blob: 10a224f5ce352169953d6f008c4a905950181093 [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Running Spark on YARN - Spark 3.1.1 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" />
<link rel="stylesheet" href="css/docsearch.css">
<!-- Google analytics script -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-32518208-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<nav class="navbar fixed-top navbar-expand-md navbar-light bg-light" id="topbar">
<div class="container">
<div class="navbar-header">
<div class="navbar-brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">3.1.1</span>
</div>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarCollapse" aria-controls="navbarCollapse"
aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarCollapse">
<ul class="navbar-nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a>
<div class="dropdown-menu" aria-labelledby="navbarQuickStart">
<a class="dropdown-item" href="quick-start.html">Quick Start</a>
<a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a>
<a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a>
<a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a>
<a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a>
<a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a>
<a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a>
<a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a>
<a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a>
<div class="dropdown-menu" aria-labelledby="navbarAPIDocs">
<a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a>
<a class="dropdown-item" href="api/java/index.html">Java</a>
<a class="dropdown-item" href="api/python/index.html">Python</a>
<a class="dropdown-item" href="api/R/index.html">R</a>
<a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a>
<div class="dropdown-menu" aria-labelledby="navbarDeploying">
<a class="dropdown-item" href="cluster-overview.html">Overview</a>
<a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a>
<a class="dropdown-item" href="running-on-mesos.html">Mesos</a>
<a class="dropdown-item" href="running-on-yarn.html">YARN</a>
<a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarMore">
<a class="dropdown-item" href="configuration.html">Configuration</a>
<a class="dropdown-item" href="monitoring.html">Monitoring</a>
<a class="dropdown-item" href="tuning.html">Tuning Guide</a>
<a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a>
<a class="dropdown-item" href="security.html">Security</a>
<a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a>
<a class="dropdown-item" href="migration-guide.html">Migration Guide</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="building-spark.html">Building Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a>
</div>
</li>
<li class="nav-item">
<input type="text" id="docsearch-input" placeholder="Search the docs…">
</li>
</ul>
<!--<span class="navbar-text navbar-right"><span class="version-text">v3.1.1</span></span>-->
</div>
</div>
</nav>
<div class="container-wrapper">
<div class="content mr-3" id="content">
<h1 class="title">Running Spark on YARN</h1>
<ul id="markdown-toc">
<li><a href="#security" id="markdown-toc-security">Security</a></li>
<li><a href="#launching-spark-on-yarn" id="markdown-toc-launching-spark-on-yarn">Launching Spark on YARN</a> <ul>
<li><a href="#adding-other-jars" id="markdown-toc-adding-other-jars">Adding Other JARs</a></li>
</ul>
</li>
<li><a href="#preparations" id="markdown-toc-preparations">Preparations</a></li>
<li><a href="#configuration" id="markdown-toc-configuration">Configuration</a></li>
<li><a href="#debugging-your-application" id="markdown-toc-debugging-your-application">Debugging your Application</a> <ul>
<li><a href="#spark-properties" id="markdown-toc-spark-properties">Spark Properties</a></li>
<li><a href="#available-patterns-for-shs-custom-executor-log-url" id="markdown-toc-available-patterns-for-shs-custom-executor-log-url">Available patterns for SHS custom executor log URL</a></li>
</ul>
</li>
<li><a href="#resource-allocation-and-configuration-overview" id="markdown-toc-resource-allocation-and-configuration-overview">Resource Allocation and Configuration Overview</a></li>
<li><a href="#stage-level-scheduling-overview" id="markdown-toc-stage-level-scheduling-overview">Stage Level Scheduling Overview</a></li>
<li><a href="#important-notes" id="markdown-toc-important-notes">Important notes</a></li>
<li><a href="#kerberos" id="markdown-toc-kerberos">Kerberos</a> <ul>
<li><a href="#yarn-specific-kerberos-configuration" id="markdown-toc-yarn-specific-kerberos-configuration">YARN-specific Kerberos Configuration</a></li>
<li><a href="#troubleshooting-kerberos" id="markdown-toc-troubleshooting-kerberos">Troubleshooting Kerberos</a></li>
</ul>
</li>
<li><a href="#configuring-the-external-shuffle-service" id="markdown-toc-configuring-the-external-shuffle-service">Configuring the External Shuffle Service</a></li>
<li><a href="#launching-your-application-with-apache-oozie" id="markdown-toc-launching-your-application-with-apache-oozie">Launching your application with Apache Oozie</a></li>
<li><a href="#using-the-spark-history-server-to-replace-the-spark-web-ui" id="markdown-toc-using-the-spark-history-server-to-replace-the-spark-web-ui">Using the Spark History Server to replace the Spark Web UI</a></li>
</ul>
<p>Support for running on <a href="http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html">YARN (Hadoop
NextGen)</a>
was added to Spark in version 0.6.0, and improved in subsequent releases.</p>
<h1 id="security">Security</h1>
<p>Security in Spark is OFF by default. This could mean you are vulnerable to attack by default.
Please see <a href="security.html">Spark Security</a> and the specific security sections in this doc before running Spark.</p>
<h1 id="launching-spark-on-yarn">Launching Spark on YARN</h1>
<p>Ensure that <code class="language-plaintext highlighter-rouge">HADOOP_CONF_DIR</code> or <code class="language-plaintext highlighter-rouge">YARN_CONF_DIR</code> points to the directory which contains the (client side) configuration files for the Hadoop cluster.
These configs are used to write to HDFS and connect to the YARN ResourceManager. The
configuration contained in this directory will be distributed to the YARN cluster so that all
containers used by the application use the same configuration. If the configuration references
Java system properties or environment variables not managed by YARN, they should also be set in the
Spark application&#8217;s configuration (driver, executors, and the AM when running in client mode).</p>
<p>There are two deploy modes that can be used to launch Spark applications on YARN. In <code class="language-plaintext highlighter-rouge">cluster</code> mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In <code class="language-plaintext highlighter-rouge">client</code> mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.</p>
<p>Unlike other cluster managers supported by Spark in which the master&#8217;s address is specified in the <code class="language-plaintext highlighter-rouge">--master</code>
parameter, in YARN mode the ResourceManager&#8217;s address is picked up from the Hadoop configuration.
Thus, the <code class="language-plaintext highlighter-rouge">--master</code> parameter is <code class="language-plaintext highlighter-rouge">yarn</code>.</p>
<p>To launch a Spark application in <code class="language-plaintext highlighter-rouge">cluster</code> mode:</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>$ ./bin/spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster [options] &lt;app jar&gt; [app options]
</code></pre></div></div>
<p>For example:</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
--queue thequeue \
examples/jars/spark-examples*.jar \
10
</code></pre></div></div>
<p>The above starts a YARN client program which starts the default Application Master. Then SparkPi will be run as a child thread of Application Master. The client will periodically poll the Application Master for status updates and display them in the console. The client will exit once your application has finished running. Refer to the <a href="#debugging-your-application">Debugging your Application</a> section below for how to see driver and executor logs.</p>
<p>To launch a Spark application in <code class="language-plaintext highlighter-rouge">client</code> mode, do the same, but replace <code class="language-plaintext highlighter-rouge">cluster</code> with <code class="language-plaintext highlighter-rouge">client</code>. The following shows how you can run <code class="language-plaintext highlighter-rouge">spark-shell</code> in <code class="language-plaintext highlighter-rouge">client</code> mode:</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>$ ./bin/spark-shell --master yarn --deploy-mode client
</code></pre></div></div>
<h2 id="adding-other-jars">Adding Other JARs</h2>
<p>In <code class="language-plaintext highlighter-rouge">cluster</code> mode, the driver runs on a different machine than the client, so <code class="language-plaintext highlighter-rouge">SparkContext.addJar</code> won&#8217;t work out of the box with files that are local to the client. To make files on the client available to <code class="language-plaintext highlighter-rouge">SparkContext.addJar</code>, include them with the <code class="language-plaintext highlighter-rouge">--jars</code> option in the launch command.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>$ ./bin/spark-submit --class my.main.Class \
--master yarn \
--deploy-mode cluster \
--jars my-other-jar.jar,my-other-other-jar.jar \
my-main-jar.jar \
app_arg1 app_arg2
</code></pre></div></div>
<h1 id="preparations">Preparations</h1>
<p>Running Spark on YARN requires a binary distribution of Spark which is built with YARN support.
Binary distributions can be downloaded from the <a href="https://spark.apache.org/downloads.html">downloads page</a> of the project website.
There are two variants of Spark binary distributions you can download. One is pre-built with a certain
version of Apache Hadoop; this Spark distribution contains built-in Hadoop runtime, so we call it <code class="language-plaintext highlighter-rouge">with-hadoop</code> Spark
distribution. The other one is pre-built with user-provided Hadoop; since this Spark distribution
doesn&#8217;t contain a built-in Hadoop runtime, it&#8217;s smaller, but users have to provide a Hadoop installation separately.
We call this variant <code class="language-plaintext highlighter-rouge">no-hadoop</code> Spark distribution. For <code class="language-plaintext highlighter-rouge">with-hadoop</code> Spark distribution, since
it contains a built-in Hadoop runtime already, by default, when a job is submitted to Hadoop Yarn cluster, to prevent jar conflict, it will not
populate Yarn&#8217;s classpath into Spark. To override this behavior, you can set <code>spark.yarn.populateHadoopClasspath=true</code>.
For <code class="language-plaintext highlighter-rouge">no-hadoop</code> Spark distribution, Spark will populate Yarn&#8217;s classpath by default in order to get Hadoop runtime. For <code class="language-plaintext highlighter-rouge">with-hadoop</code> Spark distribution,
if your application depends on certain library that is only available in the cluster, you can try to populate the Yarn classpath by setting
the property mentioned above. If you run into jar conflict issue by doing so, you will need to turn it off and include this library
in your application jar.</p>
<p>To build Spark yourself, refer to <a href="building-spark.html">Building Spark</a>.</p>
<p>To make Spark runtime jars accessible from YARN side, you can specify <code class="language-plaintext highlighter-rouge">spark.yarn.archive</code> or <code class="language-plaintext highlighter-rouge">spark.yarn.jars</code>. For details please refer to <a href="#spark-properties">Spark Properties</a>. If neither <code class="language-plaintext highlighter-rouge">spark.yarn.archive</code> nor <code class="language-plaintext highlighter-rouge">spark.yarn.jars</code> is specified, Spark will create a zip file with all jars under <code class="language-plaintext highlighter-rouge">$SPARK_HOME/jars</code> and upload it to the distributed cache.</p>
<h1 id="configuration">Configuration</h1>
<p>Most of the configs are the same for Spark on YARN as for other deployment modes. See the <a href="configuration.html">configuration page</a> for more information on those. These are configs that are specific to Spark on YARN.</p>
<h1 id="debugging-your-application">Debugging your Application</h1>
<p>In YARN terminology, executors and application masters run inside &#8220;containers&#8221;. YARN has two modes for handling container logs after an application has completed. If log aggregation is turned on (with the <code class="language-plaintext highlighter-rouge">yarn.log-aggregation-enable</code> config), container logs are copied to HDFS and deleted on the local machine. These logs can be viewed from anywhere on the cluster with the <code class="language-plaintext highlighter-rouge">yarn logs</code> command.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>yarn logs -applicationId &lt;app ID&gt;
</code></pre></div></div>
<p>will print out the contents of all log files from all containers from the given application. You can also view the container log files directly in HDFS using the HDFS shell or API. The directory where they are located can be found by looking at your YARN configs (<code class="language-plaintext highlighter-rouge">yarn.nodemanager.remote-app-log-dir</code> and <code class="language-plaintext highlighter-rouge">yarn.nodemanager.remote-app-log-dir-suffix</code>). The logs are also available on the Spark Web UI under the Executors Tab. You need to have both the Spark history server and the MapReduce history server running and configure <code class="language-plaintext highlighter-rouge">yarn.log.server.url</code> in <code class="language-plaintext highlighter-rouge">yarn-site.xml</code> properly. The log URL on the Spark history server UI will redirect you to the MapReduce history server to show the aggregated logs.</p>
<p>When log aggregation isn&#8217;t turned on, logs are retained locally on each machine under <code class="language-plaintext highlighter-rouge">YARN_APP_LOGS_DIR</code>, which is usually configured to <code class="language-plaintext highlighter-rouge">/tmp/logs</code> or <code class="language-plaintext highlighter-rouge">$HADOOP_HOME/logs/userlogs</code> depending on the Hadoop version and installation. Viewing logs for a container requires going to the host that contains them and looking in this directory. Subdirectories organize log files by application ID and container ID. The logs are also available on the Spark Web UI under the Executors Tab and doesn&#8217;t require running the MapReduce history server.</p>
<p>To review per-container launch environment, increase <code class="language-plaintext highlighter-rouge">yarn.nodemanager.delete.debug-delay-sec</code> to a
large value (e.g. <code class="language-plaintext highlighter-rouge">36000</code>), and then access the application cache through <code class="language-plaintext highlighter-rouge">yarn.nodemanager.local-dirs</code>
on the nodes on which containers are launched. This directory contains the launch script, JARs, and
all environment variables used for launching each container. This process is useful for debugging
classpath problems in particular. (Note that enabling this requires admin privileges on cluster
settings and a restart of all node managers. Thus, this is not applicable to hosted clusters).</p>
<p>To use a custom log4j configuration for the application master or executors, here are the options:</p>
<ul>
<li>upload a custom <code class="language-plaintext highlighter-rouge">log4j.properties</code> using <code class="language-plaintext highlighter-rouge">spark-submit</code>, by adding it to the <code class="language-plaintext highlighter-rouge">--files</code> list of files
to be uploaded with the application.</li>
<li>add <code class="language-plaintext highlighter-rouge">-Dlog4j.configuration=&lt;location of configuration file&gt;</code> to <code class="language-plaintext highlighter-rouge">spark.driver.extraJavaOptions</code>
(for the driver) or <code class="language-plaintext highlighter-rouge">spark.executor.extraJavaOptions</code> (for executors). Note that if using a file,
the <code class="language-plaintext highlighter-rouge">file:</code> protocol should be explicitly provided, and the file needs to exist locally on all
the nodes.</li>
<li>update the <code class="language-plaintext highlighter-rouge">$SPARK_CONF_DIR/log4j.properties</code> file and it will be automatically uploaded along
with the other configurations. Note that other 2 options has higher priority than this option if
multiple options are specified.</li>
</ul>
<p>Note that for the first option, both executors and the application master will share the same
log4j configuration, which may cause issues when they run on the same node (e.g. trying to write
to the same log file).</p>
<p>If you need a reference to the proper location to put log files in the YARN so that YARN can properly display and aggregate them, use <code class="language-plaintext highlighter-rouge">spark.yarn.app.container.log.dir</code> in your <code class="language-plaintext highlighter-rouge">log4j.properties</code>. For example, <code class="language-plaintext highlighter-rouge">log4j.appender.file_appender.File=${spark.yarn.app.container.log.dir}/spark.log</code>. For streaming applications, configuring <code class="language-plaintext highlighter-rouge">RollingFileAppender</code> and setting file location to YARN&#8217;s log directory will avoid disk overflow caused by large log files, and logs can be accessed using YARN&#8217;s log utility.</p>
<p>To use a custom metrics.properties for the application master and executors, update the <code class="language-plaintext highlighter-rouge">$SPARK_CONF_DIR/metrics.properties</code> file. It will automatically be uploaded with other configurations, so you don&#8217;t need to specify it manually with <code class="language-plaintext highlighter-rouge">--files</code>.</p>
<h4 id="spark-properties">Spark Properties</h4>
<table class="table">
<tr><th>Property Name</th><th>Default</th><th>Meaning</th><th>Since Version</th></tr>
<tr>
<td><code>spark.yarn.am.memory</code></td>
<td><code>512m</code></td>
<td>
Amount of memory to use for the YARN Application Master in client mode, in the same format as JVM memory strings (e.g. <code>512m</code>, <code>2g</code>).
In cluster mode, use <code>spark.driver.memory</code> instead.
<p />
Use lower-case suffixes, e.g. <code>k</code>, <code>m</code>, <code>g</code>, <code>t</code>, and <code>p</code>, for kibi-, mebi-, gibi-, tebi-, and pebibytes, respectively.
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.resource.{resource-type}.amount</code></td>
<td><code>(none)</code></td>
<td>
Amount of resource to use for the YARN Application Master in client mode.
In cluster mode, use <code>spark.yarn.driver.resource.&lt;resource-type&gt;.amount</code> instead.
Please note that this feature can be used only with YARN 3.0+
For reference, see YARN Resource Model documentation: https://hadoop.apache.org/docs/r3.0.1/hadoop-yarn/hadoop-yarn-site/ResourceModel.html
<p />
Example:
To request GPU resources from YARN, use: <code>spark.yarn.am.resource.yarn.io/gpu.amount</code>
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.applicationType</code></td>
<td><code>SPARK</code></td>
<td>
Defines more specific application types, e.g. <code>SPARK</code>, <code>SPARK-SQL</code>, <code>SPARK-STREAMING</code>,
<code>SPARK-MLLIB</code> and <code>SPARK-GRAPH</code>. Please be careful not to exceed 20 characters.
</td>
<td>3.1.0</td>
</tr>
<tr>
<td><code>spark.yarn.driver.resource.{resource-type}.amount</code></td>
<td><code>(none)</code></td>
<td>
Amount of resource to use for the YARN Application Master in cluster mode.
Please note that this feature can be used only with YARN 3.0+
For reference, see YARN Resource Model documentation: https://hadoop.apache.org/docs/r3.0.1/hadoop-yarn/hadoop-yarn-site/ResourceModel.html
<p />
Example:
To request GPU resources from YARN, use: <code>spark.yarn.driver.resource.yarn.io/gpu.amount</code>
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.executor.resource.{resource-type}.amount</code></td>
<td><code>(none)</code></td>
<td>
Amount of resource to use per executor process.
Please note that this feature can be used only with YARN 3.0+
For reference, see YARN Resource Model documentation: https://hadoop.apache.org/docs/r3.0.1/hadoop-yarn/hadoop-yarn-site/ResourceModel.html
<p />
Example:
To request GPU resources from YARN, use: <code>spark.yarn.executor.resource.yarn.io/gpu.amount</code>
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.cores</code></td>
<td><code>1</code></td>
<td>
Number of cores to use for the YARN Application Master in client mode.
In cluster mode, use <code>spark.driver.cores</code> instead.
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.waitTime</code></td>
<td><code>100s</code></td>
<td>
Only used in <code>cluster</code> mode. Time for the YARN Application Master to wait for the
SparkContext to be initialized.
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.submit.file.replication</code></td>
<td>The default HDFS replication (usually <code>3</code>)</td>
<td>
HDFS replication level for the files uploaded into HDFS for the application. These include things like the Spark jar, the app jar, and any distributed cache files/archives.
</td>
<td>0.8.1</td>
</tr>
<tr>
<td><code>spark.yarn.stagingDir</code></td>
<td>Current user's home directory in the filesystem</td>
<td>
Staging directory used while submitting applications.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.preserve.staging.files</code></td>
<td><code>false</code></td>
<td>
Set to <code>true</code> to preserve the staged files (Spark jar, app jar, distributed cache files) at the end of the job rather than delete them.
</td>
<td>1.1.0</td>
</tr>
<tr>
<td><code>spark.yarn.scheduler.heartbeat.interval-ms</code></td>
<td><code>3000</code></td>
<td>
The interval in ms in which the Spark application master heartbeats into the YARN ResourceManager.
The value is capped at half the value of YARN's configuration for the expiry interval, i.e.
<code>yarn.am.liveness-monitor.expiry-interval-ms</code>.
</td>
<td>0.8.1</td>
</tr>
<tr>
<td><code>spark.yarn.scheduler.initial-allocation.interval</code></td>
<td><code>200ms</code></td>
<td>
The initial interval in which the Spark application master eagerly heartbeats to the YARN ResourceManager
when there are pending container allocation requests. It should be no larger than
<code>spark.yarn.scheduler.heartbeat.interval-ms</code>. The allocation interval will doubled on
successive eager heartbeats if pending containers still exist, until
<code>spark.yarn.scheduler.heartbeat.interval-ms</code> is reached.
</td>
<td>1.4.0</td>
</tr>
<tr>
<td><code>spark.yarn.max.executor.failures</code></td>
<td>numExecutors * 2, with minimum of 3</td>
<td>
The maximum number of executor failures before failing the application.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.historyServer.address</code></td>
<td>(none)</td>
<td>
The address of the Spark history server, e.g. <code>host.com:18080</code>. The address should not contain a scheme (<code>http://</code>). Defaults to not being set since the history server is an optional service. This address is given to the YARN ResourceManager when the Spark application finishes to link the application from the ResourceManager UI to the Spark history server UI.
For this property, YARN properties can be used as variables, and these are substituted by Spark at runtime. For example, if the Spark history server runs on the same node as the YARN ResourceManager, it can be set to <code>${hadoopconf-yarn.resourcemanager.hostname}:18080</code>.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.dist.archives</code></td>
<td>(none)</td>
<td>
Comma separated list of archives to be extracted into the working directory of each executor.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.dist.files</code></td>
<td>(none)</td>
<td>
Comma-separated list of files to be placed in the working directory of each executor.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.dist.jars</code></td>
<td>(none)</td>
<td>
Comma-separated list of jars to be placed in the working directory of each executor.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.dist.forceDownloadSchemes</code></td>
<td><code>(none)</code></td>
<td>
Comma-separated list of schemes for which resources will be downloaded to the local disk prior to
being added to YARN's distributed cache. For use in cases where the YARN service does not
support schemes that are supported by Spark, like http, https and ftp, or jars required to be in the
local YARN client's classpath. Wildcard '*' is denoted to download resources for all the schemes.
</td>
<td>2.3.0</td>
</tr>
<tr>
<td><code>spark.executor.instances</code></td>
<td><code>2</code></td>
<td>
The number of executors for static allocation. With <code>spark.dynamicAllocation.enabled</code>, the initial set of executors will be at least this large.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.memoryOverhead</code></td>
<td>AM memory * 0.10, with minimum of 384 </td>
<td>
Same as <code>spark.driver.memoryOverhead</code>, but for the YARN Application Master in client mode.
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.queue</code></td>
<td><code>default</code></td>
<td>
The name of the YARN queue to which the application is submitted.
</td>
<td>1.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.jars</code></td>
<td>(none)</td>
<td>
List of libraries containing Spark code to distribute to YARN containers.
By default, Spark on YARN will use Spark jars installed locally, but the Spark jars can also be
in a world-readable location on HDFS. This allows YARN to cache it on nodes so that it doesn't
need to be distributed each time an application runs. To point to jars on HDFS, for example,
set this configuration to <code>hdfs:///some/path</code>. Globs are allowed.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.archive</code></td>
<td>(none)</td>
<td>
An archive containing needed Spark jars for distribution to the YARN cache. If set, this
configuration replaces <code>spark.yarn.jars</code> and the archive is used in all the
application's containers. The archive should contain jar files in its root directory.
Like with the previous option, the archive can also be hosted on HDFS to speed up file
distribution.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.appMasterEnv.[EnvironmentVariableName]</code></td>
<td>(none)</td>
<td>
Add the environment variable specified by <code>EnvironmentVariableName</code> to the
Application Master process launched on YARN. The user can specify multiple of
these and to set multiple environment variables. In <code>cluster</code> mode this controls
the environment of the Spark driver and in <code>client</code> mode it only controls
the environment of the executor launcher.
</td>
<td>1.1.0</td>
</tr>
<tr>
<td><code>spark.yarn.containerLauncherMaxThreads</code></td>
<td><code>25</code></td>
<td>
The maximum number of threads to use in the YARN Application Master for launching executor containers.
</td>
<td>1.2.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.extraJavaOptions</code></td>
<td>(none)</td>
<td>
A string of extra JVM options to pass to the YARN Application Master in client mode.
In cluster mode, use <code>spark.driver.extraJavaOptions</code> instead. Note that it is illegal
to set maximum heap size (-Xmx) settings with this option. Maximum heap size settings can be set
with <code>spark.yarn.am.memory</code>
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.extraLibraryPath</code></td>
<td>(none)</td>
<td>
Set a special library path to use when launching the YARN Application Master in client mode.
</td>
<td>1.4.0</td>
</tr>
<tr>
<td><code>spark.yarn.populateHadoopClasspath</code></td>
<td>
For <code>with-hadoop</code> Spark distribution, this is set to false;
for <code>no-hadoop</code> distribution, this is set to true.
</td>
<td>
Whether to populate Hadoop classpath from <code>yarn.application.classpath</code> and
<code>mapreduce.application.classpath</code> Note that if this is set to <code>false</code>,
it requires a <code>with-Hadoop</code> Spark distribution that bundles Hadoop runtime or
user has to provide a Hadoop installation separately.
</td>
<td>2.4.6</td>
</tr>
<tr>
<td><code>spark.yarn.maxAppAttempts</code></td>
<td><code>yarn.resourcemanager.am.max-attempts</code> in YARN</td>
<td>
The maximum number of attempts that will be made to submit the application.
It should be no larger than the global number of max attempts in the YARN configuration.
</td>
<td>1.3.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.attemptFailuresValidityInterval</code></td>
<td>(none)</td>
<td>
Defines the validity interval for AM failure tracking.
If the AM has been running for at least the defined interval, the AM failure count will be reset.
This feature is not enabled if not configured.
</td>
<td>1.6.0</td>
</tr>
<tr>
<td><code>spark.yarn.executor.failuresValidityInterval</code></td>
<td>(none)</td>
<td>
Defines the validity interval for executor failure tracking.
Executor failures which are older than the validity interval will be ignored.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.submit.waitAppCompletion</code></td>
<td><code>true</code></td>
<td>
In YARN cluster mode, controls whether the client waits to exit until the application completes.
If set to <code>true</code>, the client process will stay alive reporting the application's status.
Otherwise, the client process will exit after submission.
</td>
<td>1.4.0</td>
</tr>
<tr>
<td><code>spark.yarn.am.nodeLabelExpression</code></td>
<td>(none)</td>
<td>
A YARN node label expression that restricts the set of nodes AM will be scheduled on.
Only versions of YARN greater than or equal to 2.6 support node label expressions, so when
running against earlier versions, this property will be ignored.
</td>
<td>1.6.0</td>
</tr>
<tr>
<td><code>spark.yarn.executor.nodeLabelExpression</code></td>
<td>(none)</td>
<td>
A YARN node label expression that restricts the set of nodes executors will be scheduled on.
Only versions of YARN greater than or equal to 2.6 support node label expressions, so when
running against earlier versions, this property will be ignored.
</td>
<td>1.4.0</td>
</tr>
<tr>
<td><code>spark.yarn.tags</code></td>
<td>(none)</td>
<td>
Comma-separated list of strings to pass through as YARN application tags appearing
in YARN ApplicationReports, which can be used for filtering when querying YARN apps.
</td>
<td>1.5.0</td>
</tr>
<tr>
<td><code>spark.yarn.priority</code></td>
<td>(none)</td>
<td>
Application priority for YARN to define pending applications ordering policy, those with higher
integer value have a better opportunity to be activated. Currently, YARN only supports application
priority when using FIFO ordering policy.
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.config.gatewayPath</code></td>
<td>(none)</td>
<td>
A path that is valid on the gateway host (the host where a Spark application is started) but may
differ for paths for the same resource in other nodes in the cluster. Coupled with
<code>spark.yarn.config.replacementPath</code>, this is used to support clusters with
heterogeneous configurations, so that Spark can correctly launch remote processes.
<p />
The replacement path normally will contain a reference to some environment variable exported by
YARN (and, thus, visible to Spark containers).
<p />
For example, if the gateway node has Hadoop libraries installed on <code>/disk1/hadoop</code>, and
the location of the Hadoop install is exported by YARN as the <code>HADOOP_HOME</code>
environment variable, setting this value to <code>/disk1/hadoop</code> and the replacement path to
<code>$HADOOP_HOME</code> will make sure that paths used to launch remote processes properly
reference the local YARN configuration.
</td>
<td>1.5.0</td>
</tr>
<tr>
<td><code>spark.yarn.config.replacementPath</code></td>
<td>(none)</td>
<td>
See <code>spark.yarn.config.gatewayPath</code>.
</td>
<td>1.5.0</td>
</tr>
<tr>
<td><code>spark.yarn.rolledLog.includePattern</code></td>
<td>(none)</td>
<td>
Java Regex to filter the log files which match the defined include pattern
and those log files will be aggregated in a rolling fashion.
This will be used with YARN's rolling log aggregation, to enable this feature in YARN side
<code>yarn.nodemanager.log-aggregation.roll-monitoring-interval-seconds</code> should be
configured in yarn-site.xml. The Spark log4j appender needs be changed to use
FileAppender or another appender that can handle the files being removed while it is running. Based
on the file name configured in the log4j configuration (like spark.log), the user should set the
regex (spark*) to include all the log files that need to be aggregated.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.rolledLog.excludePattern</code></td>
<td>(none)</td>
<td>
Java Regex to filter the log files which match the defined exclude pattern
and those log files will not be aggregated in a rolling fashion. If the log file
name matches both the include and the exclude pattern, this file will be excluded eventually.
</td>
<td>2.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.executor.launch.excludeOnFailure.enabled</code></td>
<td>false</td>
<td>
Flag to enable exclusion of nodes having YARN resource allocation problems.
The error limit for excluding can be configured by
<code>spark.excludeOnFailure.application.maxFailedExecutorsPerNode</code>.
</td>
<td>2.4.0</td>
</tr>
<tr>
<td><code>spark.yarn.exclude.nodes</code></td>
<td>(none)</td>
<td>
Comma-separated list of YARN node names which are excluded from resource allocation.
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.metrics.namespace</code></td>
<td>(none)</td>
<td>
The root namespace for AM metrics reporting.
If it is not set then the YARN application ID is used.
</td>
<td>2.4.0</td>
</tr>
</table>
<h4 id="available-patterns-for-shs-custom-executor-log-url">Available patterns for SHS custom executor log URL</h4>
<table class="table">
<tr><th>Pattern</th><th>Meaning</th></tr>
<tr>
<td>&#123;&#123;HTTP_SCHEME&#125;&#125;</td>
<td><code>http://</code> or <code>https://</code> according to YARN HTTP policy. (Configured via <code>yarn.http.policy</code>)</td>
</tr>
<tr>
<td>&#123;&#123;NM_HOST&#125;&#125;</td>
<td>The "host" of node where container was run.</td>
</tr>
<tr>
<td>&#123;&#123;NM_PORT&#125;&#125;</td>
<td>The "port" of node manager where container was run.</td>
</tr>
<tr>
<td>&#123;&#123;NM_HTTP_PORT&#125;&#125;</td>
<td>The "port" of node manager's http server where container was run.</td>
</tr>
<tr>
<td>&#123;&#123;NM_HTTP_ADDRESS&#125;&#125;</td>
<td>Http URI of the node on which the container is allocated.</td>
</tr>
<tr>
<td>&#123;&#123;CLUSTER_ID&#125;&#125;</td>
<td>The cluster ID of Resource Manager. (Configured via <code>yarn.resourcemanager.cluster-id</code>)</td>
</tr>
<tr>
<td>&#123;&#123;CONTAINER_ID&#125;&#125;</td>
<td>The ID of container.</td>
</tr>
<tr>
<td>&#123;&#123;USER&#125;&#125;</td>
<td><code>SPARK_USER</code> on system environment.</td>
</tr>
<tr>
<td>&#123;&#123;FILE_NAME&#125;&#125;</td>
<td><code>stdout</code>, <code>stderr</code>.</td>
</tr>
</table>
<p>For example, suppose you would like to point log url link to Job History Server directly instead of let NodeManager http server redirects it, you can configure <code class="language-plaintext highlighter-rouge">spark.history.custom.executor.log.url</code> as below:</p>
<p><code>&#123;&#123;HTTP_SCHEME&#125;&#125;&lt;JHS_HOST&gt;:&lt;JHS_PORT&gt;/jobhistory/logs/&#123;&#123;NM_HOST&#125;&#125;:&#123;&#123;NM_PORT&#125;&#125;/&#123;&#123;CONTAINER_ID&#125;&#125;/&#123;&#123;CONTAINER_ID&#125;&#125;/&#123;&#123;USER&#125;&#125;/&#123;&#123;FILE_NAME&#125;&#125;?start=-4096</code></p>
<p>NOTE: you need to replace <code class="language-plaintext highlighter-rouge">&lt;JHS_POST&gt;</code> and <code class="language-plaintext highlighter-rouge">&lt;JHS_PORT&gt;</code> with actual value.</p>
<h1 id="resource-allocation-and-configuration-overview">Resource Allocation and Configuration Overview</h1>
<p>Please make sure to have read the Custom Resource Scheduling and Configuration Overview section on the <a href="configuration.html">configuration page</a>. This section only talks about the YARN specific aspects of resource scheduling.</p>
<p>YARN needs to be configured to support any resources the user wants to use with Spark. Resource scheduling on YARN was added in YARN 3.1.0. See the YARN documentation for more information on configuring resources and properly setting up isolation. Ideally the resources are setup isolated so that an executor can only see the resources it was allocated. If you do not have isolation enabled, the user is responsible for creating a discovery script that ensures the resource is not shared between executors.</p>
<p>YARN currently supports any user defined resource type but has built in types for GPU (<code>yarn.io/gpu</code>) and FPGA (<code>yarn.io/fpga</code>). For that reason, if you are using either of those resources, Spark can translate your request for spark resources into YARN resources and you only have to specify the <code>spark.{driver/executor}.resource.</code> configs. If you are using a resource other then FPGA or GPU, the user is responsible for specifying the configs for both YARN (<code>spark.yarn.{driver/executor}.resource.</code>) and Spark (<code>spark.{driver/executor}.resource.</code>).</p>
<p>For example, the user wants to request 2 GPUs for each executor. The user can just specify <code>spark.executor.resource.gpu.amount=2</code> and Spark will handle requesting <code>yarn.io/gpu</code> resource type from YARN.</p>
<p>If the user has a user defined YARN resource, lets call it <code class="language-plaintext highlighter-rouge">acceleratorX</code> then the user must specify <code>spark.yarn.executor.resource.acceleratorX.amount=2</code> and <code>spark.executor.resource.acceleratorX.amount=2</code>.</p>
<p>YARN does not tell Spark the addresses of the resources allocated to each container. For that reason, the user must specify a discovery script that gets run by the executor on startup to discover what resources are available to that executor. You can find an example scripts in <code class="language-plaintext highlighter-rouge">examples/src/main/scripts/getGpusResources.sh</code>. The script must have execute permissions set and the user should setup permissions to not allow malicious users to modify it. The script should write to STDOUT a JSON string in the format of the ResourceInformation class. This has the resource name and an array of resource addresses available to just that executor.</p>
<h1 id="stage-level-scheduling-overview">Stage Level Scheduling Overview</h1>
<p>Stage level scheduling is supported on YARN when dynamic allocation is enabled. One thing to note that is YARN specific is that each ResourceProfile requires a different container priority on YARN. The mapping is simply the ResourceProfile id becomes the priority, on YARN lower numbers are higher priority. This means that profiles created earlier will have a higher priority in YARN. Normally this won&#8217;t matter as Spark finishes one stage before starting another one, the only case this might have an affect is in a job server type scenario, so its something to keep in mind.
Note there is a difference in the way custom resources are handled between the base default profile and custom ResourceProfiles. To allow for the user to request YARN containers with extra resources without Spark scheduling on them, the user can specify resources via the <code>spark.yarn.executor.resource.</code> config. Those configs are only used in the base default profile though and do not get propagated into any other custom ResourceProfiles. This is because there would be no way to remove them if you wanted a stage to not have them. This results in your default profile getting custom resources defined in <code>spark.yarn.executor.resource.</code> plus spark defined resources of GPU or FPGA. Spark converts GPU and FPGA resources into the YARN built in types <code>yarn.io/gpu</code>) and <code>yarn.io/fpga</code>, but does not know the mapping of any other resources. Any other Spark custom resources are not propagated to YARN for the default profile. So if you want Spark to schedule based off a custom resource and have it requested from YARN, you must specify it in both YARN (<code>spark.yarn.{driver/executor}.resource.</code>) and Spark (<code>spark.{driver/executor}.resource.</code>) configs. Leave the Spark config off if you only want YARN containers with the extra resources but Spark not to schedule using them. Now for custom ResourceProfiles, it doesn&#8217;t currently have a way to only specify YARN resources without Spark scheduling off of them. This means for custom ResourceProfiles we propagate all the resources defined in the ResourceProfile to YARN. We still convert GPU and FPGA to the YARN build in types as well. This requires that the name of any custom resources you specify match what they are defined as in YARN.</p>
<h1 id="important-notes">Important notes</h1>
<ul>
<li>Whether core requests are honored in scheduling decisions depends on which scheduler is in use and how it is configured.</li>
<li>In <code class="language-plaintext highlighter-rouge">cluster</code> mode, the local directories used by the Spark executors and the Spark driver will be the local directories configured for YARN (Hadoop YARN config <code class="language-plaintext highlighter-rouge">yarn.nodemanager.local-dirs</code>). If the user specifies <code class="language-plaintext highlighter-rouge">spark.local.dir</code>, it will be ignored. In <code class="language-plaintext highlighter-rouge">client</code> mode, the Spark executors will use the local directories configured for YARN while the Spark driver will use those defined in <code class="language-plaintext highlighter-rouge">spark.local.dir</code>. This is because the Spark driver does not run on the YARN cluster in <code class="language-plaintext highlighter-rouge">client</code> mode, only the Spark executors do.</li>
<li>The <code class="language-plaintext highlighter-rouge">--files</code> and <code class="language-plaintext highlighter-rouge">--archives</code> options support specifying file names with the # similar to Hadoop. For example, you can specify: <code class="language-plaintext highlighter-rouge">--files localtest.txt#appSees.txt</code> and this will upload the file you have locally named <code class="language-plaintext highlighter-rouge">localtest.txt</code> into HDFS but this will be linked to by the name <code class="language-plaintext highlighter-rouge">appSees.txt</code>, and your application should use the name as <code class="language-plaintext highlighter-rouge">appSees.txt</code> to reference it when running on YARN.</li>
<li>The <code class="language-plaintext highlighter-rouge">--jars</code> option allows the <code class="language-plaintext highlighter-rouge">SparkContext.addJar</code> function to work if you are using it with local files and running in <code class="language-plaintext highlighter-rouge">cluster</code> mode. It does not need to be used if you are using it with HDFS, HTTP, HTTPS, or FTP files.</li>
</ul>
<h1 id="kerberos">Kerberos</h1>
<p>Standard Kerberos support in Spark is covered in the <a href="security.html#kerberos">Security</a> page.</p>
<p>In YARN mode, when accessing Hadoop file systems, aside from the default file system in the hadoop
configuration, Spark will also automatically obtain delegation tokens for the service hosting the
staging directory of the Spark application.</p>
<h2 id="yarn-specific-kerberos-configuration">YARN-specific Kerberos Configuration</h2>
<table class="table">
<tr><th>Property Name</th><th>Default</th><th>Meaning</th><th>Since Version</th></tr>
<tr>
<td><code>spark.kerberos.keytab</code></td>
<td>(none)</td>
<td>
The full path to the file that contains the keytab for the principal specified above. This keytab
will be copied to the node running the YARN Application Master via the YARN Distributed Cache, and
will be used for renewing the login tickets and the delegation tokens periodically. Equivalent to
the <code>--keytab</code> command line argument.
<br /> (Works also with the "local" master.)
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.kerberos.principal</code></td>
<td>(none)</td>
<td>
Principal to be used to login to KDC, while running on secure clusters. Equivalent to the
<code>--principal</code> command line argument.
<br /> (Works also with the "local" master.)
</td>
<td>3.0.0</td>
</tr>
<tr>
<td><code>spark.yarn.kerberos.relogin.period</code></td>
<td>1m</td>
<td>
How often to check whether the kerberos TGT should be renewed. This should be set to a value
that is shorter than the TGT renewal period (or the TGT lifetime if TGT renewal is not enabled).
The default value should be enough for most deployments.
</td>
<td>2.3.0</td>
</tr>
</table>
<h2 id="troubleshooting-kerberos">Troubleshooting Kerberos</h2>
<p>Debugging Hadoop/Kerberos problems can be &#8220;difficult&#8221;. One useful technique is to
enable extra logging of Kerberos operations in Hadoop by setting the <code class="language-plaintext highlighter-rouge">HADOOP_JAAS_DEBUG</code>
environment variable.</p>
<div class="language-bash highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="nb">export </span><span class="nv">HADOOP_JAAS_DEBUG</span><span class="o">=</span><span class="nb">true</span>
</code></pre></div></div>
<p>The JDK classes can be configured to enable extra logging of their Kerberos and
SPNEGO/REST authentication via the system properties <code class="language-plaintext highlighter-rouge">sun.security.krb5.debug</code>
and <code class="language-plaintext highlighter-rouge">sun.security.spnego.debug=true</code></p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>-Dsun.security.krb5.debug=true -Dsun.security.spnego.debug=true
</code></pre></div></div>
<p>All these options can be enabled in the Application Master:</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>spark.yarn.appMasterEnv.HADOOP_JAAS_DEBUG true
spark.yarn.am.extraJavaOptions -Dsun.security.krb5.debug=true -Dsun.security.spnego.debug=true
</code></pre></div></div>
<p>Finally, if the log level for <code class="language-plaintext highlighter-rouge">org.apache.spark.deploy.yarn.Client</code> is set to <code class="language-plaintext highlighter-rouge">DEBUG</code>, the log
will include a list of all tokens obtained, and their expiry details</p>
<h1 id="configuring-the-external-shuffle-service">Configuring the External Shuffle Service</h1>
<p>To start the Spark Shuffle Service on each <code class="language-plaintext highlighter-rouge">NodeManager</code> in your YARN cluster, follow these
instructions:</p>
<ol>
<li>Build Spark with the <a href="building-spark.html">YARN profile</a>. Skip this step if you are using a
pre-packaged distribution.</li>
<li>Locate the <code class="language-plaintext highlighter-rouge">spark-&lt;version&gt;-yarn-shuffle.jar</code>. This should be under
<code class="language-plaintext highlighter-rouge">$SPARK_HOME/common/network-yarn/target/scala-&lt;version&gt;</code> if you are building Spark yourself, and under
<code class="language-plaintext highlighter-rouge">yarn</code> if you are using a distribution.</li>
<li>Add this jar to the classpath of all <code class="language-plaintext highlighter-rouge">NodeManager</code>s in your cluster.</li>
<li>In the <code class="language-plaintext highlighter-rouge">yarn-site.xml</code> on each node, add <code class="language-plaintext highlighter-rouge">spark_shuffle</code> to <code class="language-plaintext highlighter-rouge">yarn.nodemanager.aux-services</code>,
then set <code class="language-plaintext highlighter-rouge">yarn.nodemanager.aux-services.spark_shuffle.class</code> to
<code class="language-plaintext highlighter-rouge">org.apache.spark.network.yarn.YarnShuffleService</code>.</li>
<li>Increase <code class="language-plaintext highlighter-rouge">NodeManager's</code> heap size by setting <code class="language-plaintext highlighter-rouge">YARN_HEAPSIZE</code> (1000 by default) in <code class="language-plaintext highlighter-rouge">etc/hadoop/yarn-env.sh</code>
to avoid garbage collection issues during shuffle.</li>
<li>Restart all <code class="language-plaintext highlighter-rouge">NodeManager</code>s in your cluster.</li>
</ol>
<p>The following extra configuration options are available when the shuffle service is running on YARN:</p>
<table class="table">
<tr><th>Property Name</th><th>Default</th><th>Meaning</th></tr>
<tr>
<td><code>spark.yarn.shuffle.stopOnFailure</code></td>
<td><code>false</code></td>
<td>
Whether to stop the NodeManager when there's a failure in the Spark Shuffle Service's
initialization. This prevents application failures caused by running containers on
NodeManagers where the Spark Shuffle Service is not running.
</td>
</tr>
</table>
<h1 id="launching-your-application-with-apache-oozie">Launching your application with Apache Oozie</h1>
<p>Apache Oozie can launch Spark applications as part of a workflow.
In a secure cluster, the launched application will need the relevant tokens to access the cluster&#8217;s
services. If Spark is launched with a keytab, this is automatic.
However, if Spark is to be launched without a keytab, the responsibility for setting up security
must be handed over to Oozie.</p>
<p>The details of configuring Oozie for secure clusters and obtaining
credentials for a job can be found on the <a href="http://oozie.apache.org/">Oozie web site</a>
in the &#8220;Authentication&#8221; section of the specific release&#8217;s documentation.</p>
<p>For Spark applications, the Oozie workflow must be set up for Oozie to request all tokens which
the application needs, including:</p>
<ul>
<li>The YARN resource manager.</li>
<li>The local Hadoop filesystem.</li>
<li>Any remote Hadoop filesystems used as a source or destination of I/O.</li>
<li>Hive —if used.</li>
<li>HBase —if used.</li>
<li>The YARN timeline server, if the application interacts with this.</li>
</ul>
<p>To avoid Spark attempting —and then failing— to obtain Hive, HBase and remote HDFS tokens,
the Spark configuration must be set to disable token collection for the services.</p>
<p>The Spark configuration must include the lines:</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>spark.security.credentials.hive.enabled false
spark.security.credentials.hbase.enabled false
</code></pre></div></div>
<p>The configuration option <code class="language-plaintext highlighter-rouge">spark.kerberos.access.hadoopFileSystems</code> must be unset.</p>
<h1 id="using-the-spark-history-server-to-replace-the-spark-web-ui">Using the Spark History Server to replace the Spark Web UI</h1>
<p>It is possible to use the Spark History Server application page as the tracking URL for running
applications when the application UI is disabled. This may be desirable on secure clusters, or to
reduce the memory usage of the Spark driver. To set up tracking through the Spark History Server,
do the following:</p>
<ul>
<li>On the application side, set <code>spark.yarn.historyServer.allowTracking=true</code> in Spark&#8217;s
configuration. This will tell Spark to use the history server&#8217;s URL as the tracking URL if
the application&#8217;s UI is disabled.</li>
<li>On the Spark History Server, add <code>org.apache.spark.deploy.yarn.YarnProxyRedirectFilter</code>
to the list of filters in the <code>spark.ui.filters</code> configuration.</li>
</ul>
<p>Be aware that the history server information may not be up-to-date with the application&#8217;s state.</p>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-3.5.1.min.js"></script>
<script src="js/vendor/bootstrap.bundle.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script>
<script type="text/javascript">
// DocSearch is entirely free and automated. DocSearch is built in two parts:
// 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link
// in your website and extract content from every page it traverses. It then pushes this
// content to an Algolia index.
// 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index
// to your search input and display its results in a dropdown UI. If you want to find more
// details on how works DocSearch, check the docs of DocSearch.
docsearch({
apiKey: 'b18ca3732c502995563043aa17bc6ecb',
indexName: 'apache_spark',
inputSelector: '#docsearch-input',
enhancedSearchInput: true,
algoliaOptions: {
'facetFilters': ["version:3.1.1"]
},
debug: false // Set debug to true if you want to inspect the dropdown
});
</script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>