blob: 3962cc9ddcb82e9f012f8f7698f9dabb729a640a [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.context &#8212; PySpark master documentation</title>
<link href="../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script src="../../_static/language_data.js"></script>
<script src="../../_static/clipboard.min.js"></script>
<script src="../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "tex2jax_ignore|mathjax_ignore|document", "processClass": "tex2jax_process|mathjax_process|math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/context.html" />
<link rel="search" title="Search" href="../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../index.html">
<img src="../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
master
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/context.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("_static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.context</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">shutil</span>
<span class="kn">import</span> <span class="nn">signal</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">threading</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">import</span> <span class="nn">importlib</span>
<span class="kn">from</span> <span class="nn">threading</span> <span class="kn">import</span> <span class="n">RLock</span>
<span class="kn">from</span> <span class="nn">tempfile</span> <span class="kn">import</span> <span class="n">NamedTemporaryFile</span>
<span class="kn">from</span> <span class="nn">types</span> <span class="kn">import</span> <span class="n">TracebackType</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">Any</span><span class="p">,</span>
<span class="n">Callable</span><span class="p">,</span>
<span class="n">cast</span><span class="p">,</span>
<span class="n">ClassVar</span><span class="p">,</span>
<span class="n">Dict</span><span class="p">,</span>
<span class="n">Iterable</span><span class="p">,</span>
<span class="n">List</span><span class="p">,</span>
<span class="n">NoReturn</span><span class="p">,</span>
<span class="n">Optional</span><span class="p">,</span>
<span class="n">Sequence</span><span class="p">,</span>
<span class="n">Tuple</span><span class="p">,</span>
<span class="n">Type</span><span class="p">,</span>
<span class="n">TYPE_CHECKING</span><span class="p">,</span>
<span class="n">TypeVar</span><span class="p">,</span>
<span class="n">Set</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">py4j.java_collections</span> <span class="kn">import</span> <span class="n">JavaMap</span>
<span class="kn">from</span> <span class="nn">py4j.protocol</span> <span class="kn">import</span> <span class="n">Py4JError</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">accumulators</span>
<span class="kn">from</span> <span class="nn">pyspark.accumulators</span> <span class="kn">import</span> <span class="n">Accumulator</span>
<span class="kn">from</span> <span class="nn">pyspark.broadcast</span> <span class="kn">import</span> <span class="n">Broadcast</span><span class="p">,</span> <span class="n">BroadcastPickleRegistry</span>
<span class="kn">from</span> <span class="nn">pyspark.conf</span> <span class="kn">import</span> <span class="n">SparkConf</span>
<span class="kn">from</span> <span class="nn">pyspark.files</span> <span class="kn">import</span> <span class="n">SparkFiles</span>
<span class="kn">from</span> <span class="nn">pyspark.java_gateway</span> <span class="kn">import</span> <span class="n">launch_gateway</span><span class="p">,</span> <span class="n">local_connect_and_auth</span>
<span class="kn">from</span> <span class="nn">pyspark.serializers</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">CPickleSerializer</span><span class="p">,</span>
<span class="n">BatchedSerializer</span><span class="p">,</span>
<span class="n">Serializer</span><span class="p">,</span>
<span class="n">UTF8Deserializer</span><span class="p">,</span>
<span class="n">PairDeserializer</span><span class="p">,</span>
<span class="n">AutoBatchedSerializer</span><span class="p">,</span>
<span class="n">NoOpSerializer</span><span class="p">,</span>
<span class="n">ChunkedStream</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.storagelevel</span> <span class="kn">import</span> <span class="n">StorageLevel</span>
<span class="kn">from</span> <span class="nn">pyspark.resource.information</span> <span class="kn">import</span> <span class="n">ResourceInformation</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span><span class="p">,</span> <span class="n">_load_from_socket</span>
<span class="kn">from</span> <span class="nn">pyspark.taskcontext</span> <span class="kn">import</span> <span class="n">TaskContext</span>
<span class="kn">from</span> <span class="nn">pyspark.traceback_utils</span> <span class="kn">import</span> <span class="n">CallSite</span><span class="p">,</span> <span class="n">first_spark_call</span>
<span class="kn">from</span> <span class="nn">pyspark.status</span> <span class="kn">import</span> <span class="n">StatusTracker</span>
<span class="kn">from</span> <span class="nn">pyspark.profiler</span> <span class="kn">import</span> <span class="n">ProfilerCollector</span><span class="p">,</span> <span class="n">BasicProfiler</span><span class="p">,</span> <span class="n">UDFBasicProfiler</span><span class="p">,</span> <span class="n">MemoryProfiler</span>
<span class="kn">from</span> <span class="nn">pyspark.errors</span> <span class="kn">import</span> <span class="n">PySparkRuntimeError</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">is_instance_of</span><span class="p">,</span> <span class="n">JavaGateway</span><span class="p">,</span> <span class="n">JavaObject</span><span class="p">,</span> <span class="n">JVMView</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.accumulators</span> <span class="kn">import</span> <span class="n">AccumulatorParam</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;SparkContext&quot;</span><span class="p">]</span>
<span class="c1"># These are special default configs for PySpark, they will overwrite</span>
<span class="c1"># the default ones for Spark if they are not configured by user.</span>
<span class="n">DEFAULT_CONFIGS</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">&quot;spark.serializer.objectStreamReset&quot;</span><span class="p">:</span> <span class="mi">100</span><span class="p">,</span>
<span class="s2">&quot;spark.rdd.compress&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">}</span>
<span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">&quot;T&quot;</span><span class="p">)</span>
<span class="n">U</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">&quot;U&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="SparkContext"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.html#pyspark.SparkContext">[docs]</a><span class="k">class</span> <span class="nc">SparkContext</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Main entry point for Spark functionality. A SparkContext represents the</span>
<span class="sd"> connection to a Spark cluster, and can be used to create :class:`RDD` and</span>
<span class="sd"> broadcast variables on that cluster.</span>
<span class="sd"> When you create a new SparkContext, at least the master and app name should</span>
<span class="sd"> be set, either through the named parameters here or through `conf`.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> master : str, optional</span>
<span class="sd"> Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).</span>
<span class="sd"> appName : str, optional</span>
<span class="sd"> A name for your job, to display on the cluster web UI.</span>
<span class="sd"> sparkHome : str, optional</span>
<span class="sd"> Location where Spark is installed on cluster nodes.</span>
<span class="sd"> pyFiles : list, optional</span>
<span class="sd"> Collection of .zip or .py files to send to the cluster</span>
<span class="sd"> and add to PYTHONPATH. These can be paths on the local file</span>
<span class="sd"> system or HDFS, HTTP, HTTPS, or FTP URLs.</span>
<span class="sd"> environment : dict, optional</span>
<span class="sd"> A dictionary of environment variables to set on</span>
<span class="sd"> worker nodes.</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. Set 1 to disable batching, 0 to automatically choose</span>
<span class="sd"> the batch size based on object sizes, or -1 to use an unlimited</span>
<span class="sd"> batch size</span>
<span class="sd"> serializer : :class:`Serializer`, optional, default :class:`CPickleSerializer`</span>
<span class="sd"> The serializer for RDDs.</span>
<span class="sd"> conf : :class:`SparkConf`, optional</span>
<span class="sd"> An object setting Spark properties.</span>
<span class="sd"> gateway : class:`py4j.java_gateway.JavaGateway`, optional</span>
<span class="sd"> Use an existing gateway and JVM, otherwise a new JVM</span>
<span class="sd"> will be instantiated. This is only used internally.</span>
<span class="sd"> jsc : class:`py4j.java_gateway.JavaObject`, optional</span>
<span class="sd"> The JavaSparkContext instance. This is only used internally.</span>
<span class="sd"> profiler_cls : type, optional, default :class:`BasicProfiler`</span>
<span class="sd"> A class of custom Profiler used to do profiling</span>
<span class="sd"> udf_profiler_cls : type, optional, default :class:`UDFBasicProfiler`</span>
<span class="sd"> A class of custom Profiler used to do udf profiling</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Only one :class:`SparkContext` should be active per JVM. You must `stop()`</span>
<span class="sd"> the active :class:`SparkContext` before creating a new one.</span>
<span class="sd"> :class:`SparkContext` instance is not supported to share across multiple</span>
<span class="sd"> processes out of the box, and PySpark does not guarantee multi-processing execution.</span>
<span class="sd"> Use threads instead for concurrent processing purpose.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.context import SparkContext</span>
<span class="sd"> &gt;&gt;&gt; sc = SparkContext(&#39;local&#39;, &#39;test&#39;)</span>
<span class="sd"> &gt;&gt;&gt; sc2 = SparkContext(&#39;local&#39;, &#39;test2&#39;) # doctest: +IGNORE_EXCEPTION_DETAIL</span>
<span class="sd"> Traceback (most recent call last):</span>
<span class="sd"> ...</span>
<span class="sd"> ValueError: ...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">_gateway</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="n">JavaGateway</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">_jvm</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="n">JVMView</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">_next_accum_id</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">_active_spark_context</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;SparkContext&quot;</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">_lock</span> <span class="o">=</span> <span class="n">RLock</span><span class="p">()</span>
<span class="n">_python_includes</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span>
<span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span>
<span class="p">]</span> <span class="o">=</span> <span class="kc">None</span> <span class="c1"># zip and egg files that need to be added to PYTHONPATH</span>
<span class="n">serializer</span><span class="p">:</span> <span class="n">Serializer</span>
<span class="n">profiler_collector</span><span class="p">:</span> <span class="n">ProfilerCollector</span>
<span class="n">PACKAGE_EXTENSIONS</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="s2">&quot;.zip&quot;</span><span class="p">,</span> <span class="s2">&quot;.egg&quot;</span><span class="p">,</span> <span class="s2">&quot;.jar&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">master</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">appName</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">sparkHome</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">pyFiles</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">environment</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">serializer</span><span class="p">:</span> <span class="s2">&quot;Serializer&quot;</span> <span class="o">=</span> <span class="n">CPickleSerializer</span><span class="p">(),</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">gateway</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaGateway</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">jsc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaObject</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">BasicProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">BasicProfiler</span><span class="p">,</span>
<span class="n">udf_profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">UDFBasicProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">UDFBasicProfiler</span><span class="p">,</span>
<span class="n">memory_profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">MemoryProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">MemoryProfiler</span><span class="p">,</span>
<span class="p">):</span>
<span class="k">if</span> <span class="s2">&quot;SPARK_CONNECT_MODE_ENABLED&quot;</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span> <span class="ow">and</span> <span class="s2">&quot;SPARK_LOCAL_REMOTE&quot;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;CONTEXT_UNAVAILABLE_FOR_REMOTE_CLIENT&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">conf</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.executor.allowSparkContext&quot;</span><span class="p">,</span> <span class="s2">&quot;false&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="o">!=</span> <span class="s2">&quot;true&quot;</span><span class="p">:</span>
<span class="c1"># In order to prevent SparkContext from being created in executors.</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_assert_on_driver</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_callsite</span> <span class="o">=</span> <span class="n">first_spark_call</span><span class="p">()</span> <span class="ow">or</span> <span class="n">CallSite</span><span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">gateway</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">gateway</span><span class="o">.</span><span class="n">gateway_parameters</span><span class="o">.</span><span class="n">auth_token</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;You are trying to pass an insecure Py4j gateway to Spark. This&quot;</span>
<span class="s2">&quot; is not allowed as it is a security risk.&quot;</span>
<span class="p">)</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_ensure_initialized</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">gateway</span><span class="o">=</span><span class="n">gateway</span><span class="p">,</span> <span class="n">conf</span><span class="o">=</span><span class="n">conf</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_do_init</span><span class="p">(</span>
<span class="n">master</span><span class="p">,</span>
<span class="n">appName</span><span class="p">,</span>
<span class="n">sparkHome</span><span class="p">,</span>
<span class="n">pyFiles</span><span class="p">,</span>
<span class="n">environment</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="n">serializer</span><span class="p">,</span>
<span class="n">conf</span><span class="p">,</span>
<span class="n">jsc</span><span class="p">,</span>
<span class="n">profiler_cls</span><span class="p">,</span>
<span class="n">udf_profiler_cls</span><span class="p">,</span>
<span class="n">memory_profiler_cls</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">except</span> <span class="ne">BaseException</span><span class="p">:</span>
<span class="c1"># If an error occurs, clean up in order to allow future SparkContext creation:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">raise</span>
<span class="k">def</span> <span class="nf">_do_init</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">master</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span>
<span class="n">appName</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span>
<span class="n">sparkHome</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span>
<span class="n">pyFiles</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<span class="n">environment</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]],</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">serializer</span><span class="p">:</span> <span class="n">Serializer</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">],</span>
<span class="n">jsc</span><span class="p">:</span> <span class="n">JavaObject</span><span class="p">,</span>
<span class="n">profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">BasicProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">BasicProfiler</span><span class="p">,</span>
<span class="n">udf_profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">UDFBasicProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">UDFBasicProfiler</span><span class="p">,</span>
<span class="n">memory_profiler_cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">MemoryProfiler</span><span class="p">]</span> <span class="o">=</span> <span class="n">MemoryProfiler</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">environment</span> <span class="o">=</span> <span class="n">environment</span> <span class="ow">or</span> <span class="p">{}</span>
<span class="c1"># java gateway must have been launched at this point.</span>
<span class="k">if</span> <span class="n">conf</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">conf</span><span class="o">.</span><span class="n">_jconf</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># conf has been initialized in JVM properly, so use conf directly. This represents the</span>
<span class="c1"># scenario that JVM has been launched before SparkConf is created (e.g. SparkContext is</span>
<span class="c1"># created and then stopped, and we create a new SparkConf and new SparkContext again)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> <span class="o">=</span> <span class="n">conf</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">(</span><span class="n">_jvm</span><span class="o">=</span><span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span><span class="p">)</span>
<span class="k">if</span> <span class="n">conf</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">conf</span><span class="o">.</span><span class="n">getAll</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_batchSize</span> <span class="o">=</span> <span class="n">batchSize</span> <span class="c1"># -1 represents an unlimited batch size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_unbatched_serializer</span> <span class="o">=</span> <span class="n">serializer</span>
<span class="k">if</span> <span class="n">batchSize</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">serializer</span> <span class="o">=</span> <span class="n">AutoBatchedSerializer</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_unbatched_serializer</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">serializer</span> <span class="o">=</span> <span class="n">BatchedSerializer</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_unbatched_serializer</span><span class="p">,</span> <span class="n">batchSize</span><span class="p">)</span>
<span class="c1"># Set any parameters passed directly to us on the conf</span>
<span class="k">if</span> <span class="n">master</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">setMaster</span><span class="p">(</span><span class="n">master</span><span class="p">)</span>
<span class="k">if</span> <span class="n">appName</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">setAppName</span><span class="p">(</span><span class="n">appName</span><span class="p">)</span>
<span class="k">if</span> <span class="n">sparkHome</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">setSparkHome</span><span class="p">(</span><span class="n">sparkHome</span><span class="p">)</span>
<span class="k">if</span> <span class="n">environment</span><span class="p">:</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">environment</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">setExecutorEnv</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">DEFAULT_CONFIGS</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">setIfMissing</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="c1"># Check that we have at least the required parameters</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">contains</span><span class="p">(</span><span class="s2">&quot;spark.master&quot;</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;MASTER_URL_NOT_SET&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">contains</span><span class="p">(</span><span class="s2">&quot;spark.app.name&quot;</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;APPLICATION_NAME_NOT_SET&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span>
<span class="c1"># Read back our properties from the conf in case we loaded some of them from</span>
<span class="c1"># the classpath or an external config file</span>
<span class="bp">self</span><span class="o">.</span><span class="n">master</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.master&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">appName</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.app.name&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sparkHome</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.home&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">for</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">getAll</span><span class="p">():</span>
<span class="k">if</span> <span class="n">k</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s2">&quot;spark.executorEnv.&quot;</span><span class="p">):</span>
<span class="n">varName</span> <span class="o">=</span> <span class="n">k</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="s2">&quot;spark.executorEnv.&quot;</span><span class="p">)</span> <span class="p">:]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">environment</span><span class="p">[</span><span class="n">varName</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="bp">self</span><span class="o">.</span><span class="n">environment</span><span class="p">[</span><span class="s2">&quot;PYTHONHASHSEED&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;PYTHONHASHSEED&quot;</span><span class="p">,</span> <span class="s2">&quot;0&quot;</span><span class="p">)</span>
<span class="c1"># Create the Java SparkContext through Py4J</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span> <span class="o">=</span> <span class="n">jsc</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">_initialize_context</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">_jconf</span><span class="p">)</span>
<span class="c1"># Reset the SparkConf to the one actually used by the SparkContext in JVM.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">(</span><span class="n">_jconf</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">conf</span><span class="p">())</span>
<span class="c1"># Create a single Accumulator in Java that we&#39;ll send all our updates through;</span>
<span class="c1"># they will be passed back to us through a TCP server</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_gateway</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">auth_token</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_gateway</span><span class="o">.</span><span class="n">gateway_parameters</span><span class="o">.</span><span class="n">auth_token</span>
<span class="n">start_update_server</span> <span class="o">=</span> <span class="n">accumulators</span><span class="o">.</span><span class="n">_start_update_server</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_accumulatorServer</span> <span class="o">=</span> <span class="n">start_update_server</span><span class="p">(</span><span class="n">auth_token</span><span class="p">)</span>
<span class="p">(</span><span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">)</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_accumulatorServer</span><span class="o">.</span><span class="n">server_address</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_javaAccumulator</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonAccumulatorV2</span><span class="p">(</span><span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">,</span> <span class="n">auth_token</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_javaAccumulator</span><span class="p">)</span>
<span class="c1"># If encryption is enabled, we need to setup a server in the jvm to read broadcast</span>
<span class="c1"># data via a socket.</span>
<span class="c1"># scala&#39;s mangled names w/ $ in them require special treatment.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_encryption_enabled</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonUtils</span><span class="o">.</span><span class="n">isEncryptionEnabled</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">)</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_AUTH_SOCKET_TIMEOUT&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonUtils</span><span class="o">.</span><span class="n">getPythonAuthSocketTimeout</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_BUFFER_SIZE&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonUtils</span><span class="o">.</span><span class="n">getSparkBufferSize</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pythonExec</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;PYSPARK_PYTHON&quot;</span><span class="p">,</span> <span class="s2">&quot;python3&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pythonVer</span> <span class="o">=</span> <span class="s2">&quot;</span><span class="si">%d</span><span class="s2">.</span><span class="si">%d</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">sys</span><span class="o">.</span><span class="n">version_info</span><span class="p">[:</span><span class="mi">2</span><span class="p">]</span>
<span class="c1"># Broadcast&#39;s __reduce__ method stores Broadcast instances here.</span>
<span class="c1"># This allows other code to determine which Broadcast instances have</span>
<span class="c1"># been pickled, so it can determine which Java broadcast objects to</span>
<span class="c1"># send.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_pickled_broadcast_vars</span> <span class="o">=</span> <span class="n">BroadcastPickleRegistry</span><span class="p">()</span>
<span class="n">SparkFiles</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="bp">self</span>
<span class="n">root_dir</span> <span class="o">=</span> <span class="n">SparkFiles</span><span class="o">.</span><span class="n">getRootDirectory</span><span class="p">()</span>
<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">root_dir</span><span class="p">)</span>
<span class="c1"># Deploy any code dependencies specified in the constructor</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_python_includes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">()</span>
<span class="k">for</span> <span class="n">path</span> <span class="ow">in</span> <span class="n">pyFiles</span> <span class="ow">or</span> <span class="p">[]:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">addPyFile</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="c1"># Deploy code dependencies set by spark-submit; these will already have been added</span>
<span class="c1"># with SparkContext.addFile, so we just need to add them to the PYTHONPATH</span>
<span class="k">for</span> <span class="n">path</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.submit.pyFiles&quot;</span><span class="p">,</span> <span class="s2">&quot;&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;,&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">path</span> <span class="o">!=</span> <span class="s2">&quot;&quot;</span><span class="p">:</span>
<span class="p">(</span><span class="n">dirname</span><span class="p">,</span> <span class="n">filename</span><span class="p">)</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">filepath</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">SparkFiles</span><span class="o">.</span><span class="n">getRootDirectory</span><span class="p">(),</span> <span class="n">filename</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">filepath</span><span class="p">):</span>
<span class="c1"># In case of YARN with shell mode, &#39;spark.submit.pyFiles&#39; files are</span>
<span class="c1"># not added via SparkContext.addFile. Here we check if the file exists,</span>
<span class="c1"># try to copy and then add it to the path. See SPARK-21945.</span>
<span class="n">shutil</span><span class="o">.</span><span class="n">copyfile</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">filepath</span><span class="p">)</span>
<span class="k">if</span> <span class="n">filename</span><span class="p">[</span><span class="o">-</span><span class="mi">4</span><span class="p">:]</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">PACKAGE_EXTENSIONS</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_python_includes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">filename</span><span class="p">)</span>
<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">filepath</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">&quot;Failed to add file [</span><span class="si">%s</span><span class="s2">] specified in &#39;spark.submit.pyFiles&#39; to &quot;</span>
<span class="s2">&quot;Python path:</span><span class="se">\n</span><span class="s2"> </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="s2">&quot;</span><span class="se">\n</span><span class="s2"> &quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="p">)),</span>
<span class="ne">RuntimeWarning</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># Create a temporary directory inside spark.local.dir:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">local_dir</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">util</span><span class="o">.</span><span class="n">Utils</span><span class="o">.</span><span class="n">getLocalDir</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">conf</span><span class="p">())</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_temp_dir</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">util</span><span class="o">.</span><span class="n">Utils</span><span class="o">.</span><span class="n">createTempDir</span><span class="p">(</span>
<span class="n">local_dir</span><span class="p">,</span> <span class="s2">&quot;pyspark&quot;</span>
<span class="p">)</span><span class="o">.</span><span class="n">getAbsolutePath</span><span class="p">()</span>
<span class="c1"># profiling stats collected for each PythonRDD</span>
<span class="k">if</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.python.profile&quot;</span><span class="p">,</span> <span class="s2">&quot;false&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;true&quot;</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.python.profile.memory&quot;</span><span class="p">,</span> <span class="s2">&quot;false&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;true&quot;</span>
<span class="p">):</span>
<span class="n">dump_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.python.profile.dump&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span> <span class="o">=</span> <span class="n">ProfilerCollector</span><span class="p">(</span>
<span class="n">profiler_cls</span><span class="p">,</span> <span class="n">udf_profiler_cls</span><span class="p">,</span> <span class="n">memory_profiler_cls</span><span class="p">,</span> <span class="n">dump_path</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span> <span class="o">=</span> <span class="kc">None</span> <span class="c1"># type: ignore[assignment]</span>
<span class="c1"># create a signal handler which would be invoked on receiving SIGINT</span>
<span class="k">def</span> <span class="nf">signal_handler</span><span class="p">(</span><span class="n">signal</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">frame</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">NoReturn</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cancelAllJobs</span><span class="p">()</span>
<span class="k">raise</span> <span class="ne">KeyboardInterrupt</span><span class="p">()</span>
<span class="c1"># see http://stackoverflow.com/questions/23206787/</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span>
<span class="n">threading</span><span class="o">.</span><span class="n">current_thread</span><span class="p">(),</span> <span class="n">threading</span><span class="o">.</span><span class="n">_MainThread</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="p">):</span>
<span class="n">signal</span><span class="o">.</span><span class="n">signal</span><span class="p">(</span><span class="n">signal</span><span class="o">.</span><span class="n">SIGINT</span><span class="p">,</span> <span class="n">signal_handler</span><span class="p">)</span>
<span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="k">return</span> <span class="s2">&quot;&lt;SparkContext master=</span><span class="si">{master}</span><span class="s2"> appName=</span><span class="si">{appName}</span><span class="s2">&gt;&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">master</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">master</span><span class="p">,</span>
<span class="n">appName</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">appName</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">_repr_html_</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="k">return</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2"> &lt;div&gt;</span>
<span class="s2"> &lt;p&gt;&lt;b&gt;SparkContext&lt;/b&gt;&lt;/p&gt;</span>
<span class="s2"> &lt;p&gt;&lt;a href=&quot;</span><span class="si">{sc.uiWebUrl}</span><span class="s2">&quot;&gt;Spark UI&lt;/a&gt;&lt;/p&gt;</span>
<span class="s2"> &lt;dl&gt;</span>
<span class="s2"> &lt;dt&gt;Version&lt;/dt&gt;</span>
<span class="s2"> &lt;dd&gt;&lt;code&gt;v</span><span class="si">{sc.version}</span><span class="s2">&lt;/code&gt;&lt;/dd&gt;</span>
<span class="s2"> &lt;dt&gt;Master&lt;/dt&gt;</span>
<span class="s2"> &lt;dd&gt;&lt;code&gt;</span><span class="si">{sc.master}</span><span class="s2">&lt;/code&gt;&lt;/dd&gt;</span>
<span class="s2"> &lt;dt&gt;AppName&lt;/dt&gt;</span>
<span class="s2"> &lt;dd&gt;&lt;code&gt;</span><span class="si">{sc.appName}</span><span class="s2">&lt;/code&gt;&lt;/dd&gt;</span>
<span class="s2"> &lt;/dl&gt;</span>
<span class="s2"> &lt;/div&gt;</span>
<span class="s2"> &quot;&quot;&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">sc</span><span class="o">=</span><span class="bp">self</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">_initialize_context</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">jconf</span><span class="p">:</span> <span class="n">JavaObject</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Initialize SparkContext in function to allow subclass specific initialization</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">JavaSparkContext</span><span class="p">(</span><span class="n">jconf</span><span class="p">)</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">_ensure_initialized</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">instance</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;SparkContext&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">gateway</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaGateway</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Checks whether a SparkContext is initialized or not.</span>
<span class="sd"> Throws error if a SparkContext is already running.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">with</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_gateway</span><span class="p">:</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_gateway</span> <span class="o">=</span> <span class="n">gateway</span> <span class="ow">or</span> <span class="n">launch_gateway</span><span class="p">(</span><span class="n">conf</span><span class="p">)</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_gateway</span><span class="o">.</span><span class="n">jvm</span>
<span class="k">if</span> <span class="n">instance</span><span class="p">:</span>
<span class="k">if</span> <span class="p">(</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span>
<span class="ow">and</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="o">!=</span> <span class="n">instance</span>
<span class="p">):</span>
<span class="n">currentMaster</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span><span class="o">.</span><span class="n">master</span>
<span class="n">currentAppName</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span><span class="o">.</span><span class="n">appName</span>
<span class="n">callsite</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span><span class="o">.</span><span class="n">_callsite</span>
<span class="c1"># Raise error if there is already a running Spark context</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;Cannot run multiple SparkContexts at once; &quot;</span>
<span class="s2">&quot;existing SparkContext(app=</span><span class="si">%s</span><span class="s2">, master=</span><span class="si">%s</span><span class="s2">)&quot;</span>
<span class="s2">&quot; created by </span><span class="si">%s</span><span class="s2"> at </span><span class="si">%s</span><span class="s2">:</span><span class="si">%s</span><span class="s2"> &quot;</span>
<span class="o">%</span> <span class="p">(</span>
<span class="n">currentAppName</span><span class="p">,</span>
<span class="n">currentMaster</span><span class="p">,</span>
<span class="n">callsite</span><span class="o">.</span><span class="n">function</span><span class="p">,</span>
<span class="n">callsite</span><span class="o">.</span><span class="n">file</span><span class="p">,</span>
<span class="n">callsite</span><span class="o">.</span><span class="n">linenum</span><span class="p">,</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="o">=</span> <span class="n">instance</span>
<span class="k">def</span> <span class="nf">__getnewargs__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">NoReturn</span><span class="p">:</span>
<span class="c1"># This method is called when attempting to pickle SparkContext, which is always an error:</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;CONTEXT_ONLY_VALID_ON_DRIVER&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__enter__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkContext&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Enable &#39;with SparkContext(...) as sc: app(sc)&#39; syntax.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span> <span class="fm">__exit__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="nb">type</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Type</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">]],</span>
<span class="n">value</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">],</span>
<span class="n">trace</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TracebackType</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Enable &#39;with SparkContext(...) as sc: app&#39; syntax.</span>
<span class="sd"> Specifically stop the context on exit of the with block.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<div class="viewcode-block" id="SparkContext.getOrCreate"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.getOrCreate.html#pyspark.SparkContext.getOrCreate">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">getOrCreate</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SparkContext&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get or instantiate a :class:`SparkContext` and register it as a singleton object.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> conf : :class:`SparkConf`, optional</span>
<span class="sd"> :class:`SparkConf` that will be used for initialization of the :class:`SparkContext`.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`SparkContext`</span>
<span class="sd"> current :class:`SparkContext`, or a new one if it wasn&#39;t created before the function</span>
<span class="sd"> call.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; SparkContext.getOrCreate()</span>
<span class="sd"> &lt;SparkContext ...&gt;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">with</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="k">if</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">SparkContext</span><span class="p">(</span><span class="n">conf</span><span class="o">=</span><span class="n">conf</span> <span class="ow">or</span> <span class="n">SparkConf</span><span class="p">())</span>
<span class="k">assert</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span></div>
<div class="viewcode-block" id="SparkContext.setLogLevel"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setLogLevel.html#pyspark.SparkContext.setLogLevel">[docs]</a> <span class="k">def</span> <span class="nf">setLogLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">logLevel</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Control our logLevel. This overrides any user-defined log settings.</span>
<span class="sd"> Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> logLevel : str</span>
<span class="sd"> The desired log level as a string.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.setLogLevel(&quot;WARN&quot;) # doctest :+SKIP</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">setLogLevel</span><span class="p">(</span><span class="n">logLevel</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.setSystemProperty"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setSystemProperty.html#pyspark.SparkContext.setSystemProperty">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">setSystemProperty</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set a Java system property, such as `spark.executor.memory`. This must</span>
<span class="sd"> be invoked before instantiating :class:`SparkContext`.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> key : str</span>
<span class="sd"> The key of a new Java system property.</span>
<span class="sd"> value : str</span>
<span class="sd"> The value of a new Java system property.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_ensure_initialized</span><span class="p">()</span>
<span class="k">assert</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">java</span><span class="o">.</span><span class="n">lang</span><span class="o">.</span><span class="n">System</span><span class="o">.</span><span class="n">setProperty</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">version</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> The version of Spark on which this application is running.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; _ = sc.version</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">version</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">applicationId</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A unique identifier for the Spark application.</span>
<span class="sd"> Its format depends on the scheduler implementation.</span>
<span class="sd"> * in case of local spark app something like &#39;local-1433865536131&#39;</span>
<span class="sd"> * in case of YARN something like &#39;application_1433865536131_34483&#39;</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.applicationId # doctest: +ELLIPSIS</span>
<span class="sd"> &#39;local-...&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">applicationId</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">uiWebUrl</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return the URL of the SparkUI instance started by this :class:`SparkContext`</span>
<span class="sd"> .. versionadded:: 2.1.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> When the web ui is disabled, e.g., by ``spark.ui.enabled`` set to ``False``,</span>
<span class="sd"> it returns ``None``.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.uiWebUrl</span>
<span class="sd"> &#39;http://...&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jurl</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">uiWebUrl</span><span class="p">()</span>
<span class="k">return</span> <span class="n">jurl</span><span class="o">.</span><span class="n">get</span><span class="p">()</span> <span class="k">if</span> <span class="n">jurl</span><span class="o">.</span><span class="n">nonEmpty</span><span class="p">()</span> <span class="k">else</span> <span class="kc">None</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">startTime</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return the epoch time when the :class:`SparkContext` was started.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; _ = sc.startTime</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">startTime</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">defaultParallelism</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Default level of parallelism to use when not given by user (e.g. for reduce tasks)</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.defaultParallelism &gt; 0</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">defaultParallelism</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">defaultMinPartitions</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Default min number of partitions for Hadoop RDDs when not given by user</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.defaultMinPartitions &gt; 0</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">defaultMinPartitions</span><span class="p">()</span>
<div class="viewcode-block" id="SparkContext.stop"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.stop.html#pyspark.SparkContext.stop">[docs]</a> <span class="k">def</span> <span class="nf">stop</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Shut down the :class:`SparkContext`.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;_jsc&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">except</span> <span class="n">Py4JError</span><span class="p">:</span>
<span class="c1"># Case: SPARK-18523</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">&quot;Unable to cleanly shutdown Spark JVM process.&quot;</span>
<span class="s2">&quot; It is possible that the process has crashed,&quot;</span>
<span class="s2">&quot; been killed or may also be in a zombie state.&quot;</span><span class="p">,</span>
<span class="ne">RuntimeWarning</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">finally</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;_accumulatorServer&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_accumulatorServer</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_accumulatorServer</span> <span class="o">=</span> <span class="kc">None</span> <span class="c1"># type: ignore[assignment]</span>
<span class="k">with</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> <span class="o">=</span> <span class="kc">None</span></div>
<div class="viewcode-block" id="SparkContext.emptyRDD"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.emptyRDD.html#pyspark.SparkContext.emptyRDD">[docs]</a> <span class="k">def</span> <span class="nf">emptyRDD</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create an :class:`RDD` that has no partitions or elements.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> An empty RDD</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.emptyRDD()</span>
<span class="sd"> EmptyRDD...</span>
<span class="sd"> &gt;&gt;&gt; sc.emptyRDD().count()</span>
<span class="sd"> 0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">emptyRDD</span><span class="p">(),</span> <span class="bp">self</span><span class="p">,</span> <span class="n">NoOpSerializer</span><span class="p">())</span></div>
<div class="viewcode-block" id="SparkContext.range"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.range.html#pyspark.SparkContext.range">[docs]</a> <span class="k">def</span> <span class="nf">range</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">start</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">end</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">step</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="n">numSlices</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">int</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a new RDD of int containing elements from `start` to `end`</span>
<span class="sd"> (exclusive), increased by `step` every element. Can be called the same</span>
<span class="sd"> way as python&#39;s built-in range() function. If called with a single argument,</span>
<span class="sd"> the argument is interpreted as `end`, and `start` is set to 0.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> start : int</span>
<span class="sd"> the start value</span>
<span class="sd"> end : int, optional</span>
<span class="sd"> the end value (exclusive)</span>
<span class="sd"> step : int, optional, default 1</span>
<span class="sd"> the incremental step</span>
<span class="sd"> numSlices : int, optional</span>
<span class="sd"> the number of partitions of the new RDD</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> An RDD of int</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`pyspark.sql.SparkSession.range`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.range(5).collect()</span>
<span class="sd"> [0, 1, 2, 3, 4]</span>
<span class="sd"> &gt;&gt;&gt; sc.range(2, 4).collect()</span>
<span class="sd"> [2, 3]</span>
<span class="sd"> &gt;&gt;&gt; sc.range(1, 7, 2).collect()</span>
<span class="sd"> [1, 3, 5]</span>
<span class="sd"> Generate RDD with a negative step</span>
<span class="sd"> &gt;&gt;&gt; sc.range(5, 0, -1).collect()</span>
<span class="sd"> [5, 4, 3, 2, 1]</span>
<span class="sd"> &gt;&gt;&gt; sc.range(0, 5, -1).collect()</span>
<span class="sd"> []</span>
<span class="sd"> Control the number of partitions</span>
<span class="sd"> &gt;&gt;&gt; sc.range(5, numSlices=1).getNumPartitions()</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; sc.range(5, numSlices=10).getNumPartitions()</span>
<span class="sd"> 10</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">end</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">start</span>
<span class="n">start</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">,</span> <span class="n">step</span><span class="p">),</span> <span class="n">numSlices</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.parallelize"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.parallelize.html#pyspark.SparkContext.parallelize">[docs]</a> <span class="k">def</span> <span class="nf">parallelize</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">numSlices</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Distribute a local Python collection to form an RDD. Using range</span>
<span class="sd"> is recommended if the input represents a range for performance.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> c : :class:`collections.abc.Iterable`</span>
<span class="sd"> iterable collection to distribute</span>
<span class="sd"> numSlices : int, optional</span>
<span class="sd"> the number of partitions of the new RDD</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD representing distributed collection.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect()</span>
<span class="sd"> [[0], [2], [3], [4], [6]]</span>
<span class="sd"> &gt;&gt;&gt; sc.parallelize(range(0, 6, 2), 5).glom().collect()</span>
<span class="sd"> [[], [0], [], [2], [4]]</span>
<span class="sd"> Deal with a list of strings.</span>
<span class="sd"> &gt;&gt;&gt; strings = [&quot;a&quot;, &quot;b&quot;, &quot;c&quot;]</span>
<span class="sd"> &gt;&gt;&gt; sc.parallelize(strings, 2).glom().collect()</span>
<span class="sd"> [[&#39;a&#39;], [&#39;b&#39;, &#39;c&#39;]]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">numSlices</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">numSlices</span><span class="p">)</span> <span class="k">if</span> <span class="n">numSlices</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">defaultParallelism</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="nb">range</span><span class="p">):</span>
<span class="n">size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span>
<span class="k">if</span> <span class="n">size</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">parallelize</span><span class="p">([],</span> <span class="n">numSlices</span><span class="p">)</span>
<span class="n">step</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">if</span> <span class="n">size</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="k">else</span> <span class="mi">1</span> <span class="c1"># type: ignore[index]</span>
<span class="n">start0</span> <span class="o">=</span> <span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># type: ignore[index]</span>
<span class="k">def</span> <span class="nf">getStart</span><span class="p">(</span><span class="n">split</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">numSlices</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">start0</span> <span class="o">+</span> <span class="nb">int</span><span class="p">((</span><span class="n">split</span> <span class="o">*</span> <span class="n">size</span> <span class="o">/</span> <span class="n">numSlices</span><span class="p">))</span> <span class="o">*</span> <span class="n">step</span>
<span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">split</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">Iterable</span><span class="p">:</span>
<span class="c1"># it&#39;s an empty iterator here but we need this line for triggering the</span>
<span class="c1"># logic of signal handling in FramedSerializer.load_stream, for instance,</span>
<span class="c1"># SpecialLengths.END_OF_DATA_SECTION in _read_with_length. Since</span>
<span class="c1"># FramedSerializer.load_stream produces a generator, the control should</span>
<span class="c1"># at least be in that function once. Here we do it by explicitly converting</span>
<span class="c1"># the empty iterator to a list, thus make sure worker reuse takes effect.</span>
<span class="c1"># See more details in SPARK-26549.</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">iterator</span><span class="p">))</span> <span class="o">==</span> <span class="mi">0</span>
<span class="k">return</span> <span class="nb">range</span><span class="p">(</span><span class="n">getStart</span><span class="p">(</span><span class="n">split</span><span class="p">),</span> <span class="n">getStart</span><span class="p">(</span><span class="n">split</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="n">step</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">parallelize</span><span class="p">([],</span> <span class="n">numSlices</span><span class="p">)</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="c1"># Make sure we distribute data evenly if it&#39;s smaller than self.batchSize</span>
<span class="k">if</span> <span class="s2">&quot;__len__&quot;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="nb">dir</span><span class="p">(</span><span class="n">c</span><span class="p">):</span>
<span class="n">c</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="c1"># Make it a list so we can compute its length</span>
<span class="n">batchSize</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span>
<span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="o">//</span> <span class="n">numSlices</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_batchSize</span> <span class="ow">or</span> <span class="mi">1024</span><span class="p">)</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">serializer</span> <span class="o">=</span> <span class="n">BatchedSerializer</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_unbatched_serializer</span><span class="p">,</span> <span class="n">batchSize</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">reader_func</span><span class="p">(</span><span class="n">temp_filename</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">readRDDFromFile</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="n">temp_filename</span><span class="p">,</span> <span class="n">numSlices</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">createRDDServer</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonParallelizeServer</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">numSlices</span><span class="p">)</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_serialize_to_jvm</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">serializer</span><span class="p">,</span> <span class="n">reader_func</span><span class="p">,</span> <span class="n">createRDDServer</span><span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">serializer</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_serialize_to_jvm</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">],</span>
<span class="n">serializer</span><span class="p">:</span> <span class="n">Serializer</span><span class="p">,</span>
<span class="n">reader_func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">,</span>
<span class="n">server_func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Using Py4J to send a large dataset to the jvm is slow, so we use either a file</span>
<span class="sd"> or a socket if we have encryption enabled.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> data</span>
<span class="sd"> object to be serialized</span>
<span class="sd"> serializer : class:`pyspark.serializers.Serializer`</span>
<span class="sd"> reader_func : function</span>
<span class="sd"> A function which takes a filename and reads in the data in the jvm and</span>
<span class="sd"> returns a JavaRDD. Only used when encryption is disabled.</span>
<span class="sd"> server_func : function</span>
<span class="sd"> A function which creates a SocketAuthServer in the JVM to</span>
<span class="sd"> accept the serialized data, for use when encryption is enabled.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_encryption_enabled</span><span class="p">:</span>
<span class="c1"># with encryption, we open a server in java and send the data directly</span>
<span class="n">server</span> <span class="o">=</span> <span class="n">server_func</span><span class="p">()</span>
<span class="p">(</span><span class="n">sock_file</span><span class="p">,</span> <span class="n">_</span><span class="p">)</span> <span class="o">=</span> <span class="n">local_connect_and_auth</span><span class="p">(</span><span class="n">server</span><span class="o">.</span><span class="n">port</span><span class="p">(),</span> <span class="n">server</span><span class="o">.</span><span class="n">secret</span><span class="p">())</span>
<span class="n">chunked_out</span> <span class="o">=</span> <span class="n">ChunkedStream</span><span class="p">(</span><span class="n">sock_file</span><span class="p">,</span> <span class="mi">8192</span><span class="p">)</span>
<span class="n">serializer</span><span class="o">.</span><span class="n">dump_stream</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">chunked_out</span><span class="p">)</span>
<span class="n">chunked_out</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="c1"># this call will block until the server has read all the data and processed it (or</span>
<span class="c1"># throws an exception)</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">server</span><span class="o">.</span><span class="n">getResult</span><span class="p">()</span>
<span class="k">return</span> <span class="n">r</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># without encryption, we serialize to a file, and we read the file in java and</span>
<span class="c1"># parallelize from there.</span>
<span class="n">tempFile</span> <span class="o">=</span> <span class="n">NamedTemporaryFile</span><span class="p">(</span><span class="n">delete</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="nb">dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_temp_dir</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">serializer</span><span class="o">.</span><span class="n">dump_stream</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">tempFile</span><span class="p">)</span>
<span class="k">finally</span><span class="p">:</span>
<span class="n">tempFile</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="k">return</span> <span class="n">reader_func</span><span class="p">(</span><span class="n">tempFile</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
<span class="k">finally</span><span class="p">:</span>
<span class="c1"># we eagerly reads the file so we can delete right after.</span>
<span class="n">os</span><span class="o">.</span><span class="n">unlink</span><span class="p">(</span><span class="n">tempFile</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
<div class="viewcode-block" id="SparkContext.pickleFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.pickleFile.html#pyspark.SparkContext.pickleFile">[docs]</a> <span class="k">def</span> <span class="nf">pickleFile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Load an RDD previously saved using :meth:`RDD.saveAsPickleFile` method.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str</span>
<span class="sd"> directory to the input data files, the path can be comma separated</span>
<span class="sd"> paths as a list of inputs</span>
<span class="sd"> minPartitions : int, optional</span>
<span class="sd"> suggested minimum number of partitions for the resulting RDD</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD representing unpickled data from the file(s).</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsPickleFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # Write a temporary pickled file</span>
<span class="sd"> ... path1 = os.path.join(d, &quot;pickled1&quot;)</span>
<span class="sd"> ... sc.parallelize(range(10)).saveAsPickleFile(path1, 3)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write another temporary pickled file</span>
<span class="sd"> ... path2 = os.path.join(d, &quot;pickled2&quot;)</span>
<span class="sd"> ... sc.parallelize(range(-10, -5)).saveAsPickleFile(path2, 3)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Load picked file</span>
<span class="sd"> ... collected1 = sorted(sc.pickleFile(path1, 3).collect())</span>
<span class="sd"> ... collected2 = sorted(sc.pickleFile(path2, 4).collect())</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Load two picked files together</span>
<span class="sd"> ... collected3 = sorted(sc.pickleFile(&#39;{},{}&#39;.format(path1, path2), 5).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected1</span>
<span class="sd"> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</span>
<span class="sd"> &gt;&gt;&gt; collected2</span>
<span class="sd"> [-10, -9, -8, -7, -6]</span>
<span class="sd"> &gt;&gt;&gt; collected3</span>
<span class="sd"> [-10, -9, -8, -7, -6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">minPartitions</span> <span class="o">=</span> <span class="n">minPartitions</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">defaultMinPartitions</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">objectFile</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">),</span> <span class="bp">self</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.textFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.textFile.html#pyspark.SparkContext.textFile">[docs]</a> <span class="k">def</span> <span class="nf">textFile</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">use_unicode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a text file from HDFS, a local file system (available on all</span>
<span class="sd"> nodes), or any Hadoop-supported file system URI, and return it as an</span>
<span class="sd"> RDD of Strings. The text files must be encoded as UTF-8.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str</span>
<span class="sd"> directory to the input data files, the path can be comma separated</span>
<span class="sd"> paths as a list of inputs</span>
<span class="sd"> minPartitions : int, optional</span>
<span class="sd"> suggested minimum number of partitions for the resulting RDD</span>
<span class="sd"> use_unicode : bool, default True</span>
<span class="sd"> If `use_unicode` is False, the strings will be kept as `str` (encoding</span>
<span class="sd"> as `utf-8`), which is faster and smaller than unicode.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD representing text data from the file(s).</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsTextFile`</span>
<span class="sd"> :meth:`SparkContext.wholeTextFiles`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path1 = os.path.join(d, &quot;text1&quot;)</span>
<span class="sd"> ... path2 = os.path.join(d, &quot;text2&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary text file</span>
<span class="sd"> ... sc.parallelize([&quot;x&quot;, &quot;y&quot;, &quot;z&quot;]).saveAsTextFile(path1)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write another temporary text file</span>
<span class="sd"> ... sc.parallelize([&quot;aa&quot;, &quot;bb&quot;, &quot;cc&quot;]).saveAsTextFile(path2)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Load text file</span>
<span class="sd"> ... collected1 = sorted(sc.textFile(path1, 3).collect())</span>
<span class="sd"> ... collected2 = sorted(sc.textFile(path2, 4).collect())</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Load two text files together</span>
<span class="sd"> ... collected3 = sorted(sc.textFile(&#39;{},{}&#39;.format(path1, path2), 5).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected1</span>
<span class="sd"> [&#39;x&#39;, &#39;y&#39;, &#39;z&#39;]</span>
<span class="sd"> &gt;&gt;&gt; collected2</span>
<span class="sd"> [&#39;aa&#39;, &#39;bb&#39;, &#39;cc&#39;]</span>
<span class="sd"> &gt;&gt;&gt; collected3</span>
<span class="sd"> [&#39;aa&#39;, &#39;bb&#39;, &#39;cc&#39;, &#39;x&#39;, &#39;y&#39;, &#39;z&#39;]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">minPartitions</span> <span class="o">=</span> <span class="n">minPartitions</span> <span class="ow">or</span> <span class="nb">min</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">defaultParallelism</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">textFile</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">),</span> <span class="bp">self</span><span class="p">,</span> <span class="n">UTF8Deserializer</span><span class="p">(</span><span class="n">use_unicode</span><span class="p">))</span></div>
<div class="viewcode-block" id="SparkContext.wholeTextFiles"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.wholeTextFiles.html#pyspark.SparkContext.wholeTextFiles">[docs]</a> <span class="k">def</span> <span class="nf">wholeTextFiles</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">use_unicode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a directory of text files from HDFS, a local file system</span>
<span class="sd"> (available on all nodes), or any Hadoop-supported file system</span>
<span class="sd"> URI. Each file is read as a single record and returned in a</span>
<span class="sd"> key-value pair, where the key is the path of each file, the</span>
<span class="sd"> value is the content of each file.</span>
<span class="sd"> The text files must be encoded as UTF-8.</span>
<span class="sd"> .. versionadded:: 1.0.0</span>
<span class="sd"> For example, if you have the following files:</span>
<span class="sd"> .. code-block:: text</span>
<span class="sd"> hdfs://a-hdfs-path/part-00000</span>
<span class="sd"> hdfs://a-hdfs-path/part-00001</span>
<span class="sd"> ...</span>
<span class="sd"> hdfs://a-hdfs-path/part-nnnnn</span>
<span class="sd"> Do ``rdd = sparkContext.wholeTextFiles(&quot;hdfs://a-hdfs-path&quot;)``,</span>
<span class="sd"> then ``rdd`` contains:</span>
<span class="sd"> .. code-block:: text</span>
<span class="sd"> (a-hdfs-path/part-00000, its content)</span>
<span class="sd"> (a-hdfs-path/part-00001, its content)</span>
<span class="sd"> ...</span>
<span class="sd"> (a-hdfs-path/part-nnnnn, its content)</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> directory to the input data files, the path can be comma separated</span>
<span class="sd"> paths as a list of inputs</span>
<span class="sd"> minPartitions : int, optional</span>
<span class="sd"> suggested minimum number of partitions for the resulting RDD</span>
<span class="sd"> use_unicode : bool, default True</span>
<span class="sd"> If `use_unicode` is False, the strings will be kept as `str` (encoding</span>
<span class="sd"> as `utf-8`), which is faster and smaller than unicode.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD representing path-content pairs from the file(s).</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Small files are preferred, as each file will be loaded fully in memory.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsTextFile`</span>
<span class="sd"> :meth:`SparkContext.textFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # Write a temporary text file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;1.txt&quot;), &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;123&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write another temporary text file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;2.txt&quot;), &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;xyz&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sorted(sc.wholeTextFiles(d).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(&#39;.../1.txt&#39;, &#39;123&#39;), (&#39;.../2.txt&#39;, &#39;xyz&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">minPartitions</span> <span class="o">=</span> <span class="n">minPartitions</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">defaultMinPartitions</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">wholeTextFiles</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">),</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">PairDeserializer</span><span class="p">(</span><span class="n">UTF8Deserializer</span><span class="p">(</span><span class="n">use_unicode</span><span class="p">),</span> <span class="n">UTF8Deserializer</span><span class="p">(</span><span class="n">use_unicode</span><span class="p">)),</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.binaryFiles"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.binaryFiles.html#pyspark.SparkContext.binaryFiles">[docs]</a> <span class="k">def</span> <span class="nf">binaryFiles</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">bytes</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a directory of binary files from HDFS, a local file system</span>
<span class="sd"> (available on all nodes), or any Hadoop-supported file system URI</span>
<span class="sd"> as a byte array. Each file is read as a single record and returned</span>
<span class="sd"> in a key-value pair, where the key is the path of each file, the</span>
<span class="sd"> value is the content of each file.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> directory to the input data files, the path can be comma separated</span>
<span class="sd"> paths as a list of inputs</span>
<span class="sd"> minPartitions : int, optional</span>
<span class="sd"> suggested minimum number of partitions for the resulting RDD</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD representing path-content pairs from the file(s).</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Small files are preferred, large file is also allowable, but may cause bad performance.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.binaryRecords`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # Write a temporary binary file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;1.bin&quot;), &quot;wb&quot;) as f1:</span>
<span class="sd"> ... _ = f1.write(b&quot;binary data I&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write another temporary binary file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;2.bin&quot;), &quot;wb&quot;) as f2:</span>
<span class="sd"> ... _ = f2.write(b&quot;binary data II&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sorted(sc.binaryFiles(d).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(&#39;.../1.bin&#39;, b&#39;binary data I&#39;), (&#39;.../2.bin&#39;, b&#39;binary data II&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">minPartitions</span> <span class="o">=</span> <span class="n">minPartitions</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">defaultMinPartitions</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">binaryFiles</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">minPartitions</span><span class="p">),</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">PairDeserializer</span><span class="p">(</span><span class="n">UTF8Deserializer</span><span class="p">(),</span> <span class="n">NoOpSerializer</span><span class="p">()),</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.binaryRecords"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.binaryRecords.html#pyspark.SparkContext.binaryRecords">[docs]</a> <span class="k">def</span> <span class="nf">binaryRecords</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">recordLength</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">bytes</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Load data from a flat binary file, assuming each record is a set of numbers</span>
<span class="sd"> with the specified numerical format (see ByteBuffer), and the number of</span>
<span class="sd"> bytes per record is constant.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> Directory to the input data files</span>
<span class="sd"> recordLength : int</span>
<span class="sd"> The length at which to split the records</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of data with values, represented as byte arrays</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.binaryFiles`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # Write a temporary file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;1.bin&quot;), &quot;w&quot;) as f:</span>
<span class="sd"> ... for i in range(3):</span>
<span class="sd"> ... _ = f.write(&quot;%04d&quot; % i)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write another file</span>
<span class="sd"> ... with open(os.path.join(d, &quot;2.bin&quot;), &quot;w&quot;) as f:</span>
<span class="sd"> ... for i in [-1, -2, -10]:</span>
<span class="sd"> ... _ = f.write(&quot;%04d&quot; % i)</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sorted(sc.binaryRecords(d, 4).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [b&#39;-001&#39;, b&#39;-002&#39;, b&#39;-010&#39;, b&#39;0000&#39;, b&#39;0001&#39;, b&#39;0002&#39;]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">binaryRecords</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">recordLength</span><span class="p">),</span> <span class="bp">self</span><span class="p">,</span> <span class="n">NoOpSerializer</span><span class="p">())</span></div>
<span class="k">def</span> <span class="nf">_dictToJavaMap</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="n">JavaMap</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">java</span><span class="o">.</span><span class="n">util</span><span class="o">.</span><span class="n">HashMap</span><span class="p">()</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">d</span><span class="p">:</span>
<span class="n">d</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">d</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">jm</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="k">return</span> <span class="n">jm</span>
<div class="viewcode-block" id="SparkContext.sequenceFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.sequenceFile.html#pyspark.SparkContext.sequenceFile">[docs]</a> <span class="k">def</span> <span class="nf">sequenceFile</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">minSplits</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a Hadoop SequenceFile with arbitrary key and value Writable class from HDFS,</span>
<span class="sd"> a local file system (available on all nodes), or any Hadoop-supported file system URI.</span>
<span class="sd"> The mechanism is as follows:</span>
<span class="sd"> 1. A Java RDD is created from the SequenceFile or other InputFormat, and the key</span>
<span class="sd"> and value Writable classes</span>
<span class="sd"> 2. Serialization is attempted via Pickle pickling</span>
<span class="sd"> 3. If this fails, the fallback is to call &#39;toString&#39; on each key and value</span>
<span class="sd"> 4. :class:`CPickleSerializer` is used to deserialize pickled objects on the Python side</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> path to sequencefile</span>
<span class="sd"> keyClass: str, optional</span>
<span class="sd"> fully qualified classname of key Writable class (e.g. &quot;org.apache.hadoop.io.Text&quot;)</span>
<span class="sd"> valueClass : str, optional</span>
<span class="sd"> fully qualified classname of value Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.LongWritable&quot;)</span>
<span class="sd"> keyConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning key WritableConverter</span>
<span class="sd"> valueConverter : str, optional</span>
<span class="sd"> fully qualifiedname of a function returning value WritableConverter</span>
<span class="sd"> minSplits : int, optional</span>
<span class="sd"> minimum splits in dataset (default min(2, sc.defaultParallelism))</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. (default 0, choose batchSize automatically)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of tuples of key and corresponding value</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsSequenceFile`</span>
<span class="sd"> :meth:`RDD.saveAsNewAPIHadoopFile`</span>
<span class="sd"> :meth:`RDD.saveAsHadoopFile`</span>
<span class="sd"> :meth:`SparkContext.newAPIHadoopFile`</span>
<span class="sd"> :meth:`SparkContext.hadoopFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> Set the class of output format</span>
<span class="sd"> &gt;&gt;&gt; output_format_class = &quot;org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;hadoop_file&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary Hadoop file</span>
<span class="sd"> ... rdd = sc.parallelize([(1, {3.0: &quot;bb&quot;}), (2, {1.0: &quot;aa&quot;}), (3, {2.0: &quot;dd&quot;})])</span>
<span class="sd"> ... rdd.saveAsNewAPIHadoopFile(path, output_format_class)</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sorted(sc.sequenceFile(path).collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(1, {3.0: &#39;bb&#39;}), (2, {1.0: &#39;aa&#39;}), (3, {2.0: &#39;dd&#39;})]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">minSplits</span> <span class="o">=</span> <span class="n">minSplits</span> <span class="ow">or</span> <span class="nb">min</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">defaultParallelism</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">sequenceFile</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="n">path</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">,</span>
<span class="n">minSplits</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.newAPIHadoopFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.newAPIHadoopFile.html#pyspark.SparkContext.newAPIHadoopFile">[docs]</a> <span class="k">def</span> <span class="nf">newAPIHadoopFile</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a &#39;new API&#39; Hadoop InputFormat with arbitrary key and value class from HDFS,</span>
<span class="sd"> a local file system (available on all nodes), or any Hadoop-supported file system URI.</span>
<span class="sd"> The mechanism is the same as for meth:`SparkContext.sequenceFile`.</span>
<span class="sd"> A Hadoop configuration can be passed in as a Python dict. This will be converted into a</span>
<span class="sd"> Configuration in Java</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> path to Hadoop file</span>
<span class="sd"> inputFormatClass : str</span>
<span class="sd"> fully qualified classname of Hadoop InputFormat</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.mapreduce.lib.input.TextInputFormat&quot;)</span>
<span class="sd"> keyClass : str</span>
<span class="sd"> fully qualified classname of key Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.Text&quot;)</span>
<span class="sd"> valueClass : str</span>
<span class="sd"> fully qualified classname of value Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.LongWritable&quot;)</span>
<span class="sd"> keyConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning key WritableConverter</span>
<span class="sd"> None by default</span>
<span class="sd"> valueConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning value WritableConverter</span>
<span class="sd"> None by default</span>
<span class="sd"> conf : dict, optional</span>
<span class="sd"> Hadoop configuration, passed in as a dict</span>
<span class="sd"> None by default</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. (default 0, choose batchSize automatically)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of tuples of key and corresponding value</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsSequenceFile`</span>
<span class="sd"> :meth:`RDD.saveAsNewAPIHadoopFile`</span>
<span class="sd"> :meth:`RDD.saveAsHadoopFile`</span>
<span class="sd"> :meth:`SparkContext.sequenceFile`</span>
<span class="sd"> :meth:`SparkContext.hadoopFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> Set the related classes</span>
<span class="sd"> &gt;&gt;&gt; output_format_class = &quot;org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; input_format_class = &quot;org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; key_class = &quot;org.apache.hadoop.io.IntWritable&quot;</span>
<span class="sd"> &gt;&gt;&gt; value_class = &quot;org.apache.hadoop.io.Text&quot;</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;new_hadoop_file&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary Hadoop file</span>
<span class="sd"> ... rdd = sc.parallelize([(1, &quot;&quot;), (1, &quot;a&quot;), (3, &quot;x&quot;)])</span>
<span class="sd"> ... rdd.saveAsNewAPIHadoopFile(path, output_format_class, key_class, value_class)</span>
<span class="sd"> ...</span>
<span class="sd"> ... loaded = sc.newAPIHadoopFile(path, input_format_class, key_class, value_class)</span>
<span class="sd"> ... collected = sorted(loaded.collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(1, &#39;&#39;), (1, &#39;a&#39;), (3, &#39;x&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jconf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dictToJavaMap</span><span class="p">(</span><span class="n">conf</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">newAPIHadoopFile</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="n">path</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">,</span>
<span class="n">jconf</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.newAPIHadoopRDD"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.newAPIHadoopRDD.html#pyspark.SparkContext.newAPIHadoopRDD">[docs]</a> <span class="k">def</span> <span class="nf">newAPIHadoopRDD</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read a &#39;new API&#39; Hadoop InputFormat with arbitrary key and value class, from an arbitrary</span>
<span class="sd"> Hadoop configuration, which is passed in as a Python dict.</span>
<span class="sd"> This will be converted into a Configuration in Java.</span>
<span class="sd"> The mechanism is the same as for meth:`SparkContext.sequenceFile`.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> inputFormatClass : str</span>
<span class="sd"> fully qualified classname of Hadoop InputFormat</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.mapreduce.lib.input.TextInputFormat&quot;)</span>
<span class="sd"> keyClass : str</span>
<span class="sd"> fully qualified classname of key Writable class (e.g. &quot;org.apache.hadoop.io.Text&quot;)</span>
<span class="sd"> valueClass : str</span>
<span class="sd"> fully qualified classname of value Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.LongWritable&quot;)</span>
<span class="sd"> keyConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning key WritableConverter</span>
<span class="sd"> (None by default)</span>
<span class="sd"> valueConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning value WritableConverter</span>
<span class="sd"> (None by default)</span>
<span class="sd"> conf : dict, optional</span>
<span class="sd"> Hadoop configuration, passed in as a dict (None by default)</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. (default 0, choose batchSize automatically)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of tuples of key and corresponding value</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsNewAPIHadoopDataset`</span>
<span class="sd"> :meth:`RDD.saveAsHadoopDataset`</span>
<span class="sd"> :meth:`SparkContext.hadoopRDD`</span>
<span class="sd"> :meth:`SparkContext.hadoopFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> Set the related classes</span>
<span class="sd"> &gt;&gt;&gt; output_format_class = &quot;org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; input_format_class = &quot;org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; key_class = &quot;org.apache.hadoop.io.IntWritable&quot;</span>
<span class="sd"> &gt;&gt;&gt; value_class = &quot;org.apache.hadoop.io.Text&quot;</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;new_hadoop_file&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Create the conf for writing</span>
<span class="sd"> ... write_conf = {</span>
<span class="sd"> ... &quot;mapreduce.job.outputformat.class&quot;: (output_format_class),</span>
<span class="sd"> ... &quot;mapreduce.job.output.key.class&quot;: key_class,</span>
<span class="sd"> ... &quot;mapreduce.job.output.value.class&quot;: value_class,</span>
<span class="sd"> ... &quot;mapreduce.output.fileoutputformat.outputdir&quot;: path,</span>
<span class="sd"> ... }</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary Hadoop file</span>
<span class="sd"> ... rdd = sc.parallelize([(1, &quot;&quot;), (1, &quot;a&quot;), (3, &quot;x&quot;)])</span>
<span class="sd"> ... rdd.saveAsNewAPIHadoopDataset(conf=write_conf)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Create the conf for reading</span>
<span class="sd"> ... read_conf = {&quot;mapreduce.input.fileinputformat.inputdir&quot;: path}</span>
<span class="sd"> ...</span>
<span class="sd"> ... loaded = sc.newAPIHadoopRDD(input_format_class,</span>
<span class="sd"> ... key_class, value_class, conf=read_conf)</span>
<span class="sd"> ... collected = sorted(loaded.collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(1, &#39;&#39;), (1, &#39;a&#39;), (3, &#39;x&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jconf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dictToJavaMap</span><span class="p">(</span><span class="n">conf</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">newAPIHadoopRDD</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">,</span>
<span class="n">jconf</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.hadoopFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.hadoopFile.html#pyspark.SparkContext.hadoopFile">[docs]</a> <span class="k">def</span> <span class="nf">hadoopFile</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read an &#39;old&#39; Hadoop InputFormat with arbitrary key and value class from HDFS,</span>
<span class="sd"> a local file system (available on all nodes), or any Hadoop-supported file system URI.</span>
<span class="sd"> The mechanism is the same as for meth:`SparkContext.sequenceFile`.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> A Hadoop configuration can be passed in as a Python dict. This will be converted into a</span>
<span class="sd"> Configuration in Java.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> path to Hadoop file</span>
<span class="sd"> inputFormatClass : str</span>
<span class="sd"> fully qualified classname of Hadoop InputFormat</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.mapreduce.lib.input.TextInputFormat&quot;)</span>
<span class="sd"> keyClass : str</span>
<span class="sd"> fully qualified classname of key Writable class (e.g. &quot;org.apache.hadoop.io.Text&quot;)</span>
<span class="sd"> valueClass : str</span>
<span class="sd"> fully qualified classname of value Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.LongWritable&quot;)</span>
<span class="sd"> keyConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning key WritableConverter</span>
<span class="sd"> valueConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning value WritableConverter</span>
<span class="sd"> conf : dict, optional</span>
<span class="sd"> Hadoop configuration, passed in as a dict</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. (default 0, choose batchSize automatically)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of tuples of key and corresponding value</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsSequenceFile`</span>
<span class="sd"> :meth:`RDD.saveAsNewAPIHadoopFile`</span>
<span class="sd"> :meth:`RDD.saveAsHadoopFile`</span>
<span class="sd"> :meth:`SparkContext.newAPIHadoopFile`</span>
<span class="sd"> :meth:`SparkContext.hadoopRDD`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> Set the related classes</span>
<span class="sd"> &gt;&gt;&gt; output_format_class = &quot;org.apache.hadoop.mapred.TextOutputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; input_format_class = &quot;org.apache.hadoop.mapred.TextInputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; key_class = &quot;org.apache.hadoop.io.IntWritable&quot;</span>
<span class="sd"> &gt;&gt;&gt; value_class = &quot;org.apache.hadoop.io.Text&quot;</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;old_hadoop_file&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary Hadoop file</span>
<span class="sd"> ... rdd = sc.parallelize([(1, &quot;&quot;), (1, &quot;a&quot;), (3, &quot;x&quot;)])</span>
<span class="sd"> ... rdd.saveAsHadoopFile(path, output_format_class, key_class, value_class)</span>
<span class="sd"> ...</span>
<span class="sd"> ... loaded = sc.hadoopFile(path, input_format_class, key_class, value_class)</span>
<span class="sd"> ... collected = sorted(loaded.collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(0, &#39;1\\t&#39;), (0, &#39;1\\ta&#39;), (0, &#39;3\\tx&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jconf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dictToJavaMap</span><span class="p">(</span><span class="n">conf</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">hadoopFile</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="n">path</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">,</span>
<span class="n">jconf</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.hadoopRDD"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.hadoopRDD.html#pyspark.SparkContext.hadoopRDD">[docs]</a> <span class="k">def</span> <span class="nf">hadoopRDD</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read an &#39;old&#39; Hadoop InputFormat with arbitrary key and value class, from an arbitrary</span>
<span class="sd"> Hadoop configuration, which is passed in as a Python dict.</span>
<span class="sd"> This will be converted into a Configuration in Java.</span>
<span class="sd"> The mechanism is the same as for meth:`SparkContext.sequenceFile`.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> inputFormatClass : str</span>
<span class="sd"> fully qualified classname of Hadoop InputFormat</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.mapreduce.lib.input.TextInputFormat&quot;)</span>
<span class="sd"> keyClass : str</span>
<span class="sd"> fully qualified classname of key Writable class (e.g. &quot;org.apache.hadoop.io.Text&quot;)</span>
<span class="sd"> valueClass : str</span>
<span class="sd"> fully qualified classname of value Writable class</span>
<span class="sd"> (e.g. &quot;org.apache.hadoop.io.LongWritable&quot;)</span>
<span class="sd"> keyConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning key WritableConverter</span>
<span class="sd"> valueConverter : str, optional</span>
<span class="sd"> fully qualified name of a function returning value WritableConverter</span>
<span class="sd"> conf : dict, optional</span>
<span class="sd"> Hadoop configuration, passed in as a dict</span>
<span class="sd"> batchSize : int, optional, default 0</span>
<span class="sd"> The number of Python objects represented as a single</span>
<span class="sd"> Java object. (default 0, choose batchSize automatically)</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`RDD`</span>
<span class="sd"> RDD of tuples of key and corresponding value</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.saveAsNewAPIHadoopDataset`</span>
<span class="sd"> :meth:`RDD.saveAsHadoopDataset`</span>
<span class="sd"> :meth:`SparkContext.newAPIHadoopRDD`</span>
<span class="sd"> :meth:`SparkContext.hadoopFile`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> Set the related classes</span>
<span class="sd"> &gt;&gt;&gt; output_format_class = &quot;org.apache.hadoop.mapred.TextOutputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; input_format_class = &quot;org.apache.hadoop.mapred.TextInputFormat&quot;</span>
<span class="sd"> &gt;&gt;&gt; key_class = &quot;org.apache.hadoop.io.IntWritable&quot;</span>
<span class="sd"> &gt;&gt;&gt; value_class = &quot;org.apache.hadoop.io.Text&quot;</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;old_hadoop_file&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Create the conf for writing</span>
<span class="sd"> ... write_conf = {</span>
<span class="sd"> ... &quot;mapred.output.format.class&quot;: output_format_class,</span>
<span class="sd"> ... &quot;mapreduce.job.output.key.class&quot;: key_class,</span>
<span class="sd"> ... &quot;mapreduce.job.output.value.class&quot;: value_class,</span>
<span class="sd"> ... &quot;mapreduce.output.fileoutputformat.outputdir&quot;: path,</span>
<span class="sd"> ... }</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Write a temporary Hadoop file</span>
<span class="sd"> ... rdd = sc.parallelize([(1, &quot;&quot;), (1, &quot;a&quot;), (3, &quot;x&quot;)])</span>
<span class="sd"> ... rdd.saveAsHadoopDataset(conf=write_conf)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # Create the conf for reading</span>
<span class="sd"> ... read_conf = {&quot;mapreduce.input.fileinputformat.inputdir&quot;: path}</span>
<span class="sd"> ...</span>
<span class="sd"> ... loaded = sc.hadoopRDD(input_format_class, key_class, value_class, conf=read_conf)</span>
<span class="sd"> ... collected = sorted(loaded.collect())</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [(0, &#39;1\\t&#39;), (0, &#39;1\\ta&#39;), (0, &#39;3\\tx&#39;)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jconf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dictToJavaMap</span><span class="p">(</span><span class="n">conf</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">hadoopRDD</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="n">inputFormatClass</span><span class="p">,</span>
<span class="n">keyClass</span><span class="p">,</span>
<span class="n">valueClass</span><span class="p">,</span>
<span class="n">keyConverter</span><span class="p">,</span>
<span class="n">valueConverter</span><span class="p">,</span>
<span class="n">jconf</span><span class="p">,</span>
<span class="n">batchSize</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_checkpointFile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">input_deserializer</span><span class="p">:</span> <span class="n">PairDeserializer</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">:</span>
<span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">checkpointFile</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">input_deserializer</span><span class="p">)</span>
<div class="viewcode-block" id="SparkContext.union"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.union.html#pyspark.SparkContext.union">[docs]</a> <span class="k">def</span> <span class="nf">union</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">rdds</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Build the union of a list of RDDs.</span>
<span class="sd"> This supports unions() of RDDs with different serialized formats,</span>
<span class="sd"> although this forces them to be reserialized using the default</span>
<span class="sd"> serializer:</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`RDD.union`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... # generate a text RDD</span>
<span class="sd"> ... with open(os.path.join(d, &quot;union-text.txt&quot;), &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;Hello&quot;)</span>
<span class="sd"> ... text_rdd = sc.textFile(d)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # generate another RDD</span>
<span class="sd"> ... parallelized = sc.parallelize([&quot;World!&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> ... unioned = sorted(sc.union([text_rdd, parallelized]).collect())</span>
<span class="sd"> &gt;&gt;&gt; unioned</span>
<span class="sd"> [&#39;Hello&#39;, &#39;World!&#39;]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">first_jrdd_deserializer</span> <span class="o">=</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd_deserializer</span>
<span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="o">!=</span> <span class="n">first_jrdd_deserializer</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">rdds</span><span class="p">):</span>
<span class="n">rdds</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">_reserialize</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">rdds</span><span class="p">]</span>
<span class="n">gw</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_gateway</span>
<span class="k">assert</span> <span class="n">gw</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jvm</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span>
<span class="k">assert</span> <span class="n">jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">jrdd_cls</span> <span class="o">=</span> <span class="n">jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">java</span><span class="o">.</span><span class="n">JavaRDD</span>
<span class="n">jpair_rdd_cls</span> <span class="o">=</span> <span class="n">jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">java</span><span class="o">.</span><span class="n">JavaPairRDD</span>
<span class="n">jdouble_rdd_cls</span> <span class="o">=</span> <span class="n">jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">java</span><span class="o">.</span><span class="n">JavaDoubleRDD</span>
<span class="k">if</span> <span class="n">is_instance_of</span><span class="p">(</span><span class="n">gw</span><span class="p">,</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">,</span> <span class="n">jrdd_cls</span><span class="p">):</span>
<span class="bp">cls</span> <span class="o">=</span> <span class="n">jrdd_cls</span>
<span class="k">elif</span> <span class="n">is_instance_of</span><span class="p">(</span><span class="n">gw</span><span class="p">,</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">,</span> <span class="n">jpair_rdd_cls</span><span class="p">):</span>
<span class="bp">cls</span> <span class="o">=</span> <span class="n">jpair_rdd_cls</span>
<span class="k">elif</span> <span class="n">is_instance_of</span><span class="p">(</span><span class="n">gw</span><span class="p">,</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">,</span> <span class="n">jdouble_rdd_cls</span><span class="p">):</span>
<span class="bp">cls</span> <span class="o">=</span> <span class="n">jdouble_rdd_cls</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cls_name</span> <span class="o">=</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd</span><span class="o">.</span><span class="n">getClass</span><span class="p">()</span><span class="o">.</span><span class="n">getCanonicalName</span><span class="p">()</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;Unsupported Java RDD class </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">cls_name</span><span class="p">)</span>
<span class="n">jrdds</span> <span class="o">=</span> <span class="n">gw</span><span class="o">.</span><span class="n">new_array</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">rdds</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">rdds</span><span class="p">)):</span>
<span class="n">jrdds</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">rdds</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd</span>
<span class="k">return</span> <span class="n">RDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">jrdds</span><span class="p">),</span> <span class="bp">self</span><span class="p">,</span> <span class="n">rdds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.broadcast"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.broadcast.html#pyspark.SparkContext.broadcast">[docs]</a> <span class="k">def</span> <span class="nf">broadcast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">T</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Broadcast[T]&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Broadcast a read-only variable to the cluster, returning a :class:`Broadcast`</span>
<span class="sd"> object for reading it in distributed functions. The variable will</span>
<span class="sd"> be sent to each cluster only once.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> value : T</span>
<span class="sd"> value to broadcast to the Spark nodes</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Broadcast`</span>
<span class="sd"> :class:`Broadcast` object, a read-only variable cached on each machine</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; mapping = {1: 10001, 2: 10002}</span>
<span class="sd"> &gt;&gt;&gt; bc = sc.broadcast(mapping)</span>
<span class="sd"> &gt;&gt;&gt; rdd = sc.range(5)</span>
<span class="sd"> &gt;&gt;&gt; rdd2 = rdd.map(lambda i: bc.value[i] if i in bc.value else -1)</span>
<span class="sd"> &gt;&gt;&gt; rdd2.collect()</span>
<span class="sd"> [-1, 10001, 10002, -1, -1]</span>
<span class="sd"> &gt;&gt;&gt; bc.destroy()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">Broadcast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_pickled_broadcast_vars</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.accumulator"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.accumulator.html#pyspark.SparkContext.accumulator">[docs]</a> <span class="k">def</span> <span class="nf">accumulator</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">T</span><span class="p">,</span> <span class="n">accum_param</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;AccumulatorParam[T]&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Accumulator[T]&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create an :class:`Accumulator` with the given initial value, using a given</span>
<span class="sd"> :class:`AccumulatorParam` helper object to define how to add values of the</span>
<span class="sd"> data type if provided. Default AccumulatorParams are used for integers</span>
<span class="sd"> and floating-point numbers if you do not provide one. For other types,</span>
<span class="sd"> a custom AccumulatorParam can be used.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> value : T</span>
<span class="sd"> initialized value</span>
<span class="sd"> accum_param : :class:`pyspark.AccumulatorParam`, optional</span>
<span class="sd"> helper object to define how to add values</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`Accumulator`</span>
<span class="sd"> `Accumulator` object, a shared variable that can be accumulated</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; acc = sc.accumulator(9)</span>
<span class="sd"> &gt;&gt;&gt; acc.value</span>
<span class="sd"> 9</span>
<span class="sd"> &gt;&gt;&gt; acc += 1</span>
<span class="sd"> &gt;&gt;&gt; acc.value</span>
<span class="sd"> 10</span>
<span class="sd"> Accumulator object can be accumulated in RDD operations:</span>
<span class="sd"> &gt;&gt;&gt; rdd = sc.range(5)</span>
<span class="sd"> &gt;&gt;&gt; def f(x):</span>
<span class="sd"> ... global acc</span>
<span class="sd"> ... acc += 1</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; rdd.foreach(f)</span>
<span class="sd"> &gt;&gt;&gt; acc.value</span>
<span class="sd"> 15</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">accum_param</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="n">accum_param</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="s2">&quot;AccumulatorParam[T]&quot;</span><span class="p">,</span> <span class="n">accumulators</span><span class="o">.</span><span class="n">INT_ACCUMULATOR_PARAM</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="nb">float</span><span class="p">):</span>
<span class="n">accum_param</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="s2">&quot;AccumulatorParam[T]&quot;</span><span class="p">,</span> <span class="n">accumulators</span><span class="o">.</span><span class="n">FLOAT_ACCUMULATOR_PARAM</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="nb">complex</span><span class="p">):</span>
<span class="n">accum_param</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="s2">&quot;AccumulatorParam[T]&quot;</span><span class="p">,</span> <span class="n">accumulators</span><span class="o">.</span><span class="n">COMPLEX_ACCUMULATOR_PARAM</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;No default accumulator param for type </span><span class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">value</span><span class="p">))</span>
<span class="n">SparkContext</span><span class="o">.</span><span class="n">_next_accum_id</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">Accumulator</span><span class="p">(</span><span class="n">SparkContext</span><span class="o">.</span><span class="n">_next_accum_id</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span> <span class="n">accum_param</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.addFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.addFile.html#pyspark.SparkContext.addFile">[docs]</a> <span class="k">def</span> <span class="nf">addFile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">recursive</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Add a file to be downloaded with this Spark job on every node.</span>
<span class="sd"> The `path` passed can be either a local file, a file in HDFS</span>
<span class="sd"> (or other Hadoop-supported filesystems), or an HTTP, HTTPS or</span>
<span class="sd"> FTP URI.</span>
<span class="sd"> To access the file in Spark jobs, use :meth:`SparkFiles.get` with the</span>
<span class="sd"> filename to find its download location.</span>
<span class="sd"> A directory can be given if the recursive option is set to True.</span>
<span class="sd"> Currently directories are only supported for Hadoop-supported filesystems.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> can be either a local file, a file in HDFS (or other Hadoop-supported</span>
<span class="sd"> filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs,</span>
<span class="sd"> use :meth:`SparkFiles.get` to find its download location.</span>
<span class="sd"> recursive : bool, default False</span>
<span class="sd"> whether to recursively add files in the input directory</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.listFiles`</span>
<span class="sd"> :meth:`SparkContext.addPyFile`</span>
<span class="sd"> :meth:`SparkFiles.get`</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> A path can be added only once. Subsequent additions of the same path are ignored.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; from pyspark import SparkFiles</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path1 = os.path.join(d, &quot;test1.txt&quot;)</span>
<span class="sd"> ... with open(path1, &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;100&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... path2 = os.path.join(d, &quot;test2.txt&quot;)</span>
<span class="sd"> ... with open(path2, &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;200&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... sc.addFile(path1)</span>
<span class="sd"> ... file_list1 = sorted(sc.listFiles)</span>
<span class="sd"> ...</span>
<span class="sd"> ... sc.addFile(path2)</span>
<span class="sd"> ... file_list2 = sorted(sc.listFiles)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # add path2 twice, this addition will be ignored</span>
<span class="sd"> ... sc.addFile(path2)</span>
<span class="sd"> ... file_list3 = sorted(sc.listFiles)</span>
<span class="sd"> ...</span>
<span class="sd"> ... def func(iterator):</span>
<span class="sd"> ... with open(SparkFiles.get(&quot;test1.txt&quot;)) as f:</span>
<span class="sd"> ... mul = int(f.readline())</span>
<span class="sd"> ... return [x * mul for x in iterator]</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sc.parallelize([1, 2, 3, 4]).mapPartitions(func).collect()</span>
<span class="sd"> &gt;&gt;&gt; file_list1</span>
<span class="sd"> [&#39;file:/.../test1.txt&#39;]</span>
<span class="sd"> &gt;&gt;&gt; file_list2</span>
<span class="sd"> [&#39;file:/.../test1.txt&#39;, &#39;file:/.../test2.txt&#39;]</span>
<span class="sd"> &gt;&gt;&gt; file_list3</span>
<span class="sd"> [&#39;file:/.../test1.txt&#39;, &#39;file:/.../test2.txt&#39;]</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [100, 200, 300, 400]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">addFile</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">recursive</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">listFiles</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns a list of file paths that are added to resources.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addFile`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">scala</span><span class="o">.</span><span class="n">collection</span><span class="o">.</span><span class="n">JavaConverters</span><span class="o">.</span><span class="n">seqAsJavaList</span><span class="p">(</span> <span class="c1"># type: ignore[union-attr]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">listFiles</span><span class="p">()</span>
<span class="p">)</span>
<span class="p">)</span>
<div class="viewcode-block" id="SparkContext.addPyFile"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.addPyFile.html#pyspark.SparkContext.addPyFile">[docs]</a> <span class="k">def</span> <span class="nf">addPyFile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Add a .py or .zip dependency for all tasks to be executed on this</span>
<span class="sd"> SparkContext in the future. The `path` passed can be either a local</span>
<span class="sd"> file, a file in HDFS (or other Hadoop-supported filesystems), or an</span>
<span class="sd"> HTTP, HTTPS or FTP URI.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> can be either a .py file or .zip dependency.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addFile`</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> A path can be added only once. Subsequent additions of the same path are ignored.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">addFile</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="p">(</span><span class="n">dirname</span><span class="p">,</span> <span class="n">filename</span><span class="p">)</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">path</span><span class="p">)</span> <span class="c1"># dirname may be directory or HDFS/S3 prefix</span>
<span class="k">if</span> <span class="n">filename</span><span class="p">[</span><span class="o">-</span><span class="mi">4</span><span class="p">:]</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">PACKAGE_EXTENSIONS</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_python_includes</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_python_includes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">filename</span><span class="p">)</span>
<span class="c1"># for tests in local mode</span>
<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">SparkFiles</span><span class="o">.</span><span class="n">getRootDirectory</span><span class="p">(),</span> <span class="n">filename</span><span class="p">))</span>
<span class="n">importlib</span><span class="o">.</span><span class="n">invalidate_caches</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkContext.addArchive"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.addArchive.html#pyspark.SparkContext.addArchive">[docs]</a> <span class="k">def</span> <span class="nf">addArchive</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Add an archive to be downloaded with this Spark job on every node.</span>
<span class="sd"> The `path` passed can be either a local file, a file in HDFS</span>
<span class="sd"> (or other Hadoop-supported filesystems), or an HTTP, HTTPS or</span>
<span class="sd"> FTP URI.</span>
<span class="sd"> To access the file in Spark jobs, use :meth:`SparkFiles.get` with the</span>
<span class="sd"> filename to find its download/unpacked location. The given path should</span>
<span class="sd"> be one of .zip, .tar, .tar.gz, .tgz and .jar.</span>
<span class="sd"> .. versionadded:: 3.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> path : str</span>
<span class="sd"> can be either a local file, a file in HDFS (or other Hadoop-supported</span>
<span class="sd"> filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs,</span>
<span class="sd"> use :meth:`SparkFiles.get` to find its download location.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.listArchives`</span>
<span class="sd"> :meth:`SparkFiles.get`</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> A path can be added only once. Subsequent additions of the same path are ignored.</span>
<span class="sd"> This API is experimental.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> Creates a zipped file that contains a text file written &#39;100&#39;.</span>
<span class="sd"> &gt;&gt;&gt; import os</span>
<span class="sd"> &gt;&gt;&gt; import tempfile</span>
<span class="sd"> &gt;&gt;&gt; import zipfile</span>
<span class="sd"> &gt;&gt;&gt; from pyspark import SparkFiles</span>
<span class="sd"> &gt;&gt;&gt; with tempfile.TemporaryDirectory() as d:</span>
<span class="sd"> ... path = os.path.join(d, &quot;test.txt&quot;)</span>
<span class="sd"> ... with open(path, &quot;w&quot;) as f:</span>
<span class="sd"> ... _ = f.write(&quot;100&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> ... zip_path1 = os.path.join(d, &quot;test1.zip&quot;)</span>
<span class="sd"> ... with zipfile.ZipFile(zip_path1, &quot;w&quot;, zipfile.ZIP_DEFLATED) as z:</span>
<span class="sd"> ... z.write(path, os.path.basename(path))</span>
<span class="sd"> ...</span>
<span class="sd"> ... zip_path2 = os.path.join(d, &quot;test2.zip&quot;)</span>
<span class="sd"> ... with zipfile.ZipFile(zip_path2, &quot;w&quot;, zipfile.ZIP_DEFLATED) as z:</span>
<span class="sd"> ... z.write(path, os.path.basename(path))</span>
<span class="sd"> ...</span>
<span class="sd"> ... sc.addArchive(zip_path1)</span>
<span class="sd"> ... arch_list1 = sorted(sc.listArchives)</span>
<span class="sd"> ...</span>
<span class="sd"> ... sc.addArchive(zip_path2)</span>
<span class="sd"> ... arch_list2 = sorted(sc.listArchives)</span>
<span class="sd"> ...</span>
<span class="sd"> ... # add zip_path2 twice, this addition will be ignored</span>
<span class="sd"> ... sc.addArchive(zip_path2)</span>
<span class="sd"> ... arch_list3 = sorted(sc.listArchives)</span>
<span class="sd"> ...</span>
<span class="sd"> ... def func(iterator):</span>
<span class="sd"> ... with open(&quot;%s/test.txt&quot; % SparkFiles.get(&quot;test1.zip&quot;)) as f:</span>
<span class="sd"> ... mul = int(f.readline())</span>
<span class="sd"> ... return [x * mul for x in iterator]</span>
<span class="sd"> ...</span>
<span class="sd"> ... collected = sc.parallelize([1, 2, 3, 4]).mapPartitions(func).collect()</span>
<span class="sd"> &gt;&gt;&gt; arch_list1</span>
<span class="sd"> [&#39;file:/.../test1.zip&#39;]</span>
<span class="sd"> &gt;&gt;&gt; arch_list2</span>
<span class="sd"> [&#39;file:/.../test1.zip&#39;, &#39;file:/.../test2.zip&#39;]</span>
<span class="sd"> &gt;&gt;&gt; arch_list3</span>
<span class="sd"> [&#39;file:/.../test1.zip&#39;, &#39;file:/.../test2.zip&#39;]</span>
<span class="sd"> &gt;&gt;&gt; collected</span>
<span class="sd"> [100, 200, 300, 400]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">addArchive</span><span class="p">(</span><span class="n">path</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">listArchives</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Returns a list of archive paths that are added to resources.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addArchive`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">scala</span><span class="o">.</span><span class="n">collection</span><span class="o">.</span><span class="n">JavaConverters</span><span class="o">.</span><span class="n">seqAsJavaList</span><span class="p">(</span> <span class="c1"># type: ignore[union-attr]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">listArchives</span><span class="p">()</span>
<span class="p">)</span>
<span class="p">)</span>
<div class="viewcode-block" id="SparkContext.setCheckpointDir"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setCheckpointDir.html#pyspark.SparkContext.setCheckpointDir">[docs]</a> <span class="k">def</span> <span class="nf">setCheckpointDir</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dirName</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set the directory under which RDDs are going to be checkpointed. The</span>
<span class="sd"> directory must be an HDFS path if running on a cluster.</span>
<span class="sd"> .. versionadded:: 0.7.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dirName : str</span>
<span class="sd"> path to the directory where checkpoint files will be stored</span>
<span class="sd"> (must be HDFS path if running in cluster)</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.getCheckpointDir`</span>
<span class="sd"> :meth:`RDD.checkpoint`</span>
<span class="sd"> :meth:`RDD.getCheckpointFile`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">setCheckpointDir</span><span class="p">(</span><span class="n">dirName</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.getCheckpointDir"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.getCheckpointDir.html#pyspark.SparkContext.getCheckpointDir">[docs]</a> <span class="k">def</span> <span class="nf">getCheckpointDir</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return the directory where RDDs are checkpointed. Returns None if no</span>
<span class="sd"> checkpoint directory has been set.</span>
<span class="sd"> .. versionadded:: 3.1.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.setCheckpointDir`</span>
<span class="sd"> :meth:`RDD.checkpoint`</span>
<span class="sd"> :meth:`RDD.getCheckpointFile`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">getCheckpointDir</span><span class="p">()</span><span class="o">.</span><span class="n">isEmpty</span><span class="p">():</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">getCheckpointDir</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span>
<span class="k">return</span> <span class="kc">None</span></div>
<span class="k">def</span> <span class="nf">_getJavaStorageLevel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">storageLevel</span><span class="p">:</span> <span class="n">StorageLevel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a Java StorageLevel based on a pyspark.StorageLevel.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">storageLevel</span><span class="p">,</span> <span class="n">StorageLevel</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;storageLevel must be of type pyspark.StorageLevel&quot;</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">newStorageLevel</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">storage</span><span class="o">.</span><span class="n">StorageLevel</span>
<span class="k">return</span> <span class="n">newStorageLevel</span><span class="p">(</span>
<span class="n">storageLevel</span><span class="o">.</span><span class="n">useDisk</span><span class="p">,</span>
<span class="n">storageLevel</span><span class="o">.</span><span class="n">useMemory</span><span class="p">,</span>
<span class="n">storageLevel</span><span class="o">.</span><span class="n">useOffHeap</span><span class="p">,</span>
<span class="n">storageLevel</span><span class="o">.</span><span class="n">deserialized</span><span class="p">,</span>
<span class="n">storageLevel</span><span class="o">.</span><span class="n">replication</span><span class="p">,</span>
<span class="p">)</span>
<div class="viewcode-block" id="SparkContext.setJobGroup"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setJobGroup.html#pyspark.SparkContext.setJobGroup">[docs]</a> <span class="k">def</span> <span class="nf">setJobGroup</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">groupId</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">description</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">interruptOnCancel</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Assigns a group ID to all the jobs started by this thread until the group ID is set to a</span>
<span class="sd"> different value or cleared.</span>
<span class="sd"> Often, a unit of execution in an application consists of multiple Spark actions or jobs.</span>
<span class="sd"> Application programmers can use this method to group all those jobs together and give a</span>
<span class="sd"> group description. Once set, the Spark web UI will associate such jobs with this group.</span>
<span class="sd"> The application can use :meth:`SparkContext.cancelJobGroup` to cancel all</span>
<span class="sd"> running jobs in this group.</span>
<span class="sd"> .. versionadded:: 1.0.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> groupId : str</span>
<span class="sd"> The group ID to assign.</span>
<span class="sd"> description : str</span>
<span class="sd"> The description to set for the job group.</span>
<span class="sd"> interruptOnCancel : bool, optional, default False</span>
<span class="sd"> whether to interrupt jobs on job cancellation.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> If interruptOnCancel is set to true for the job group, then job cancellation will result</span>
<span class="sd"> in Thread.interrupt() being called on the job&#39;s executor threads. This is useful to help</span>
<span class="sd"> ensure that the tasks are actually stopped in a timely manner, but is off by default due</span>
<span class="sd"> to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead.</span>
<span class="sd"> If you run jobs in parallel, use :class:`pyspark.InheritableThread` for thread</span>
<span class="sd"> local inheritance.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.cancelJobGroup`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import threading</span>
<span class="sd"> &gt;&gt;&gt; from time import sleep</span>
<span class="sd"> &gt;&gt;&gt; from pyspark import InheritableThread</span>
<span class="sd"> &gt;&gt;&gt; result = &quot;Not Set&quot;</span>
<span class="sd"> &gt;&gt;&gt; lock = threading.Lock()</span>
<span class="sd"> &gt;&gt;&gt; def map_func(x):</span>
<span class="sd"> ... sleep(100)</span>
<span class="sd"> ... raise RuntimeError(&quot;Task should have been cancelled&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; def start_job(x):</span>
<span class="sd"> ... global result</span>
<span class="sd"> ... try:</span>
<span class="sd"> ... sc.setJobGroup(&quot;job_to_cancel&quot;, &quot;some description&quot;)</span>
<span class="sd"> ... result = sc.parallelize(range(x)).map(map_func).collect()</span>
<span class="sd"> ... except Exception as e:</span>
<span class="sd"> ... result = &quot;Cancelled&quot;</span>
<span class="sd"> ... lock.release()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; def stop_job():</span>
<span class="sd"> ... sleep(5)</span>
<span class="sd"> ... sc.cancelJobGroup(&quot;job_to_cancel&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; suppress = lock.acquire()</span>
<span class="sd"> &gt;&gt;&gt; suppress = InheritableThread(target=start_job, args=(10,)).start()</span>
<span class="sd"> &gt;&gt;&gt; suppress = InheritableThread(target=stop_job).start()</span>
<span class="sd"> &gt;&gt;&gt; suppress = lock.acquire()</span>
<span class="sd"> &gt;&gt;&gt; print(result)</span>
<span class="sd"> Cancelled</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">setJobGroup</span><span class="p">(</span><span class="n">groupId</span><span class="p">,</span> <span class="n">description</span><span class="p">,</span> <span class="n">interruptOnCancel</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.setInterruptOnCancel"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setInterruptOnCancel.html#pyspark.SparkContext.setInterruptOnCancel">[docs]</a> <span class="k">def</span> <span class="nf">setInterruptOnCancel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">interruptOnCancel</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set the behavior of job cancellation from jobs started in this thread.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> interruptOnCancel : bool</span>
<span class="sd"> If true, then job cancellation will result in ``Thread.interrupt()``</span>
<span class="sd"> being called on the job&#39;s executor threads. This is useful to help ensure that</span>
<span class="sd"> the tasks are actually stopped in a timely manner, but is off by default due to</span>
<span class="sd"> HDFS-1208, where HDFS may respond to ``Thread.interrupt()`` by marking nodes as dead.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addJobTag`</span>
<span class="sd"> :meth:`SparkContext.removeJobTag`</span>
<span class="sd"> :meth:`SparkContext.cancelAllJobs`</span>
<span class="sd"> :meth:`SparkContext.cancelJobGroup`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">setInterruptOnCancel</span><span class="p">(</span><span class="n">interruptOnCancel</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.addJobTag"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.addJobTag.html#pyspark.SparkContext.addJobTag">[docs]</a> <span class="k">def</span> <span class="nf">addJobTag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tag</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Add a tag to be assigned to all the jobs started by this thread.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> tag : str</span>
<span class="sd"> The tag to be added. Cannot contain &#39;,&#39; (comma) character.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.removeJobTag`</span>
<span class="sd"> :meth:`SparkContext.getJobTags`</span>
<span class="sd"> :meth:`SparkContext.clearJobTags`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> :meth:`SparkContext.setInterruptOnCancel`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import threading</span>
<span class="sd"> &gt;&gt;&gt; from time import sleep</span>
<span class="sd"> &gt;&gt;&gt; from pyspark import InheritableThread</span>
<span class="sd"> &gt;&gt;&gt; sc.setInterruptOnCancel(interruptOnCancel=True)</span>
<span class="sd"> &gt;&gt;&gt; result = &quot;Not Set&quot;</span>
<span class="sd"> &gt;&gt;&gt; lock = threading.Lock()</span>
<span class="sd"> &gt;&gt;&gt; def map_func(x):</span>
<span class="sd"> ... sleep(100)</span>
<span class="sd"> ... raise RuntimeError(&quot;Task should have been cancelled&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; def start_job(x):</span>
<span class="sd"> ... global result</span>
<span class="sd"> ... try:</span>
<span class="sd"> ... sc.addJobTag(&quot;job_to_cancel&quot;)</span>
<span class="sd"> ... result = sc.parallelize(range(x)).map(map_func).collect()</span>
<span class="sd"> ... except Exception as e:</span>
<span class="sd"> ... result = &quot;Cancelled&quot;</span>
<span class="sd"> ... lock.release()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; def stop_job():</span>
<span class="sd"> ... sleep(5)</span>
<span class="sd"> ... sc.cancelJobsWithTag(&quot;job_to_cancel&quot;)</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; suppress = lock.acquire()</span>
<span class="sd"> &gt;&gt;&gt; suppress = InheritableThread(target=start_job, args=(10,)).start()</span>
<span class="sd"> &gt;&gt;&gt; suppress = InheritableThread(target=stop_job).start()</span>
<span class="sd"> &gt;&gt;&gt; suppress = lock.acquire()</span>
<span class="sd"> &gt;&gt;&gt; print(result)</span>
<span class="sd"> Cancelled</span>
<span class="sd"> &gt;&gt;&gt; sc.clearJobTags()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">addJobTag</span><span class="p">(</span><span class="n">tag</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.removeJobTag"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.removeJobTag.html#pyspark.SparkContext.removeJobTag">[docs]</a> <span class="k">def</span> <span class="nf">removeJobTag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tag</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Remove a tag previously added to be assigned to all the jobs started by this thread.</span>
<span class="sd"> Noop if such a tag was not added earlier.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> tag : str</span>
<span class="sd"> The tag to be removed. Cannot contain &#39;,&#39; (comma) character.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addJobTag`</span>
<span class="sd"> :meth:`SparkContext.getJobTags`</span>
<span class="sd"> :meth:`SparkContext.clearJobTags`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> :meth:`SparkContext.setInterruptOnCancel`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.addJobTag(&quot;job_to_cancel1&quot;)</span>
<span class="sd"> &gt;&gt;&gt; sc.addJobTag(&quot;job_to_cancel2&quot;)</span>
<span class="sd"> &gt;&gt;&gt; sc.getJobTags()</span>
<span class="sd"> {&#39;job_to_cancel1&#39;, &#39;job_to_cancel2&#39;}</span>
<span class="sd"> &gt;&gt;&gt; sc.removeJobTag(&quot;job_to_cancel1&quot;)</span>
<span class="sd"> &gt;&gt;&gt; sc.getJobTags()</span>
<span class="sd"> {&#39;job_to_cancel2&#39;}</span>
<span class="sd"> &gt;&gt;&gt; sc.clearJobTags()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">removeJobTag</span><span class="p">(</span><span class="n">tag</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.getJobTags"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.getJobTags.html#pyspark.SparkContext.getJobTags">[docs]</a> <span class="k">def</span> <span class="nf">getJobTags</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Set</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get the tags that are currently set to be assigned to all the jobs started by this thread.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> set of str</span>
<span class="sd"> the tags that are currently set to be assigned to all the jobs started by this thread.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addJobTag`</span>
<span class="sd"> :meth:`SparkContext.removeJobTag`</span>
<span class="sd"> :meth:`SparkContext.clearJobTags`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> :meth:`SparkContext.setInterruptOnCancel`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.addJobTag(&quot;job_to_cancel&quot;)</span>
<span class="sd"> &gt;&gt;&gt; sc.getJobTags()</span>
<span class="sd"> {&#39;job_to_cancel&#39;}</span>
<span class="sd"> &gt;&gt;&gt; sc.clearJobTags()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">getJobTags</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkContext.clearJobTags"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.clearJobTags.html#pyspark.SparkContext.clearJobTags">[docs]</a> <span class="k">def</span> <span class="nf">clearJobTags</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Clear the current thread&#39;s job tags.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addJobTag`</span>
<span class="sd"> :meth:`SparkContext.removeJobTag`</span>
<span class="sd"> :meth:`SparkContext.getJobTags`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> :meth:`SparkContext.setInterruptOnCancel`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; sc.addJobTag(&quot;job_to_cancel&quot;)</span>
<span class="sd"> &gt;&gt;&gt; sc.clearJobTags()</span>
<span class="sd"> &gt;&gt;&gt; sc.getJobTags()</span>
<span class="sd"> set()</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">clearJobTags</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkContext.setLocalProperty"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setLocalProperty.html#pyspark.SparkContext.setLocalProperty">[docs]</a> <span class="k">def</span> <span class="nf">setLocalProperty</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set a local property that affects jobs submitted from this thread, such as the</span>
<span class="sd"> Spark fair scheduler pool.</span>
<span class="sd"> .. versionadded:: 1.0.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> key : str</span>
<span class="sd"> The key of the local property to set.</span>
<span class="sd"> value : str</span>
<span class="sd"> The value of the local property to set.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.getLocalProperty`</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> If you run jobs in parallel, use :class:`pyspark.InheritableThread` for thread</span>
<span class="sd"> local inheritance.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">setLocalProperty</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.getLocalProperty"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.getLocalProperty.html#pyspark.SparkContext.getLocalProperty">[docs]</a> <span class="k">def</span> <span class="nf">getLocalProperty</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get a local property set in this thread, or null if it is missing. See</span>
<span class="sd"> :meth:`setLocalProperty`.</span>
<span class="sd"> .. versionadded:: 1.0.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.setLocalProperty`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">getLocalProperty</span><span class="p">(</span><span class="n">key</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.setJobDescription"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.setJobDescription.html#pyspark.SparkContext.setJobDescription">[docs]</a> <span class="k">def</span> <span class="nf">setJobDescription</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set a human readable description of the current job.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> value : str</span>
<span class="sd"> The job description to set.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> If you run jobs in parallel, use :class:`pyspark.InheritableThread` for thread</span>
<span class="sd"> local inheritance.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">setJobDescription</span><span class="p">(</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.sparkUser"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.sparkUser.html#pyspark.SparkContext.sparkUser">[docs]</a> <span class="k">def</span> <span class="nf">sparkUser</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get SPARK_USER for user who is running SparkContext.</span>
<span class="sd"> .. versionadded:: 1.0.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">sparkUser</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkContext.cancelJobGroup"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.cancelJobGroup.html#pyspark.SparkContext.cancelJobGroup">[docs]</a> <span class="k">def</span> <span class="nf">cancelJobGroup</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">groupId</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Cancel active jobs for the specified group. See :meth:`SparkContext.setJobGroup`.</span>
<span class="sd"> for more information.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> groupId : str</span>
<span class="sd"> The group ID to cancel the job.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.setJobGroup`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">cancelJobGroup</span><span class="p">(</span><span class="n">groupId</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.cancelJobsWithTag"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.cancelJobsWithTag.html#pyspark.SparkContext.cancelJobsWithTag">[docs]</a> <span class="k">def</span> <span class="nf">cancelJobsWithTag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tag</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Cancel active jobs that have the specified tag. See</span>
<span class="sd"> :meth:`SparkContext.addJobTag`.</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> tag : str</span>
<span class="sd"> The tag to be cancelled. Cannot contain &#39;,&#39; (comma) character.</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.addJobTag`</span>
<span class="sd"> :meth:`SparkContext.removeJobTag`</span>
<span class="sd"> :meth:`SparkContext.getJobTags`</span>
<span class="sd"> :meth:`SparkContext.clearJobTags`</span>
<span class="sd"> :meth:`SparkContext.setInterruptOnCancel`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">cancelJobsWithTag</span><span class="p">(</span><span class="n">tag</span><span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.cancelAllJobs"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.cancelAllJobs.html#pyspark.SparkContext.cancelAllJobs">[docs]</a> <span class="k">def</span> <span class="nf">cancelAllJobs</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Cancel all jobs that have been scheduled or are running.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.cancelJobGroup`</span>
<span class="sd"> :meth:`SparkContext.cancelJobsWithTag`</span>
<span class="sd"> :meth:`SparkContext.runJob`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">()</span><span class="o">.</span><span class="n">cancelAllJobs</span><span class="p">()</span></div>
<div class="viewcode-block" id="SparkContext.statusTracker"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.statusTracker.html#pyspark.SparkContext.statusTracker">[docs]</a> <span class="k">def</span> <span class="nf">statusTracker</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">StatusTracker</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return :class:`StatusTracker` object</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">StatusTracker</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">statusTracker</span><span class="p">())</span></div>
<div class="viewcode-block" id="SparkContext.runJob"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.runJob.html#pyspark.SparkContext.runJob">[docs]</a> <span class="k">def</span> <span class="nf">runJob</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span>
<span class="n">partitionFunc</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span>
<span class="n">partitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Sequence</span><span class="p">[</span><span class="nb">int</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">allowLocal</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="n">U</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Executes the given partitionFunc on the specified set of partitions,</span>
<span class="sd"> returning the result as an array of elements.</span>
<span class="sd"> If &#39;partitions&#39; is not specified, this will run over all partitions.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> rdd : :class:`RDD`</span>
<span class="sd"> target RDD to run tasks on</span>
<span class="sd"> partitionFunc : function</span>
<span class="sd"> a function to run on each partition of the RDD</span>
<span class="sd"> partitions : list, optional</span>
<span class="sd"> set of partitions to run on; some jobs may not want to compute on all</span>
<span class="sd"> partitions of the target RDD, e.g. for operations like `first`</span>
<span class="sd"> allowLocal : bool, default False</span>
<span class="sd"> this parameter takes no effect</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> list</span>
<span class="sd"> results of specified partitions</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.cancelAllJobs`</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; myRDD = sc.parallelize(range(6), 3)</span>
<span class="sd"> &gt;&gt;&gt; sc.runJob(myRDD, lambda part: [x * x for x in part])</span>
<span class="sd"> [0, 1, 4, 9, 16, 25]</span>
<span class="sd"> &gt;&gt;&gt; myRDD = sc.parallelize(range(6), 3)</span>
<span class="sd"> &gt;&gt;&gt; sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True)</span>
<span class="sd"> [0, 1, 16, 25]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">partitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">partitions</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">rdd</span><span class="o">.</span><span class="n">_jrdd</span><span class="o">.</span><span class="n">partitions</span><span class="p">()</span><span class="o">.</span><span class="n">size</span><span class="p">()))</span>
<span class="c1"># Implementation note: This is implemented as a mapPartitions followed</span>
<span class="c1"># by runJob() in order to avoid having to pass a Python lambda into</span>
<span class="c1"># SparkContext#runJob.</span>
<span class="n">mappedRDD</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">partitionFunc</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">sock_info</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonRDD</span><span class="o">.</span><span class="n">runJob</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">mappedRDD</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">,</span> <span class="n">partitions</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="n">_load_from_socket</span><span class="p">(</span><span class="n">sock_info</span><span class="p">,</span> <span class="n">mappedRDD</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">))</span></div>
<div class="viewcode-block" id="SparkContext.show_profiles"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.show_profiles.html#pyspark.SparkContext.show_profiles">[docs]</a> <span class="k">def</span> <span class="nf">show_profiles</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Print the profile stats to stdout</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.dump_profiles`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">show_profiles</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INCORRECT_CONF_FOR_PROFILE&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.dump_profiles"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.dump_profiles.html#pyspark.SparkContext.dump_profiles">[docs]</a> <span class="k">def</span> <span class="nf">dump_profiles</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Dump the profile stats into directory `path`</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> :meth:`SparkContext.show_profiles`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">dump_profiles</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INCORRECT_CONF_FOR_PROFILE&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="SparkContext.getConf"><a class="viewcode-back" href="../../reference/api/pyspark.SparkContext.getConf.html#pyspark.SparkContext.getConf">[docs]</a> <span class="k">def</span> <span class="nf">getConf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">SparkConf</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return a copy of this SparkContext&#39;s configuration :class:`SparkConf`.</span>
<span class="sd"> .. versionadded:: 2.1.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span>
<span class="n">conf</span><span class="o">.</span><span class="n">setAll</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">getAll</span><span class="p">())</span>
<span class="k">return</span> <span class="n">conf</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">resources</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">ResourceInformation</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return the resource information of this :class:`SparkContext`.</span>
<span class="sd"> A resource could be a GPU, FPGA, etc.</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">resources</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">jresources</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">resources</span><span class="p">()</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">jresources</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">jresources</span><span class="p">[</span><span class="n">x</span><span class="p">]</span><span class="o">.</span><span class="n">name</span><span class="p">()</span>
<span class="n">jaddresses</span> <span class="o">=</span> <span class="n">jresources</span><span class="p">[</span><span class="n">x</span><span class="p">]</span><span class="o">.</span><span class="n">addresses</span><span class="p">()</span>
<span class="n">addrs</span> <span class="o">=</span> <span class="p">[</span><span class="n">addr</span> <span class="k">for</span> <span class="n">addr</span> <span class="ow">in</span> <span class="n">jaddresses</span><span class="p">]</span>
<span class="n">resources</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">ResourceInformation</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">addrs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">resources</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_assert_on_driver</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Called to ensure that SparkContext is created only on the Driver.</span>
<span class="sd"> Throws an exception if a SparkContext is about to be created in executors.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">TaskContext</span><span class="o">.</span><span class="n">get</span><span class="p">()</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkRuntimeError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;CONTEXT_ONLY_VALID_ON_DRIVER&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{},</span>
<span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkConf</span>
<span class="n">globs</span> <span class="o">=</span> <span class="nb">globals</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="s2">&quot;spark.ui.enabled&quot;</span><span class="p">,</span> <span class="s2">&quot;True&quot;</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">,</span> <span class="s2">&quot;context tests&quot;</span><span class="p">,</span> <span class="n">conf</span><span class="o">=</span><span class="n">conf</span><span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>