| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <title>pyspark.ml.tree — PySpark 3.5.2 documentation</title> |
| |
| <link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"> |
| |
| <script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/language_data.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/tree.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Google Analytics --> |
| |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <div class="container-fluid" id="banner"></div> |
| |
| |
| <nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl"> |
| |
| <div id="navbar-start"> |
| |
| |
| |
| <a class="navbar-brand" href="../../../index.html"> |
| <img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo"> |
| </a> |
| |
| |
| |
| </div> |
| |
| <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| |
| <div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse"> |
| <div id="navbar-center" class="mr-auto"> |
| |
| <div class="navbar-center-item"> |
| <ul id="navbar-main-elements" class="navbar-nav"> |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| |
| </ul> |
| </div> |
| |
| </div> |
| |
| <div id="navbar-end"> |
| |
| <div class="navbar-end-item"> |
| <!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 3.5.2 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/ml/tree.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script> |
| </div> |
| |
| </div> |
| </div> |
| </div> |
| </nav> |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| |
| <!-- Only show if we have sidebars configured, else just a small margin --> |
| <div class="col-12 col-md-3 bd-sidebar"> |
| <div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| <div class="bd-toc-item active"> |
| |
| </div> |
| </nav> |
| </div> |
| <div class="sidebar-end-items"> |
| </div> |
| </div> |
| |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| </div> |
| |
| |
| |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <h1>Source code for pyspark.ml.tree</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">,</span> <span class="n">TypeVar</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vector</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.param</span> <span class="kn">import</span> <span class="n">Params</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.param.shared</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">HasCheckpointInterval</span><span class="p">,</span> |
| <span class="n">HasSeed</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="n">Param</span><span class="p">,</span> |
| <span class="n">TypeConverters</span><span class="p">,</span> |
| <span class="n">HasMaxIter</span><span class="p">,</span> |
| <span class="n">HasStepSize</span><span class="p">,</span> |
| <span class="n">HasValidationIndicatorCol</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.wrapper</span> <span class="kn">import</span> <span class="n">JavaPredictionModel</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.common</span> <span class="kn">import</span> <span class="n">inherit_doc</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml._typing</span> <span class="kn">import</span> <span class="n">P</span> |
| |
| <span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"T"</span><span class="p">)</span> |
| |
| |
| <span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">_DecisionTreeModel</span><span class="p">(</span><span class="n">JavaPredictionModel</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Abstraction for Decision Tree models.</span> |
| |
| <span class="sd"> .. versionadded:: 1.5.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">numNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Return number of nodes of the decision tree."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"numNodes"</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">depth</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Return depth of the decision tree."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"depth"</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Full description of model."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"toDebugString"</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">predictLeaf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Predict the indices of the leaves corresponding to the feature vector.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"predictLeaf"</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_DecisionTreeParams</span><span class="p">(</span><span class="n">HasCheckpointInterval</span><span class="p">,</span> <span class="n">HasSeed</span><span class="p">,</span> <span class="n">HasWeightCol</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Mixin for Decision Tree parameters.</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">leafCol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"leafCol"</span><span class="p">,</span> |
| <span class="s2">"Leaf indices column name. Predicted leaf "</span> |
| <span class="o">+</span> <span class="s2">"index of each instance in each tree by preorder."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"maxDepth"</span><span class="p">,</span> |
| <span class="s2">"Maximum depth of the tree. (>= 0) E.g., "</span> |
| <span class="o">+</span> <span class="s2">"depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. "</span> |
| <span class="o">+</span> <span class="s2">"Must be in range [0, 30]."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">maxBins</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"maxBins"</span><span class="p">,</span> |
| <span class="s2">"Max number of bins for discretizing continuous "</span> |
| <span class="o">+</span> <span class="s2">"features. Must be >=2 and >= number of categories for any categorical "</span> |
| <span class="o">+</span> <span class="s2">"feature."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">minInstancesPerNode</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"minInstancesPerNode"</span><span class="p">,</span> |
| <span class="s2">"Minimum number of "</span> |
| <span class="o">+</span> <span class="s2">"instances each child must have after split. If a split causes "</span> |
| <span class="o">+</span> <span class="s2">"the left or right child to have fewer than "</span> |
| <span class="o">+</span> <span class="s2">"minInstancesPerNode, the split will be discarded as invalid. "</span> |
| <span class="o">+</span> <span class="s2">"Should be >= 1."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">minWeightFractionPerNode</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"minWeightFractionPerNode"</span><span class="p">,</span> |
| <span class="s2">"Minimum "</span> |
| <span class="s2">"fraction of the weighted sample count that each child "</span> |
| <span class="s2">"must have after split. If a split causes the fraction "</span> |
| <span class="s2">"of the total weight in the left or right child to be "</span> |
| <span class="s2">"less than minWeightFractionPerNode, the split will be "</span> |
| <span class="s2">"discarded as invalid. Should be in interval [0.0, 0.5)."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">minInfoGain</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"minInfoGain"</span><span class="p">,</span> |
| <span class="s2">"Minimum information gain for a split "</span> <span class="o">+</span> <span class="s2">"to be considered at a tree node."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">maxMemoryInMB</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"maxMemoryInMB"</span><span class="p">,</span> |
| <span class="s2">"Maximum memory in MB allocated to "</span> |
| <span class="o">+</span> <span class="s2">"histogram aggregation. If too small, then 1 node will be split per "</span> |
| <span class="o">+</span> <span class="s2">"iteration, and its aggregates may exceed this size."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">cacheNodeIds</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"cacheNodeIds"</span><span class="p">,</span> |
| <span class="s2">"If false, the algorithm will pass "</span> |
| <span class="o">+</span> <span class="s2">"trees to executors to match instances with nodes. If true, the "</span> |
| <span class="o">+</span> <span class="s2">"algorithm will cache node IDs for each instance. Caching can speed "</span> |
| <span class="o">+</span> <span class="s2">"up training of deeper trees. Users can set how often should the cache "</span> |
| <span class="o">+</span> <span class="s2">"be checkpointed or disable it by setting checkpointInterval."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">_DecisionTreeParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| |
| <span class="k">def</span> <span class="nf">setLeafCol</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"P"</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"P"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`leafCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">leafCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getLeafCol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of leafCol or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">leafCol</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMaxDepth</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of maxDepth or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxDepth</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMaxBins</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of maxBins or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxBins</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMinInstancesPerNode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of minInstancesPerNode or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minInstancesPerNode</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMinWeightFractionPerNode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of minWeightFractionPerNode or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minWeightFractionPerNode</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMinInfoGain</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of minInfoGain or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minInfoGain</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getMaxMemoryInMB</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of maxMemoryInMB or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxMemoryInMB</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getCacheNodeIds</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of cacheNodeIds or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cacheNodeIds</span><span class="p">)</span> |
| |
| |
| <span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">_TreeEnsembleModel</span><span class="p">(</span><span class="n">JavaPredictionModel</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> (private abstraction)</span> |
| <span class="sd"> Represents a tree ensemble model.</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">trees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Sequence</span><span class="p">[</span><span class="s2">"_DecisionTreeModel"</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""Trees in this ensemble. Warning: These have null parent Estimators."""</span> |
| <span class="k">return</span> <span class="p">[</span><span class="n">_DecisionTreeModel</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"trees"</span><span class="p">))]</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getNumTrees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Number of trees in ensemble."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"getNumTrees"</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">treeWeights</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""Return the weights for each tree"""</span> |
| <span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"javaTreeWeights"</span><span class="p">))</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">totalNumNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Total number of nodes, summed over all trees in the ensemble."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"totalNumNodes"</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Full description of model."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"toDebugString"</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">predictLeaf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Predict the indices of the leaves corresponding to the feature vector.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">"predictLeaf"</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_TreeEnsembleParams</span><span class="p">(</span><span class="n">_DecisionTreeParams</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Mixin for Decision Tree-based ensemble algorithms parameters.</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">subsamplingRate</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"subsamplingRate"</span><span class="p">,</span> |
| <span class="s2">"Fraction of the training data "</span> <span class="o">+</span> <span class="s2">"used for learning each decision tree, in range (0, 1]."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"auto"</span><span class="p">,</span> <span class="s2">"all"</span><span class="p">,</span> <span class="s2">"onethird"</span><span class="p">,</span> <span class="s2">"sqrt"</span><span class="p">,</span> <span class="s2">"log2"</span><span class="p">]</span> |
| |
| <span class="n">featureSubsetStrategy</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"featureSubsetStrategy"</span><span class="p">,</span> |
| <span class="s2">"The number of features to consider for splits at each tree node. Supported "</span> |
| <span class="o">+</span> <span class="s2">"options: 'auto' (choose automatically for task: If numTrees == 1, set to "</span> |
| <span class="o">+</span> <span class="s2">"'all'. If numTrees > 1 (forest), set to 'sqrt' for classification and to "</span> |
| <span class="o">+</span> <span class="s2">"'onethird' for regression), 'all' (use all features), 'onethird' (use "</span> |
| <span class="o">+</span> <span class="s2">"1/3 of the features), 'sqrt' (use sqrt(number of features)), 'log2' (use "</span> |
| <span class="o">+</span> <span class="s2">"log2(number of features)), 'n' (when n is in the range (0, 1.0], use "</span> |
| <span class="o">+</span> <span class="s2">"n * number of features. When n is in the range (1, number of features), use"</span> |
| <span class="o">+</span> <span class="s2">" n features). default = 'auto'"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getSubsamplingRate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of subsamplingRate or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">subsamplingRate</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getFeatureSubsetStrategy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of featureSubsetStrategy or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">featureSubsetStrategy</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_RandomForestParams</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Private class to track supported random forest parameters.</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">numTrees</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"numTrees"</span><span class="p">,</span> |
| <span class="s2">"Number of trees to train (>= 1)."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">bootstrap</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"bootstrap"</span><span class="p">,</span> |
| <span class="s2">"Whether bootstrap samples are used "</span> <span class="s2">"when building trees."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">_RandomForestParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getNumTrees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of numTrees or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numTrees</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getBootstrap</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of bootstrap or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bootstrap</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_GBTParams</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">,</span> <span class="n">HasMaxIter</span><span class="p">,</span> <span class="n">HasStepSize</span><span class="p">,</span> <span class="n">HasValidationIndicatorCol</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Private class to track supported GBT params.</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">stepSize</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"stepSize"</span><span class="p">,</span> |
| <span class="s2">"Step size (a.k.a. learning rate) in interval (0, 1] for shrinking "</span> |
| <span class="o">+</span> <span class="s2">"the contribution of each estimator."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">validationTol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"validationTol"</span><span class="p">,</span> |
| <span class="s2">"Threshold for stopping early when fit with validation is used. "</span> |
| <span class="o">+</span> <span class="s2">"If the error rate on the validation input changes by less than the "</span> |
| <span class="o">+</span> <span class="s2">"validationTol, then learning will stop early (before `maxIter`). "</span> |
| <span class="o">+</span> <span class="s2">"This parameter is ignored when fit without validation is used."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getValidationTol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of validationTol or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">validationTol</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_HasVarianceImpurity</span><span class="p">(</span><span class="n">Params</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Private class to track supported impurity measures.</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">supportedImpurities</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"variance"</span><span class="p">]</span> |
| |
| <span class="n">impurity</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"impurity"</span><span class="p">,</span> |
| <span class="s2">"Criterion used for information gain calculation (case-insensitive). "</span> |
| <span class="o">+</span> <span class="s2">"Supported options: "</span> |
| <span class="o">+</span> <span class="s2">", "</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">supportedImpurities</span><span class="p">),</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">_HasVarianceImpurity</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getImpurity</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of impurity or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">impurity</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_TreeClassifierParams</span><span class="p">(</span><span class="n">Params</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Private class to track supported impurity measures.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">supportedImpurities</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"entropy"</span><span class="p">,</span> <span class="s2">"gini"</span><span class="p">]</span> |
| |
| <span class="n">impurity</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"impurity"</span><span class="p">,</span> |
| <span class="s2">"Criterion used for information gain calculation (case-insensitive). "</span> |
| <span class="o">+</span> <span class="s2">"Supported options: "</span> |
| <span class="o">+</span> <span class="s2">", "</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">supportedImpurities</span><span class="p">),</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">_TreeClassifierParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.6.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getImpurity</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of impurity or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">impurity</span><span class="p">)</span> |
| |
| |
| <span class="k">class</span> <span class="nc">_TreeRegressorParams</span><span class="p">(</span><span class="n">_HasVarianceImpurity</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Private class to track supported impurity measures.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">pass</span> |
| </pre></div> |
| |
| </div> |
| |
| |
| <!-- Previous / next buttons --> |
| <div class='prev-next-area'> |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script> |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| |
| <div class="footer-item"> |
| <p class="copyright"> |
| © Copyright .<br> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br> |
| </p> |
| </div> |
| |
| </div> |
| </footer> |
| </body> |
| </html> |