| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.sql.udf — PySpark 4.0.0-preview2 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/sql/udf';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/udf.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="https://spark.apache.org/images/spark-logo.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="https://spark.apache.org/images/spark-logo-rev.svg" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview2 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/sql/udf.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview2 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/sql/udf.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.sql.udf</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.sql.udf</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| <span class="sd">"""</span> |
| <span class="sd">User-defined function related classes and functions</span> |
| <span class="sd">"""</span> |
| <span class="kn">from</span> <span class="nn">inspect</span> <span class="kn">import</span> <span class="n">getfullargspec</span> |
| |
| <span class="kn">import</span> <span class="nn">functools</span> |
| <span class="kn">import</span> <span class="nn">inspect</span> |
| <span class="kn">import</span> <span class="nn">sys</span> |
| <span class="kn">import</span> <span class="nn">warnings</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Any</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">Union</span> |
| |
| |
| <span class="kn">from</span> <span class="nn">pyspark.util</span> <span class="kn">import</span> <span class="n">PythonEvalType</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">DataType</span><span class="p">,</span> |
| <span class="n">StringType</span><span class="p">,</span> |
| <span class="n">StructType</span><span class="p">,</span> |
| <span class="n">_parse_datatype_string</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.utils</span> <span class="kn">import</span> <span class="n">get_active_spark_context</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas.types</span> <span class="kn">import</span> <span class="n">to_arrow_type</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas.utils</span> <span class="kn">import</span> <span class="n">require_minimum_pandas_version</span><span class="p">,</span> <span class="n">require_minimum_pyarrow_version</span> |
| <span class="kn">from</span> <span class="nn">pyspark.errors</span> <span class="kn">import</span> <span class="n">PySparkTypeError</span><span class="p">,</span> <span class="n">PySparkNotImplementedError</span><span class="p">,</span> <span class="n">PySparkRuntimeError</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span> |
| <span class="kn">from</span> <span class="nn">pyspark.core.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">DataTypeOrString</span><span class="p">,</span> <span class="n">ColumnOrName</span><span class="p">,</span> <span class="n">UserDefinedFunctionLike</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.session</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"UDFRegistration"</span><span class="p">]</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_wrap_function</span><span class="p">(</span> |
| <span class="n">sc</span><span class="p">:</span> <span class="s2">"SparkContext"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">returnType</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">DataType</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"JavaObject"</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.core.rdd</span> <span class="kn">import</span> <span class="n">_prepare_for_python_RDD</span> |
| |
| <span class="n">command</span><span class="p">:</span> <span class="n">Any</span> |
| <span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">command</span> <span class="o">=</span> <span class="n">func</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">command</span> <span class="o">=</span> <span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">returnType</span><span class="p">)</span> |
| <span class="n">pickled_command</span><span class="p">,</span> <span class="n">broadcast_vars</span><span class="p">,</span> <span class="n">env</span><span class="p">,</span> <span class="n">includes</span> <span class="o">=</span> <span class="n">_prepare_for_python_RDD</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">command</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SimplePythonFunction</span><span class="p">(</span> |
| <span class="nb">bytearray</span><span class="p">(</span><span class="n">pickled_command</span><span class="p">),</span> |
| <span class="n">env</span><span class="p">,</span> |
| <span class="n">includes</span><span class="p">,</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">pythonExec</span><span class="p">,</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">pythonVer</span><span class="p">,</span> |
| <span class="n">broadcast_vars</span><span class="p">,</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">_javaAccumulator</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_create_udf</span><span class="p">(</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> |
| <span class="n">returnType</span><span class="p">:</span> <span class="s2">"DataTypeOrString"</span><span class="p">,</span> |
| <span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">deterministic</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"UserDefinedFunctionLike"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Create a regular(non-Arrow-optimized) Python UDF."""</span> |
| <span class="c1"># Set the name of the UserDefinedFunction object to be the name of function f</span> |
| <span class="n">udf_obj</span> <span class="o">=</span> <span class="n">UserDefinedFunction</span><span class="p">(</span> |
| <span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="o">=</span><span class="n">returnType</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">evalType</span><span class="o">=</span><span class="n">evalType</span><span class="p">,</span> <span class="n">deterministic</span><span class="o">=</span><span class="n">deterministic</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">udf_obj</span><span class="o">.</span><span class="n">_wrapped</span><span class="p">()</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_create_py_udf</span><span class="p">(</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> |
| <span class="n">returnType</span><span class="p">:</span> <span class="s2">"DataTypeOrString"</span><span class="p">,</span> |
| <span class="n">useArrow</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"UserDefinedFunctionLike"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Create a regular/Arrow-optimized Python UDF."""</span> |
| <span class="c1"># The following table shows the results when the type coercion in Arrow is needed, that is,</span> |
| <span class="c1"># when the user-specified return type(SQL Type) of the UDF and the actual instance(Python</span> |
| <span class="c1"># Value(Type)) that the UDF returns are different.</span> |
| <span class="c1"># Arrow and Pickle have different type coercion rules, so a UDF might have a different result</span> |
| <span class="c1"># with/without Arrow optimization. That's the main reason the Arrow optimization for Python</span> |
| <span class="c1"># UDFs is disabled by default.</span> |
| <span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span> |
| <span class="c1"># |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)| a(str)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)|bytearray(b'ABC')(bytearray)| 1(Decimal)|{'a': 1}(dict)| # noqa</span> |
| <span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span> |
| <span class="c1"># | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | tinyint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | smallint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | int| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | bigint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | string| None| 'true'| '1'| 'a'|'java.util.Gregor...| 'java.util.Gregor...| '1.0'| '[I@120d813a'| '[1]'|'[Ljava.lang.Obje...| '[B@48571878'| '1'| '{a=1}'| # noqa</span> |
| <span class="c1"># | date| None| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| # noqa</span> |
| <span class="c1"># | timestamp| None| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| # noqa</span> |
| <span class="c1"># | float| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | double| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| # noqa</span> |
| <span class="c1"># | binary| None| None| None|bytearray(b'a')| None| None| None| None| None| None| bytearray(b'ABC')| None| None| # noqa</span> |
| <span class="c1"># | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| # noqa</span> |
| <span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span> |
| <span class="c1"># Note: Python 3.9.15, Pandas 1.5.2 and PyArrow 10.0.1 are used.</span> |
| <span class="c1"># Note: The values of 'SQL Type' are DDL formatted strings, which can be used as `returnType`s.</span> |
| <span class="c1"># Note: The values inside the table are generated by `repr`. X' means it throws an exception</span> |
| <span class="c1"># during the conversion.</span> |
| |
| <span class="k">if</span> <span class="n">useArrow</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| |
| <span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> |
| <span class="n">is_arrow_enabled</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="kc">False</span> |
| <span class="k">if</span> <span class="n">session</span> <span class="ow">is</span> <span class="kc">None</span> |
| <span class="k">else</span> <span class="n">session</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.sql.execution.pythonUDF.arrow.enabled"</span><span class="p">)</span> <span class="o">==</span> <span class="s2">"true"</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">is_arrow_enabled</span> <span class="o">=</span> <span class="n">useArrow</span> |
| |
| <span class="n">eval_type</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span> |
| |
| <span class="k">if</span> <span class="n">is_arrow_enabled</span><span class="p">:</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">is_func_with_args</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">getfullargspec</span><span class="p">(</span><span class="n">f</span><span class="p">)</span><span class="o">.</span><span class="n">args</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="n">is_func_with_args</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="k">if</span> <span class="n">is_func_with_args</span><span class="p">:</span> |
| <span class="n">require_minimum_pandas_version</span><span class="p">()</span> |
| <span class="n">require_minimum_pyarrow_version</span><span class="p">()</span> |
| <span class="n">eval_type</span> <span class="o">=</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_ARROW_BATCHED_UDF</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span> |
| <span class="s2">"Arrow optimization for Python UDFs cannot be enabled for functions"</span> |
| <span class="s2">" without arguments."</span><span class="p">,</span> |
| <span class="ne">UserWarning</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">_create_udf</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="p">,</span> <span class="n">eval_type</span><span class="p">)</span> |
| |
| |
| <div class="viewcode-block" id="UserDefinedFunction"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.udf.UserDefinedFunction.html#pyspark.sql.UserDefinedFunction">[docs]</a><span class="k">class</span> <span class="nc">UserDefinedFunction</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> User defined function in Python</span> |
| |
| <span class="sd"> .. versionadded:: 1.3</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> The constructor of this class is not supposed to be directly called.</span> |
| <span class="sd"> Use :meth:`pyspark.sql.functions.udf` or :meth:`pyspark.sql.functions.pandas_udf`</span> |
| <span class="sd"> to create this instance.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> |
| <span class="n">returnType</span><span class="p">:</span> <span class="s2">"DataTypeOrString"</span> <span class="o">=</span> <span class="n">StringType</span><span class="p">(),</span> |
| <span class="n">name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span> |
| <span class="n">deterministic</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_CALLABLE"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span><span class="s2">"arg_name"</span><span class="p">:</span> <span class="s2">"func"</span><span class="p">,</span> <span class="s2">"arg_type"</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">func</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">},</span> |
| <span class="p">)</span> |
| |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="p">(</span><span class="n">DataType</span><span class="p">,</span> <span class="nb">str</span><span class="p">)):</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_DATATYPE_OR_STR"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"arg_name"</span><span class="p">:</span> <span class="s2">"returnType"</span><span class="p">,</span> |
| <span class="s2">"arg_type"</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">evalType</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_INT"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span><span class="s2">"arg_name"</span><span class="p">:</span> <span class="s2">"evalType"</span><span class="p">,</span> <span class="s2">"arg_type"</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">evalType</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">},</span> |
| <span class="p">)</span> |
| |
| <span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">func</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span> <span class="o">=</span> <span class="n">returnType</span> |
| <span class="c1"># Stores UserDefinedPythonFunctions jobj, once initialized</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">DataType</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span> <span class="ow">or</span> <span class="p">(</span> |
| <span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="s2">"__name__"</span><span class="p">)</span> <span class="k">else</span> <span class="n">func</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">=</span> <span class="n">evalType</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="n">deterministic</span> |
| |
| <span class="nd">@staticmethod</span> |
| <span class="k">def</span> <span class="nf">_check_return_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">:</span> <span class="n">DataType</span><span class="p">,</span> <span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">if</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_ARROW_BATCHED_UDF</span><span class="p">:</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type with Arrow-optimized Python UDF: "</span> |
| <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="p">(</span> |
| <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_UDF</span> |
| <span class="ow">or</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span> |
| <span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type with scalar Pandas UDFs: "</span> <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="p">(</span> |
| <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_MAP_PANDAS_UDF</span> |
| <span class="ow">or</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE</span> |
| <span class="p">):</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type with grouped map Pandas UDFs or "</span> |
| <span class="sa">f</span><span class="s2">"at groupby.applyInPandas(WithState): </span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_RETURN_TYPE_FOR_PANDAS_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_GROUPED_MAP_PANDAS_UDF or "</span> |
| <span class="s2">"SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE"</span><span class="p">,</span> |
| <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">),</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="p">(</span> |
| <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_PANDAS_ITER_UDF</span> |
| <span class="ow">or</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_ARROW_ITER_UDF</span> |
| <span class="p">):</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type in mapInPandas: "</span> <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_RETURN_TYPE_FOR_PANDAS_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_MAP_PANDAS_ITER_UDF or SQL_MAP_ARROW_ITER_UDF"</span><span class="p">,</span> |
| <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">),</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_MAP_ARROW_UDF</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="s2">"Invalid return type with grouped map Arrow UDFs or "</span> |
| <span class="sa">f</span><span class="s2">"at groupby.applyInArrow: </span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_RETURN_TYPE_FOR_ARROW_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_GROUPED_MAP_ARROW_UDF"</span><span class="p">,</span> |
| <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">),</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_COGROUPED_MAP_PANDAS_UDF</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type in cogroup.applyInPandas: "</span> |
| <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_RETURN_TYPE_FOR_PANDAS_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_COGROUPED_MAP_PANDAS_UDF"</span><span class="p">,</span> |
| <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">),</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_COGROUPED_MAP_ARROW_UDF</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="s2">"Invalid return type in cogroup.applyInArrow: "</span> |
| <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_RETURN_TYPE_FOR_ARROW_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_COGROUPED_MAP_ARROW_UDF"</span><span class="p">,</span> |
| <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">),</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_AGG_PANDAS_UDF</span><span class="p">:</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="c1"># StructType is not yet allowed as a return type, explicitly check here to fail fast</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type with grouped aggregate Pandas UDFs: "</span> |
| <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="n">to_arrow_type</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkNotImplementedError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"NOT_IMPLEMENTED"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"feature"</span><span class="p">:</span> <span class="sa">f</span><span class="s2">"Invalid return type with grouped aggregate Pandas UDFs: "</span> |
| <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">returnType</span><span class="si">}</span><span class="s2">"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">returnType</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataType</span><span class="p">:</span> |
| <span class="c1"># Make sure this is called after SparkContext is initialized.</span> |
| <span class="c1"># ``_parse_datatype_string`` accesses to JVM for parsing a DDL formatted string.</span> |
| <span class="c1"># TODO: PythonEvalType.SQL_BATCHED_UDF</span> |
| <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="o">=</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span><span class="p">)</span> |
| |
| <span class="n">UserDefinedFunction</span><span class="o">.</span><span class="n">_check_return_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">_judf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"JavaObject"</span><span class="p">:</span> |
| <span class="c1"># It is possible that concurrent access, to newly created UDF,</span> |
| <span class="c1"># will initialize multiple UserDefinedPythonFunctions.</span> |
| <span class="c1"># This is unlikely, doesn't affect correctness,</span> |
| <span class="c1"># and should have a minimal performance impact.</span> |
| <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> |
| |
| <span class="k">def</span> <span class="nf">_create_judf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">])</span> <span class="o">-></span> <span class="s2">"JavaObject"</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span> |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span> |
| |
| <span class="n">wrapped_func</span> <span class="o">=</span> <span class="n">_wrap_function</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="n">jdt</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">parseDataType</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">returnType</span><span class="o">.</span><span class="n">json</span><span class="p">())</span> |
| <span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">judf</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">execution</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">UserDefinedPythonFunction</span><span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_name</span><span class="p">,</span> <span class="n">wrapped_func</span><span class="p">,</span> <span class="n">jdt</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">judf</span> |
| |
| <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="s2">"ColumnOrName"</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="s2">"ColumnOrName"</span><span class="p">)</span> <span class="o">-></span> <span class="n">Column</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">_to_java_column</span><span class="p">,</span> <span class="n">_to_seq</span> |
| |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">get_active_spark_context</span><span class="p">()</span> |
| |
| <span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">jcols</span> <span class="o">=</span> <span class="p">[</span><span class="n">_to_java_column</span><span class="p">(</span><span class="n">arg</span><span class="p">)</span> <span class="k">for</span> <span class="n">arg</span> <span class="ow">in</span> <span class="n">args</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonSQLUtils</span><span class="o">.</span><span class="n">namedArgumentExpression</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">_to_java_column</span><span class="p">(</span><span class="n">value</span><span class="p">))</span> |
| <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> |
| <span class="p">]</span> |
| |
| <span class="n">profiler_enabled</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.python.profile"</span><span class="p">,</span> <span class="s2">"false"</span><span class="p">)</span> <span class="o">==</span> <span class="s2">"true"</span> |
| <span class="n">memory_profiler_enabled</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.python.profile.memory"</span><span class="p">,</span> <span class="s2">"false"</span><span class="p">)</span> <span class="o">==</span> <span class="s2">"true"</span> |
| |
| <span class="k">if</span> <span class="n">profiler_enabled</span> <span class="ow">or</span> <span class="n">memory_profiler_enabled</span><span class="p">:</span> |
| <span class="c1"># Disable profiling Pandas UDFs with iterators as input/output.</span> |
| <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="ow">in</span> <span class="p">[</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_PANDAS_ITER_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_ARROW_ITER_UDF</span><span class="p">,</span> |
| <span class="p">]:</span> |
| <span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span> |
| <span class="s2">"Profiling UDFs with iterators input/output is not supported."</span><span class="p">,</span> |
| <span class="ne">UserWarning</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf</span> |
| <span class="k">return</span> <span class="n">Column</span><span class="p">(</span><span class="n">judf</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">jcols</span><span class="p">)))</span> |
| |
| <span class="c1"># Disallow enabling two profilers at the same time.</span> |
| <span class="k">if</span> <span class="n">profiler_enabled</span> <span class="ow">and</span> <span class="n">memory_profiler_enabled</span><span class="p">:</span> |
| <span class="c1"># When both profilers are enabled, they interfere with each other,</span> |
| <span class="c1"># that makes the result profile misleading.</span> |
| <span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"CANNOT_SET_TOGETHER"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"arg_list"</span><span class="p">:</span> <span class="s2">"'spark.python.profile' and "</span> |
| <span class="s2">"'spark.python.profile.memory' configuration"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="n">profiler_enabled</span><span class="p">:</span> |
| <span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span> |
| <span class="n">profiler</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">new_udf_profiler</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span> |
| |
| <span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="k">assert</span> <span class="n">profiler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="n">profiler</span><span class="o">.</span><span class="n">profile</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <span class="n">func</span><span class="o">.</span><span class="n">__signature__</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="n">func</span><span class="p">)</span> |
| <span class="n">jUDFExpr</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">builderWithColumns</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">jcols</span><span class="p">))</span> |
| <span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">fromUDFExpr</span><span class="p">(</span><span class="n">jUDFExpr</span><span class="p">)</span> |
| <span class="nb">id</span> <span class="o">=</span> <span class="n">jUDFExpr</span><span class="o">.</span><span class="n">resultId</span><span class="p">()</span><span class="o">.</span><span class="n">id</span><span class="p">()</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">add_profiler</span><span class="p">(</span><span class="nb">id</span><span class="p">,</span> <span class="n">profiler</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> <span class="c1"># memory_profiler_enabled</span> |
| <span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span> |
| <span class="n">memory_profiler</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">new_memory_profiler</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span> |
| <span class="p">(</span><span class="n">sub_lines</span><span class="p">,</span> <span class="n">start_line</span><span class="p">)</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">getsourcelines</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="vm">__code__</span><span class="p">)</span> |
| |
| <span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="k">assert</span> <span class="n">memory_profiler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="n">memory_profiler</span><span class="o">.</span><span class="n">profile</span><span class="p">(</span> |
| <span class="n">sub_lines</span><span class="p">,</span> <span class="n">start_line</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| |
| <span class="n">func</span><span class="o">.</span><span class="n">__signature__</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="n">func</span><span class="p">)</span> |
| <span class="n">jUDFExpr</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">builderWithColumns</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">jcols</span><span class="p">))</span> |
| <span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">fromUDFExpr</span><span class="p">(</span><span class="n">jUDFExpr</span><span class="p">)</span> |
| <span class="nb">id</span> <span class="o">=</span> <span class="n">jUDFExpr</span><span class="o">.</span><span class="n">resultId</span><span class="p">()</span><span class="o">.</span><span class="n">id</span><span class="p">()</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">add_profiler</span><span class="p">(</span><span class="nb">id</span><span class="p">,</span> <span class="n">memory_profiler</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf</span> |
| <span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">jcols</span><span class="p">))</span> |
| <span class="k">return</span> <span class="n">Column</span><span class="p">(</span><span class="n">jPythonUDF</span><span class="p">)</span> |
| |
| <span class="c1"># This function is for improving the online help system in the interactive interpreter.</span> |
| <span class="c1"># For example, the built-in help / pydoc.help. It wraps the UDF with the docstring and</span> |
| <span class="c1"># argument annotation. (See: SPARK-19161)</span> |
| <span class="k">def</span> <span class="nf">_wrapped</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"UserDefinedFunctionLike"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Wrap this udf with a function and attach docstring from func</span> |
| <span class="sd"> """</span> |
| |
| <span class="c1"># It is possible for a callable instance without __name__ attribute or/and</span> |
| <span class="c1"># __module__ attribute to be wrapped here. For example, functools.partial. In this case,</span> |
| <span class="c1"># we should avoid wrapping the attributes from the wrapped function to the wrapper</span> |
| <span class="c1"># function. So, we take out these attribute names from the default names to set and</span> |
| <span class="c1"># then manually assign it after being wrapped.</span> |
| <span class="n">assignments</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">(</span> |
| <span class="n">a</span> <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">functools</span><span class="o">.</span><span class="n">WRAPPER_ASSIGNMENTS</span> <span class="k">if</span> <span class="n">a</span> <span class="o">!=</span> <span class="s2">"__name__"</span> <span class="ow">and</span> <span class="n">a</span> <span class="o">!=</span> <span class="s2">"__module__"</span> |
| <span class="p">)</span> |
| |
| <span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="n">assigned</span><span class="o">=</span><span class="n">assignments</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">wrapper</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="s2">"ColumnOrName"</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="s2">"ColumnOrName"</span><span class="p">)</span> <span class="o">-></span> <span class="n">Column</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <span class="n">wrapper</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_name</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="vm">__module__</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="vm">__module__</span> |
| <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="s2">"__module__"</span><span class="p">)</span> |
| <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__module__</span> |
| <span class="p">)</span> |
| |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">returnType</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">returnType</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">evalType</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">asNondeterministic</span> <span class="o">=</span> <span class="n">functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">asNondeterministic</span> |
| <span class="p">)(</span><span class="k">lambda</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">asNondeterministic</span><span class="p">()</span><span class="o">.</span><span class="n">_wrapped</span><span class="p">())</span> |
| <span class="n">wrapper</span><span class="o">.</span><span class="n">_unwrapped</span> <span class="o">=</span> <span class="bp">self</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="k">return</span> <span class="n">wrapper</span> <span class="c1"># type: ignore[return-value]</span> |
| |
| <div class="viewcode-block" id="UserDefinedFunction.asNondeterministic"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.udf.UserDefinedFunction.asNondeterministic.html#pyspark.sql.UserDefinedFunction.asNondeterministic">[docs]</a> <span class="k">def</span> <span class="nf">asNondeterministic</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"UserDefinedFunction"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Updates UserDefinedFunction to nondeterministic.</span> |
| |
| <span class="sd"> .. versionadded:: 2.3</span> |
| <span class="sd"> """</span> |
| <span class="c1"># Here, we explicitly clean the cache to create a JVM UDF instance</span> |
| <span class="c1"># with 'deterministic' updated. See SPARK-23233.</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="k">return</span> <span class="bp">self</span></div></div> |
| |
| |
| <div class="viewcode-block" id="UDFRegistration"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.html#pyspark.sql.UDFRegistration">[docs]</a><span class="k">class</span> <span class="nc">UDFRegistration</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Wrapper for user-defined function registration. This instance can be accessed by</span> |
| <span class="sd"> :attr:`spark.udf` or :attr:`sqlContext.udf`.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.1</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sparkSession</span><span class="p">:</span> <span class="s2">"SparkSession"</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span> <span class="o">=</span> <span class="n">sparkSession</span> |
| |
| <div class="viewcode-block" id="UDFRegistration.register"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.register.html#pyspark.sql.UDFRegistration.register">[docs]</a> <span class="k">def</span> <span class="nf">register</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="s2">"UserDefinedFunctionLike"</span><span class="p">],</span> |
| <span class="n">returnType</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">"DataTypeOrString"</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"UserDefinedFunctionLike"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Register a Python function (including lambda function) or a user-defined function</span> |
| <span class="sd"> as a SQL function.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.1</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str,</span> |
| <span class="sd"> name of the user-defined function in SQL statements.</span> |
| <span class="sd"> f : function, :meth:`pyspark.sql.functions.udf` or :meth:`pyspark.sql.functions.pandas_udf`</span> |
| <span class="sd"> a Python function, or a user-defined function. The user-defined function can</span> |
| <span class="sd"> be either row-at-a-time or vectorized. See :meth:`pyspark.sql.functions.udf` and</span> |
| <span class="sd"> :meth:`pyspark.sql.functions.pandas_udf`.</span> |
| <span class="sd"> returnType : :class:`pyspark.sql.types.DataType` or str, optional</span> |
| <span class="sd"> the return type of the registered user-defined function. The value can</span> |
| <span class="sd"> be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.</span> |
| <span class="sd"> `returnType` can be optionally specified when `f` is a Python function but not</span> |
| <span class="sd"> when `f` is a user-defined function. Please see the examples below.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> function</span> |
| <span class="sd"> a user-defined function</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> To register a nondeterministic Python function, users need to first build</span> |
| <span class="sd"> a nondeterministic user-defined function for the Python function and then register it</span> |
| <span class="sd"> as a SQL function.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> 1. When `f` is a Python function:</span> |
| |
| <span class="sd"> `returnType` defaults to string type and can be optionally specified. The produced</span> |
| <span class="sd"> object must match the specified type. In this case, this API works as if</span> |
| <span class="sd"> `register(name, f, returnType=StringType())`.</span> |
| |
| <span class="sd"> >>> strlen = spark.udf.register("stringLengthString", lambda x: len(x))</span> |
| <span class="sd"> >>> spark.sql("SELECT stringLengthString('test')").collect()</span> |
| <span class="sd"> [Row(stringLengthString(test)='4')]</span> |
| |
| <span class="sd"> >>> spark.sql("SELECT 'foo' AS text").select(strlen("text")).collect()</span> |
| <span class="sd"> [Row(stringLengthString(text)='3')]</span> |
| |
| <span class="sd"> >>> from pyspark.sql.types import IntegerType</span> |
| <span class="sd"> >>> _ = spark.udf.register("stringLengthInt", lambda x: len(x), IntegerType())</span> |
| <span class="sd"> >>> spark.sql("SELECT stringLengthInt('test')").collect()</span> |
| <span class="sd"> [Row(stringLengthInt(test)=4)]</span> |
| |
| <span class="sd"> >>> from pyspark.sql.types import IntegerType</span> |
| <span class="sd"> >>> _ = spark.udf.register("stringLengthInt", lambda x: len(x), IntegerType())</span> |
| <span class="sd"> >>> spark.sql("SELECT stringLengthInt('test')").collect()</span> |
| <span class="sd"> [Row(stringLengthInt(test)=4)]</span> |
| |
| <span class="sd"> 2. When `f` is a user-defined function (from Spark 2.3.0):</span> |
| |
| <span class="sd"> Spark uses the return type of the given user-defined function as the return type of</span> |
| <span class="sd"> the registered user-defined function. `returnType` should not be specified.</span> |
| <span class="sd"> In this case, this API works as if `register(name, f)`.</span> |
| |
| <span class="sd"> >>> from pyspark.sql.types import IntegerType</span> |
| <span class="sd"> >>> from pyspark.sql.functions import udf</span> |
| <span class="sd"> >>> slen = udf(lambda s: len(s), IntegerType())</span> |
| <span class="sd"> >>> _ = spark.udf.register("slen", slen)</span> |
| <span class="sd"> >>> spark.sql("SELECT slen('test')").collect()</span> |
| <span class="sd"> [Row(slen(test)=4)]</span> |
| |
| <span class="sd"> >>> import random</span> |
| <span class="sd"> >>> from pyspark.sql.functions import udf</span> |
| <span class="sd"> >>> from pyspark.sql.types import IntegerType</span> |
| <span class="sd"> >>> random_udf = udf(lambda: random.randint(0, 100), IntegerType()).asNondeterministic()</span> |
| <span class="sd"> >>> new_random_udf = spark.udf.register("random_udf", random_udf)</span> |
| <span class="sd"> >>> spark.sql("SELECT random_udf()").collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(random_udf()=82)]</span> |
| |
| <span class="sd"> >>> import pandas as pd # doctest: +SKIP</span> |
| <span class="sd"> >>> from pyspark.sql.functions import pandas_udf</span> |
| <span class="sd"> >>> @pandas_udf("integer") # doctest: +SKIP</span> |
| <span class="sd"> ... def add_one(s: pd.Series) -> pd.Series:</span> |
| <span class="sd"> ... return s + 1</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> _ = spark.udf.register("add_one", add_one) # doctest: +SKIP</span> |
| <span class="sd"> >>> spark.sql("SELECT add_one(id) FROM range(3)").collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(add_one(id)=1), Row(add_one(id)=2), Row(add_one(id)=3)]</span> |
| |
| <span class="sd"> >>> @pandas_udf("integer") # doctest: +SKIP</span> |
| <span class="sd"> ... def sum_udf(v: pd.Series) -> int:</span> |
| <span class="sd"> ... return v.sum()</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> _ = spark.udf.register("sum_udf", sum_udf) # doctest: +SKIP</span> |
| <span class="sd"> >>> q = "SELECT sum_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2"</span> |
| <span class="sd"> >>> spark.sql(q).collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(sum_udf(v1)=1), Row(sum_udf(v1)=5)]</span> |
| |
| <span class="sd"> """</span> |
| |
| <span class="c1"># This is to check whether the input function is from a user-defined function or</span> |
| <span class="c1"># Python function.</span> |
| <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="s2">"asNondeterministic"</span><span class="p">):</span> |
| <span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"CANNOT_SPECIFY_RETURN_TYPE_FOR_UDF"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span><span class="s2">"arg_name"</span><span class="p">:</span> <span class="s2">"f"</span><span class="p">,</span> <span class="s2">"return_type"</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">returnType</span><span class="p">)},</span> |
| <span class="p">)</span> |
| <span class="n">f</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="s2">"UserDefinedFunctionLike"</span><span class="p">,</span> <span class="n">f</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">f</span><span class="o">.</span><span class="n">evalType</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_ARROW_BATCHED_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span><span class="p">,</span> |
| <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_AGG_PANDAS_UDF</span><span class="p">,</span> |
| <span class="p">]:</span> |
| <span class="k">raise</span> <span class="n">PySparkTypeError</span><span class="p">(</span> |
| <span class="n">errorClass</span><span class="o">=</span><span class="s2">"INVALID_UDF_EVAL_TYPE"</span><span class="p">,</span> |
| <span class="n">messageParameters</span><span class="o">=</span><span class="p">{</span> |
| <span class="s2">"eval_type"</span><span class="p">:</span> <span class="s2">"SQL_BATCHED_UDF, SQL_ARROW_BATCHED_UDF, "</span> |
| <span class="s2">"SQL_SCALAR_PANDAS_UDF, SQL_SCALAR_PANDAS_ITER_UDF or "</span> |
| <span class="s2">"SQL_GROUPED_AGG_PANDAS_UDF"</span> |
| <span class="p">},</span> |
| <span class="p">)</span> |
| <span class="n">source_udf</span> <span class="o">=</span> <span class="n">_create_udf</span><span class="p">(</span> |
| <span class="n">f</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> |
| <span class="n">returnType</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">returnType</span><span class="p">,</span> |
| <span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> |
| <span class="n">evalType</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">evalType</span><span class="p">,</span> |
| <span class="n">deterministic</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">deterministic</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">register_udf</span> <span class="o">=</span> <span class="n">source_udf</span><span class="o">.</span><span class="n">_unwrapped</span> <span class="c1"># type: ignore[attr-defined]</span> |
| <span class="n">return_udf</span> <span class="o">=</span> <span class="n">register_udf</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">returnType</span> <span class="o">=</span> <span class="n">StringType</span><span class="p">()</span> |
| <span class="n">return_udf</span> <span class="o">=</span> <span class="n">_create_udf</span><span class="p">(</span> |
| <span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="o">=</span><span class="n">returnType</span><span class="p">,</span> <span class="n">evalType</span><span class="o">=</span><span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">name</span> |
| <span class="p">)</span> |
| <span class="n">register_udf</span> <span class="o">=</span> <span class="n">return_udf</span><span class="o">.</span><span class="n">_unwrapped</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerPython</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">register_udf</span><span class="o">.</span><span class="n">_judf</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">return_udf</span></div> |
| |
| <div class="viewcode-block" id="UDFRegistration.registerJavaFunction"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.registerJavaFunction.html#pyspark.sql.UDFRegistration.registerJavaFunction">[docs]</a> <span class="k">def</span> <span class="nf">registerJavaFunction</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">javaClassName</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">returnType</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">"DataTypeOrString"</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Register a Java user-defined function as a SQL function.</span> |
| |
| <span class="sd"> In addition to a name and the function itself, the return type can be optionally specified.</span> |
| <span class="sd"> When the return type is not specified we would infer it via reflection.</span> |
| |
| <span class="sd"> .. versionadded:: 2.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> name of the user-defined function</span> |
| <span class="sd"> javaClassName : str</span> |
| <span class="sd"> fully qualified name of java class</span> |
| <span class="sd"> returnType : :class:`pyspark.sql.types.DataType` or str, optional</span> |
| <span class="sd"> the return type of the registered Java function. The value can be either</span> |
| <span class="sd"> a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.sql.types import IntegerType</span> |
| <span class="sd"> >>> spark.udf.registerJavaFunction(</span> |
| <span class="sd"> ... "javaStringLength", "test.org.apache.spark.sql.JavaStringLength", IntegerType())</span> |
| <span class="sd"> ... # doctest: +SKIP</span> |
| <span class="sd"> >>> spark.sql("SELECT javaStringLength('test')").collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(javaStringLength(test)=4)]</span> |
| |
| <span class="sd"> >>> spark.udf.registerJavaFunction(</span> |
| <span class="sd"> ... "javaStringLength2", "test.org.apache.spark.sql.JavaStringLength")</span> |
| <span class="sd"> ... # doctest: +SKIP</span> |
| <span class="sd"> >>> spark.sql("SELECT javaStringLength2('test')").collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(javaStringLength2(test)=4)]</span> |
| |
| <span class="sd"> >>> spark.udf.registerJavaFunction(</span> |
| <span class="sd"> ... "javaStringLength3", "test.org.apache.spark.sql.JavaStringLength", "integer")</span> |
| <span class="sd"> ... # doctest: +SKIP</span> |
| <span class="sd"> >>> spark.sql("SELECT javaStringLength3('test')").collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(javaStringLength3(test)=4)]</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">jdt</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span> |
| <span class="n">returnType</span> <span class="o">=</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span> |
| <span class="n">jdt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">parseDataType</span><span class="p">(</span><span class="n">returnType</span><span class="o">.</span><span class="n">json</span><span class="p">())</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerJava</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">,</span> <span class="n">jdt</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="UDFRegistration.registerJavaUDAF"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.registerJavaUDAF.html#pyspark.sql.UDFRegistration.registerJavaUDAF">[docs]</a> <span class="k">def</span> <span class="nf">registerJavaUDAF</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Register a Java user-defined aggregate function as a SQL function.</span> |
| |
| <span class="sd"> .. versionadded:: 2.3.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.4.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> name : str</span> |
| <span class="sd"> name of the user-defined aggregate function</span> |
| <span class="sd"> javaClassName : str</span> |
| <span class="sd"> fully qualified name of java class</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> spark.udf.registerJavaUDAF("javaUDAF", "test.org.apache.spark.sql.MyDoubleAvg")</span> |
| <span class="sd"> ... # doctest: +SKIP</span> |
| <span class="sd"> >>> df = spark.createDataFrame([(1, "a"),(2, "b"), (3, "a")],["id", "name"])</span> |
| <span class="sd"> >>> df.createOrReplaceTempView("df")</span> |
| <span class="sd"> >>> q = "SELECT name, javaUDAF(id) as avg from df group by name order by name desc"</span> |
| <span class="sd"> >>> spark.sql(q).collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(name='b', avg=102.0), Row(name='a', avg=102.0)]</span> |
| <span class="sd"> """</span> |
| |
| <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerJavaUDAF</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">)</span></div></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span> <span class="nn">pyspark.sql.udf</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">udf</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"sql.udf tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"spark"</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">udf</span><span class="p">,</span> <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |