot;</span>
<span class="s2">&quot;dstream&#39;s slide (batch) duration (</span><span class="si">%d</span><span class="s2"> ms)&quot;</span>
<span class="o">%</span> <span class="n">duration</span><span class="p">)</span>
<div class="viewcode-block" id="DStream.window"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.window.html#pyspark.streaming.DStream.window">[docs]</a> <span class="k">def</span> <span class="nf">window</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD contains all the elements in seen in a</span>
<span class="sd"> sliding window of time over this DStream.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> windowDuration : int</span>
<span class="sd"> width of the window; must be a multiple of this DStream&#39;s</span>
<span class="sd"> batching interval</span>
<span class="sd"> slideDuration : int, optional</span>
<span class="sd"> sliding interval of the window (i.e., the interval after which</span>
<span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span>
<span class="sd"> DStream&#39;s batching interval</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_validate_window_param</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span>
<span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">)</span>
<span class="k">if</span> <span class="n">slideDuration</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">d</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">slideDuration</span><span class="p">)</span>
<span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">s</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.reduceByWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByWindow.html#pyspark.streaming.DStream.reduceByWindow">[docs]</a> <span class="k">def</span> <span class="nf">reduceByWindow</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">reduceFunc</span><span class="p">,</span> <span class="n">invReduceFunc</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD has a single element generated by reducing all</span>
<span class="sd"> elements in a sliding window over this DStream.</span>
<span class="sd"> if `invReduceFunc` is not None, the reduction is done incrementally</span>
<span class="sd"> using the old window&#39;s reduced value :</span>
<span class="sd"> 1. reduce the new values that entered the window (e.g., adding new counts)</span>
<span class="sd"> 2. &quot;inverse reduce&quot; the old values that left the window (e.g., subtracting old counts)</span>
<span class="sd"> This is more efficient than `invReduceFunc` is None.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> reduceFunc : function</span>
<span class="sd"> associative and commutative reduce function</span>
<span class="sd"> invReduceFunc : function</span>
<span class="sd"> inverse reduce function of `reduceFunc`; such that for all y,</span>
<span class="sd"> and invertible x:</span>
<span class="sd"> `invReduceFunc(reduceFunc(x, y), x) = y`</span>
<span class="sd"> windowDuration : int</span>
<span class="sd"> width of the window; must be a multiple of this DStream&#39;s</span>
<span class="sd"> batching interval</span>
<span class="sd"> slideDuration : int</span>
<span class="sd"> sliding interval of the window (i.e., the interval after which</span>
<span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span>
<span class="sd"> DStream&#39;s batching interval</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">keyed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="p">))</span>
<span class="n">reduced</span> <span class="o">=</span> <span class="n">keyed</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span><span class="n">reduceFunc</span><span class="p">,</span> <span class="n">invReduceFunc</span><span class="p">,</span>
<span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">reduced</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span></div>
<div class="viewcode-block" id="DStream.countByWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByWindow.html#pyspark.streaming.DStream.countByWindow">[docs]</a> <span class="k">def</span> <span class="nf">countByWindow</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD has a single element generated</span>
<span class="sd"> by counting the number of elements in a window over this DStream.</span>
<span class="sd"> windowDuration and slideDuration are as defined in the window() operation.</span>
<span class="sd"> This is equivalent to window(windowDuration, slideDuration).count(),</span>
<span class="sd"> but will be more efficient if window is large.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByWindow</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">,</span> <span class="n">operator</span><span class="o">.</span><span class="n">sub</span><span class="p">,</span>
<span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.countByValueAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByValueAndWindow.html#pyspark.streaming.DStream.countByValueAndWindow">[docs]</a> <span class="k">def</span> <span class="nf">countByValueAndWindow</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream in which each RDD contains the count of distinct elements in</span>
<span class="sd"> RDDs in a sliding window over this DStream.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> windowDuration : int</span>
<span class="sd"> width of the window; must be a multiple of this DStream&#39;s</span>
<span class="sd"> batching interval</span>
<span class="sd"> slideDuration : int</span>
<span class="sd"> sliding interval of the window (i.e., the interval after which</span>
<span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span>
<span class="sd"> DStream&#39;s batching interval</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> number of partitions of each RDD in the new DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">keyed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">counted</span> <span class="o">=</span> <span class="n">keyed</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">,</span> <span class="n">operator</span><span class="o">.</span><span class="n">sub</span><span class="p">,</span>
<span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="k">return</span> <span class="n">counted</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.groupByKeyAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.groupByKeyAndWindow.html#pyspark.streaming.DStream.groupByKeyAndWindow">[docs]</a> <span class="k">def</span> <span class="nf">groupByKeyAndWindow</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying `groupByKey` over a sliding window.</span>
<span class="sd"> Similar to `DStream.groupByKey()`, but applies it over a sliding window.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> windowDuration : int</span>
<span class="sd"> width of the window; must be a multiple of this DStream&#39;s</span>
<span class="sd"> batching interval</span>
<span class="sd"> slideDuration : int</span>
<span class="sd"> sliding interval of the window (i.e., the interval after which</span>
<span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span>
<span class="sd"> DStream&#39;s batching interval</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions of each RDD in the new DStream.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">ls</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">[</span><span class="n">x</span><span class="p">])</span>
<span class="n">grouped</span> <span class="o">=</span> <span class="n">ls</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="ow">or</span> <span class="n">a</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">b</span><span class="p">):],</span>
<span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="k">return</span> <span class="n">grouped</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="n">ResultIterable</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.reduceByKeyAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByKeyAndWindow.html#pyspark.streaming.DStream.reduceByKeyAndWindow">[docs]</a> <span class="k">def</span> <span class="nf">reduceByKeyAndWindow</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">invFunc</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">filterFunc</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new DStream by applying incremental `reduceByKey` over a sliding window.</span>
<span class="sd"> The reduced value of over a new window is calculated using the old window&#39;s reduce value :</span>
<span class="sd"> 1. reduce the new values that entered the window (e.g., adding new counts)</span>
<span class="sd"> 2. &quot;inverse reduce&quot; the old values that left the window (e.g., subtracting old counts)</span>
<span class="sd"> `invFunc` can be None, then it will reduce all the RDDs in window, could be slower</span>
<span class="sd"> than having `invFunc`.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> func : function</span>
<span class="sd"> associative and commutative reduce function</span>
<span class="sd"> invFunc : function</span>
<span class="sd"> inverse function of `reduceFunc`</span>
<span class="sd"> windowDuration : int</span>
<span class="sd"> width of the window; must be a multiple of this DStream&#39;s</span>
<span class="sd"> batching interval</span>
<span class="sd"> slideDuration : int, optional</span>
<span class="sd"> sliding interval of the window (i.e., the interval after which</span>
<span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span>
<span class="sd"> DStream&#39;s batching interval</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> number of partitions of each RDD in the new DStream.</span>
<span class="sd"> filterFunc : function, optional</span>
<span class="sd"> function to filter expired key-value pairs;</span>
<span class="sd"> only pairs that satisfy the function are retained</span>
<span class="sd"> set this to null if you do not want to filter</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_validate_window_param</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="n">reduced</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="k">if</span> <span class="n">invFunc</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">reduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">b</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> <span class="k">if</span> <span class="n">a</span> <span class="k">else</span> <span class="n">b</span>
<span class="k">if</span> <span class="n">filterFunc</span><span class="p">:</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">filterFunc</span><span class="p">)</span>
<span class="k">return</span> <span class="n">r</span>
<span class="k">def</span> <span class="nf">invReduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="n">joined</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">leftOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="k">return</span> <span class="n">joined</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">invFunc</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="k">if</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="n">jreduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">reduceFunc</span><span class="p">,</span> <span class="n">reduced</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">jinvReduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">invReduceFunc</span><span class="p">,</span> <span class="n">reduced</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="k">if</span> <span class="n">slideDuration</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">slideDuration</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_slideDuration</span>
<span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonReducedWindowedDStream</span><span class="p">(</span>
<span class="n">reduced</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span>
<span class="n">jreduceFunc</span><span class="p">,</span> <span class="n">jinvReduceFunc</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">),</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">slideDuration</span><span class="p">))</span>
<span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">reduced</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span></div>
<div class="viewcode-block" id="DStream.updateStateByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.updateStateByKey.html#pyspark.streaming.DStream.updateStateByKey">[docs]</a> <span class="k">def</span> <span class="nf">updateStateByKey</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">updateFunc</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">initialRDD</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return a new &quot;state&quot; DStream where the state for each key is updated by applying</span>
<span class="sd"> the given function on the previous state of the key and the new values of the key.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> updateFunc : function</span>
<span class="sd"> State update function. If this function returns None, then</span>
<span class="sd"> corresponding state key-value pair will be eliminated.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">if</span> <span class="n">initialRDD</span> <span class="ow">and</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">initialRDD</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="n">initialRDD</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">initialRDD</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">reduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
<span class="k">if</span> <span class="n">a</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">groupByKey</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">vs</span><span class="p">:</span> <span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">vs</span><span class="p">),</span> <span class="kc">None</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">cogroup</span><span class="p">(</span><span class="n">b</span><span class="o">.</span><span class="n">partitionBy</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">),</span> <span class="n">numPartitions</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">g</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">ab</span><span class="p">:</span> <span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="nb">list</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">0</span><span class="p">])[</span><span class="mi">0</span><span class="p">]</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="k">else</span> <span class="kc">None</span><span class="p">))</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">g</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">vs_s</span><span class="p">:</span> <span class="n">updateFunc</span><span class="p">(</span><span class="n">vs_s</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">vs_s</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">state</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">k_v</span><span class="p">:</span> <span class="n">k_v</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">jreduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">reduceFunc</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="k">if</span> <span class="n">initialRDD</span><span class="p">:</span>
<span class="n">initialRDD</span> <span class="o">=</span> <span class="n">initialRDD</span><span class="o">.</span><span class="n">_reserialize</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonStateDStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jreduceFunc</span><span class="p">,</span>
<span class="n">initialRDD</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonStateDStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jreduceFunc</span><span class="p">)</span>
<span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">)</span></div></div>
<span class="k">class</span> <span class="nc">TransformedDStream</span><span class="p">(</span><span class="n">DStream</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> TransformedDStream is a DStream generated by an Python function</span>
<span class="sd"> transforming each RDD of a DStream to another RDDs.</span>
<span class="sd"> Multiple continuous transformations of DStream can be combined into</span>
<span class="sd"> one transformation.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prev</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">_ssc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_sc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># Using type() to avoid folding the functions and compacting the DStreams which is not</span>
<span class="c1"># not strictly an object of TransformedDStream.</span>
<span class="k">if</span> <span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span> <span class="ow">is</span> <span class="n">TransformedDStream</span> <span class="ow">and</span>
<span class="ow">not</span> <span class="n">prev</span><span class="o">.</span><span class="n">is_cached</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">prev</span><span class="o">.</span><span class="n">is_checkpointed</span><span class="p">):</span>
<span class="n">prev_func</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">func</span>
<span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">func</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">prev_func</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">prev</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">prev</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">prev</span> <span class="o">=</span> <span class="n">prev</span>
<span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">func</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">_jdstream</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span>
<span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">prev</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span>
<span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonTransformedDStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">prev</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jfunc</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="o">=</span> <span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">()</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>