blob: 485278282f83a46507bd953edf1322c824e3968b [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.ml.recommendation &#8212; PySpark 3.5.2 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/recommendation.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
3.5.2
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/ml/recommendation.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.ml.recommendation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span><span class="p">,</span> <span class="n">keyword_only</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.param.shared</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">HasBlockSize</span><span class="p">,</span>
<span class="n">HasMaxIter</span><span class="p">,</span>
<span class="n">HasRegParam</span><span class="p">,</span>
<span class="n">HasCheckpointInterval</span><span class="p">,</span>
<span class="n">HasSeed</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.wrapper</span> <span class="kn">import</span> <span class="n">JavaEstimator</span><span class="p">,</span> <span class="n">JavaModel</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.common</span> <span class="kn">import</span> <span class="n">inherit_doc</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.param</span> <span class="kn">import</span> <span class="n">Params</span><span class="p">,</span> <span class="n">TypeConverters</span><span class="p">,</span> <span class="n">Param</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.util</span> <span class="kn">import</span> <span class="n">JavaMLWritable</span><span class="p">,</span> <span class="n">JavaMLReadable</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;ALS&quot;</span><span class="p">,</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">]</span>
<span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">_ALSModelParams</span><span class="p">(</span><span class="n">HasPredictionCol</span><span class="p">,</span> <span class="n">HasBlockSize</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Params for :py:class:`ALS` and :py:class:`ALSModel`.</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">userCol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;userCol&quot;</span><span class="p">,</span>
<span class="s2">&quot;column name for user ids. Ids must be within &quot;</span> <span class="o">+</span> <span class="s2">&quot;the integer value range.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">itemCol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;itemCol&quot;</span><span class="p">,</span>
<span class="s2">&quot;column name for item ids. Ids must be within &quot;</span> <span class="o">+</span> <span class="s2">&quot;the integer value range.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">coldStartStrategy</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;coldStartStrategy&quot;</span><span class="p">,</span>
<span class="s2">&quot;strategy for dealing with &quot;</span>
<span class="o">+</span> <span class="s2">&quot;unknown or new users/items at prediction time. This may be useful &quot;</span>
<span class="o">+</span> <span class="s2">&quot;in cross-validation or production scenarios, for handling &quot;</span>
<span class="o">+</span> <span class="s2">&quot;user/item ids the model has not seen in the training data. &quot;</span>
<span class="o">+</span> <span class="s2">&quot;Supported values: &#39;nan&#39;, &#39;drop&#39;.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_ALSModelParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">blockSize</span><span class="o">=</span><span class="mi">4096</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getUserCol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of userCol or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">userCol</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getItemCol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of itemCol or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">itemCol</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getColdStartStrategy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of coldStartStrategy or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">coldStartStrategy</span><span class="p">)</span>
<span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">_ALSParams</span><span class="p">(</span><span class="n">_ALSModelParams</span><span class="p">,</span> <span class="n">HasMaxIter</span><span class="p">,</span> <span class="n">HasRegParam</span><span class="p">,</span> <span class="n">HasCheckpointInterval</span><span class="p">,</span> <span class="n">HasSeed</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Params for :py:class:`ALS`.</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">rank</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> <span class="s2">&quot;rank&quot;</span><span class="p">,</span> <span class="s2">&quot;rank of the factorization&quot;</span><span class="p">,</span> <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span>
<span class="p">)</span>
<span class="n">numUserBlocks</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;numUserBlocks&quot;</span><span class="p">,</span>
<span class="s2">&quot;number of user blocks&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">numItemBlocks</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;numItemBlocks&quot;</span><span class="p">,</span>
<span class="s2">&quot;number of item blocks&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">implicitPrefs</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;implicitPrefs&quot;</span><span class="p">,</span>
<span class="s2">&quot;whether to use implicit preference&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">alpha</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;alpha&quot;</span><span class="p">,</span>
<span class="s2">&quot;alpha for implicit preference&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">ratingCol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;ratingCol&quot;</span><span class="p">,</span>
<span class="s2">&quot;column name for ratings&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">nonnegative</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;nonnegative&quot;</span><span class="p">,</span>
<span class="s2">&quot;whether to use nonnegative constraint for least squares&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">intermediateStorageLevel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;intermediateStorageLevel&quot;</span><span class="p">,</span>
<span class="s2">&quot;StorageLevel for intermediate datasets. Cannot be &#39;NONE&#39;.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">finalStorageLevel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;finalStorageLevel&quot;</span><span class="p">,</span>
<span class="s2">&quot;StorageLevel for ALS model factors.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_ALSParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span>
<span class="n">rank</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">regParam</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">numUserBlocks</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">numItemBlocks</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">implicitPrefs</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">userCol</span><span class="o">=</span><span class="s2">&quot;user&quot;</span><span class="p">,</span>
<span class="n">itemCol</span><span class="o">=</span><span class="s2">&quot;item&quot;</span><span class="p">,</span>
<span class="n">ratingCol</span><span class="o">=</span><span class="s2">&quot;rating&quot;</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">checkpointInterval</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">intermediateStorageLevel</span><span class="o">=</span><span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">finalStorageLevel</span><span class="o">=</span><span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">coldStartStrategy</span><span class="o">=</span><span class="s2">&quot;nan&quot;</span><span class="p">,</span>
<span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getRank</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of rank or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rank</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getNumUserBlocks</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of numUserBlocks or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numUserBlocks</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getNumItemBlocks</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of numItemBlocks or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numItemBlocks</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getImplicitPrefs</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of implicitPrefs or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">implicitPrefs</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getAlpha</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of alpha or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getRatingCol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of ratingCol or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ratingCol</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getNonnegative</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of nonnegative or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">nonnegative</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getIntermediateStorageLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of intermediateStorageLevel or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">intermediateStorageLevel</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getFinalStorageLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of finalStorageLevel or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">finalStorageLevel</span><span class="p">)</span>
<div class="viewcode-block" id="ALS"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">ALS</span><span class="p">(</span><span class="n">JavaEstimator</span><span class="p">[</span><span class="s2">&quot;ALSModel&quot;</span><span class="p">],</span> <span class="n">_ALSParams</span><span class="p">,</span> <span class="n">JavaMLWritable</span><span class="p">,</span> <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;ALS&quot;</span><span class="p">]):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Alternating Least Squares (ALS) matrix factorization.</span>
<span class="sd"> ALS attempts to estimate the ratings matrix `R` as the product of</span>
<span class="sd"> two lower-rank matrices, `X` and `Y`, i.e. `X * Yt = R`. Typically</span>
<span class="sd"> these approximations are called &#39;factor&#39; matrices. The general</span>
<span class="sd"> approach is iterative. During each iteration, one of the factor</span>
<span class="sd"> matrices is held constant, while the other is solved for using least</span>
<span class="sd"> squares. The newly-solved factor matrix is then held constant while</span>
<span class="sd"> solving for the other factor matrix.</span>
<span class="sd"> This is a blocked implementation of the ALS factorization algorithm</span>
<span class="sd"> that groups the two sets of factors (referred to as &quot;users&quot; and</span>
<span class="sd"> &quot;products&quot;) into blocks and reduces communication by only sending</span>
<span class="sd"> one copy of each user vector to each product block on each</span>
<span class="sd"> iteration, and only for the product blocks that need that user&#39;s</span>
<span class="sd"> feature vector. This is achieved by pre-computing some information</span>
<span class="sd"> about the ratings matrix to determine the &quot;out-links&quot; of each user</span>
<span class="sd"> (which blocks of products it will contribute to) and &quot;in-link&quot;</span>
<span class="sd"> information for each product (which of the feature vectors it</span>
<span class="sd"> receives from each user block it will depend on). This allows us to</span>
<span class="sd"> send only an array of feature vectors between each user block and</span>
<span class="sd"> product block, and have the product block find the users&#39; ratings</span>
<span class="sd"> and update the products based on these messages.</span>
<span class="sd"> For implicit preference data, the algorithm used is based on</span>
<span class="sd"> `&quot;Collaborative Filtering for Implicit Feedback Datasets&quot;,</span>
<span class="sd"> &lt;https://doi.org/10.1109/ICDM.2008.22&gt;`_, adapted for the blocked</span>
<span class="sd"> approach used here.</span>
<span class="sd"> Essentially instead of finding the low-rank approximations to the</span>
<span class="sd"> rating matrix `R`, this finds the approximations for a preference</span>
<span class="sd"> matrix `P` where the elements of `P` are 1 if r &gt; 0 and 0 if r &lt;= 0.</span>
<span class="sd"> The ratings then act as &#39;confidence&#39; values related to strength of</span>
<span class="sd"> indicated user preferences rather than explicit ratings given to</span>
<span class="sd"> items.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> The input rating dataframe to the ALS implementation should be deterministic.</span>
<span class="sd"> Nondeterministic data can cause failure during fitting ALS model.</span>
<span class="sd"> For example, an order-sensitive operation like sampling after a repartition makes</span>
<span class="sd"> dataframe output nondeterministic, like `df.repartition(2).sample(False, 0.5, 1618)`.</span>
<span class="sd"> Checkpointing sampled dataframe or adding a sort before sampling can help make the</span>
<span class="sd"> dataframe deterministic.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0), (2, 2, 5.0)],</span>
<span class="sd"> ... [&quot;user&quot;, &quot;item&quot;, &quot;rating&quot;])</span>
<span class="sd"> &gt;&gt;&gt; als = ALS(rank=10, seed=0)</span>
<span class="sd"> &gt;&gt;&gt; als.setMaxIter(5)</span>
<span class="sd"> ALS...</span>
<span class="sd"> &gt;&gt;&gt; als.getMaxIter()</span>
<span class="sd"> 5</span>
<span class="sd"> &gt;&gt;&gt; als.setRegParam(0.1)</span>
<span class="sd"> ALS...</span>
<span class="sd"> &gt;&gt;&gt; als.getRegParam()</span>
<span class="sd"> 0.1</span>
<span class="sd"> &gt;&gt;&gt; als.clear(als.regParam)</span>
<span class="sd"> &gt;&gt;&gt; model = als.fit(df)</span>
<span class="sd"> &gt;&gt;&gt; model.getBlockSize()</span>
<span class="sd"> 4096</span>
<span class="sd"> &gt;&gt;&gt; model.getUserCol()</span>
<span class="sd"> &#39;user&#39;</span>
<span class="sd"> &gt;&gt;&gt; model.setUserCol(&quot;user&quot;)</span>
<span class="sd"> ALSModel...</span>
<span class="sd"> &gt;&gt;&gt; model.getItemCol()</span>
<span class="sd"> &#39;item&#39;</span>
<span class="sd"> &gt;&gt;&gt; model.setPredictionCol(&quot;newPrediction&quot;)</span>
<span class="sd"> ALS...</span>
<span class="sd"> &gt;&gt;&gt; model.rank</span>
<span class="sd"> 10</span>
<span class="sd"> &gt;&gt;&gt; model.userFactors.orderBy(&quot;id&quot;).collect()</span>
<span class="sd"> [Row(id=0, features=[...]), Row(id=1, ...), Row(id=2, ...)]</span>
<span class="sd"> &gt;&gt;&gt; test = spark.createDataFrame([(0, 2), (1, 0), (2, 0)], [&quot;user&quot;, &quot;item&quot;])</span>
<span class="sd"> &gt;&gt;&gt; predictions = sorted(model.transform(test).collect(), key=lambda r: r[0])</span>
<span class="sd"> &gt;&gt;&gt; predictions[0]</span>
<span class="sd"> Row(user=0, item=2, newPrediction=0.6929...)</span>
<span class="sd"> &gt;&gt;&gt; predictions[1]</span>
<span class="sd"> Row(user=1, item=0, newPrediction=3.47356...)</span>
<span class="sd"> &gt;&gt;&gt; predictions[2]</span>
<span class="sd"> Row(user=2, item=0, newPrediction=-0.899198...)</span>
<span class="sd"> &gt;&gt;&gt; user_recs = model.recommendForAllUsers(3)</span>
<span class="sd"> &gt;&gt;&gt; user_recs.where(user_recs.user == 0)\</span>
<span class="sd"> .select(&quot;recommendations.item&quot;, &quot;recommendations.rating&quot;).collect()</span>
<span class="sd"> [Row(item=[0, 1, 2], rating=[3.910..., 1.997..., 0.692...])]</span>
<span class="sd"> &gt;&gt;&gt; item_recs = model.recommendForAllItems(3)</span>
<span class="sd"> &gt;&gt;&gt; item_recs.where(item_recs.item == 2)\</span>
<span class="sd"> .select(&quot;recommendations.user&quot;, &quot;recommendations.rating&quot;).collect()</span>
<span class="sd"> [Row(user=[2, 1, 0], rating=[4.892..., 3.991..., 0.692...])]</span>
<span class="sd"> &gt;&gt;&gt; user_subset = df.where(df.user == 2)</span>
<span class="sd"> &gt;&gt;&gt; user_subset_recs = model.recommendForUserSubset(user_subset, 3)</span>
<span class="sd"> &gt;&gt;&gt; user_subset_recs.select(&quot;recommendations.item&quot;, &quot;recommendations.rating&quot;).first()</span>
<span class="sd"> Row(item=[2, 1, 0], rating=[4.892..., 1.076..., -0.899...])</span>
<span class="sd"> &gt;&gt;&gt; item_subset = df.where(df.item == 0)</span>
<span class="sd"> &gt;&gt;&gt; item_subset_recs = model.recommendForItemSubset(item_subset, 3)</span>
<span class="sd"> &gt;&gt;&gt; item_subset_recs.select(&quot;recommendations.user&quot;, &quot;recommendations.rating&quot;).first()</span>
<span class="sd"> Row(user=[0, 1, 2], rating=[3.910..., 3.473..., -0.899...])</span>
<span class="sd"> &gt;&gt;&gt; als_path = temp_path + &quot;/als&quot;</span>
<span class="sd"> &gt;&gt;&gt; als.save(als_path)</span>
<span class="sd"> &gt;&gt;&gt; als2 = ALS.load(als_path)</span>
<span class="sd"> &gt;&gt;&gt; als.getMaxIter()</span>
<span class="sd"> 5</span>
<span class="sd"> &gt;&gt;&gt; model_path = temp_path + &quot;/als_model&quot;</span>
<span class="sd"> &gt;&gt;&gt; model.save(model_path)</span>
<span class="sd"> &gt;&gt;&gt; model2 = ALSModel.load(model_path)</span>
<span class="sd"> &gt;&gt;&gt; model.rank == model2.rank</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; sorted(model.userFactors.collect()) == sorted(model2.userFactors.collect())</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; sorted(model.itemFactors.collect()) == sorted(model2.itemFactors.collect())</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; model.transform(test).take(1) == model2.transform(test).take(1)</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">maxIter</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
<span class="n">numUserBlocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">numItemBlocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">implicitPrefs</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">alpha</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">userCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;user&quot;</span><span class="p">,</span>
<span class="n">itemCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;item&quot;</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">ratingCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;rating&quot;</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">checkpointInterval</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">intermediateStorageLevel</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">finalStorageLevel</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">coldStartStrategy</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;nan&quot;</span><span class="p">,</span>
<span class="n">blockSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4096</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10,</span>
<span class="sd"> numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol=&quot;user&quot;, itemCol=&quot;item&quot;, \</span>
<span class="sd"> seed=None, ratingCol=&quot;rating&quot;, nonnegative=False, checkpointInterval=10, \</span>
<span class="sd"> intermediateStorageLevel=&quot;MEMORY_AND_DISK&quot;, \</span>
<span class="sd"> finalStorageLevel=&quot;MEMORY_AND_DISK&quot;, coldStartStrategy=&quot;nan&quot;, blockSize=4096)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ALS</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span><span class="s2">&quot;org.apache.spark.ml.recommendation.ALS&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">setParams</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="ALS.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">maxIter</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
<span class="n">numUserBlocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">numItemBlocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">implicitPrefs</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">alpha</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">userCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;user&quot;</span><span class="p">,</span>
<span class="n">itemCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;item&quot;</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">ratingCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;rating&quot;</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">checkpointInterval</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">intermediateStorageLevel</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">finalStorageLevel</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;MEMORY_AND_DISK&quot;</span><span class="p">,</span>
<span class="n">coldStartStrategy</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;nan&quot;</span><span class="p">,</span>
<span class="n">blockSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4096</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, \</span>
<span class="sd"> numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol=&quot;user&quot;, itemCol=&quot;item&quot;, \</span>
<span class="sd"> seed=None, ratingCol=&quot;rating&quot;, nonnegative=False, checkpointInterval=10, \</span>
<span class="sd"> intermediateStorageLevel=&quot;MEMORY_AND_DISK&quot;, \</span>
<span class="sd"> finalStorageLevel=&quot;MEMORY_AND_DISK&quot;, coldStartStrategy=&quot;nan&quot;, blockSize=4096)</span>
<span class="sd"> Sets params for ALS.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_create_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">java_model</span><span class="p">:</span> <span class="s2">&quot;JavaObject&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">ALSModel</span><span class="p">(</span><span class="n">java_model</span><span class="p">)</span>
<div class="viewcode-block" id="ALS.setRank"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setRank">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setRank</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`rank`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">rank</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setNumUserBlocks"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setNumUserBlocks">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setNumUserBlocks</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`numUserBlocks`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numUserBlocks</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setNumItemBlocks"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setNumItemBlocks">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setNumItemBlocks</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`numItemBlocks`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numItemBlocks</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setNumBlocks"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setNumBlocks">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setNumBlocks</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets both :py:attr:`numUserBlocks` and :py:attr:`numItemBlocks` to the specific value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numUserBlocks</span><span class="o">=</span><span class="n">value</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numItemBlocks</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setImplicitPrefs"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setImplicitPrefs">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setImplicitPrefs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`implicitPrefs`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">implicitPrefs</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setAlpha"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setAlpha">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setAlpha</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`alpha`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setUserCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setUserCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setUserCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`userCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">userCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setItemCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setItemCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setItemCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`itemCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">itemCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setRatingCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setRatingCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setRatingCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`ratingCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">ratingCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setNonnegative"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setNonnegative">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setNonnegative</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`nonnegative`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">nonnegative</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setIntermediateStorageLevel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setIntermediateStorageLevel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setIntermediateStorageLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`intermediateStorageLevel`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">intermediateStorageLevel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setFinalStorageLevel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setFinalStorageLevel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setFinalStorageLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`finalStorageLevel`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">finalStorageLevel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setColdStartStrategy"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setColdStartStrategy">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setColdStartStrategy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`coldStartStrategy`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">coldStartStrategy</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setMaxIter"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setMaxIter">[docs]</a> <span class="k">def</span> <span class="nf">setMaxIter</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`maxIter`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setRegParam"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setRegParam">[docs]</a> <span class="k">def</span> <span class="nf">setRegParam</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`regParam`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">regParam</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setPredictionCol">[docs]</a> <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setCheckpointInterval"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setCheckpointInterval">[docs]</a> <span class="k">def</span> <span class="nf">setCheckpointInterval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`checkpointInterval`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">checkpointInterval</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setSeed"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setSeed">[docs]</a> <span class="k">def</span> <span class="nf">setSeed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`seed`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">seed</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.setBlockSize"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALS.html#pyspark.ml.recommendation.ALS.setBlockSize">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setBlockSize</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALS&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`blockSize`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">blockSize</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="ALSModel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel">[docs]</a><span class="k">class</span> <span class="nc">ALSModel</span><span class="p">(</span><span class="n">JavaModel</span><span class="p">,</span> <span class="n">_ALSModelParams</span><span class="p">,</span> <span class="n">JavaMLWritable</span><span class="p">,</span> <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;ALSModel&quot;</span><span class="p">]):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Model fitted by ALS.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="ALSModel.setUserCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.setUserCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setUserCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`userCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">userCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.setItemCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.setItemCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setItemCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`itemCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">itemCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.setColdStartStrategy"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.setColdStartStrategy">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setColdStartStrategy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`coldStartStrategy`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">coldStartStrategy</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.setPredictionCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.setBlockSize"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.setBlockSize">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setBlockSize</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ALSModel&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`blockSize`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">blockSize</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">rank</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;rank of the matrix factorization model&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;rank&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">userFactors</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> a DataFrame that stores user factors in two columns: `id` and</span>
<span class="sd"> `features`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;userFactors&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">itemFactors</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> a DataFrame that stores item factors in two columns: `id` and</span>
<span class="sd"> `features`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;itemFactors&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="ALSModel.recommendForAllUsers"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.recommendForAllUsers">[docs]</a> <span class="k">def</span> <span class="nf">recommendForAllUsers</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">numItems</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns top `numItems` items recommended for each user, for all users.</span>
<span class="sd"> .. versionadded:: 2.2.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> numItems : int</span>
<span class="sd"> max number of recommendations for each user</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame of (userCol, recommendations), where recommendations are</span>
<span class="sd"> stored as an array of (itemCol, rating) Rows.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;recommendForAllUsers&quot;</span><span class="p">,</span> <span class="n">numItems</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.recommendForAllItems"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.recommendForAllItems">[docs]</a> <span class="k">def</span> <span class="nf">recommendForAllItems</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">numUsers</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns top `numUsers` users recommended for each item, for all items.</span>
<span class="sd"> .. versionadded:: 2.2.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> numUsers : int</span>
<span class="sd"> max number of recommendations for each item</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame of (itemCol, recommendations), where recommendations are</span>
<span class="sd"> stored as an array of (userCol, rating) Rows.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;recommendForAllItems&quot;</span><span class="p">,</span> <span class="n">numUsers</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.recommendForUserSubset"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.recommendForUserSubset">[docs]</a> <span class="k">def</span> <span class="nf">recommendForUserSubset</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="n">numItems</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns top `numItems` items recommended for each user id in the input data set. Note that</span>
<span class="sd"> if there are duplicate ids in the input dataset, only one set of recommendations per unique</span>
<span class="sd"> id will be returned.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame containing a column of user ids. The column name must match `userCol`.</span>
<span class="sd"> numItems : int</span>
<span class="sd"> max number of recommendations for each user</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame of (userCol, recommendations), where recommendations are</span>
<span class="sd"> stored as an array of (itemCol, rating) Rows.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;recommendForUserSubset&quot;</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">numItems</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALSModel.recommendForItemSubset"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.recommendation.ALSModel.html#pyspark.ml.recommendation.ALSModel.recommendForItemSubset">[docs]</a> <span class="k">def</span> <span class="nf">recommendForItemSubset</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="n">numUsers</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns top `numUsers` users recommended for each item id in the input data set. Note that</span>
<span class="sd"> if there are duplicate ids in the input dataset, only one set of recommendations per unique</span>
<span class="sd"> id will be returned.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame containing a column of item ids. The column name must match `itemCol`.</span>
<span class="sd"> numUsers : int</span>
<span class="sd"> max number of recommendations for each item</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a DataFrame of (itemCol, recommendations), where recommendations are</span>
<span class="sd"> stored as an array of (userCol, rating) Rows.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;recommendForItemSubset&quot;</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">numUsers</span><span class="p">)</span></div></div>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">pyspark.ml.recommendation</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">recommendation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="c1"># The small batch size here ensures that we see multiple batches,</span>
<span class="c1"># even in these small test examples:</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[2]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;ml.recommendation tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">sc</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span>
<span class="kn">import</span> <span class="nn">tempfile</span>
<span class="n">temp_path</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;temp_path&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">temp_path</span>
<span class="k">try</span><span class="p">:</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">finally</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">shutil</span> <span class="kn">import</span> <span class="n">rmtree</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">rmtree</span><span class="p">(</span><span class="n">temp_path</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">OSError</span><span class="p">:</span>
<span class="k">pass</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>