blob: e9445a1d538ecfcfce98c73db9a0b1f650f45981 [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Reference - Spark 2.4.7 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<!-- Google analytics script -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-32518208-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.4.7</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a></li>
<li><a href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a></li>
<li><a href="structured-streaming-programming-guide.html">Structured Streaming</a></li>
<li><a href="streaming-programming-guide.html">Spark Streaming (DStreams)</a></li>
<li><a href="ml-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
<li><a href="api/sql/index.html">SQL, Built-in Functions</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
<li><a href="running-on-kubernetes.html">Kubernetes</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://spark.apache.org/contributing.html">Contributing to Spark</a></li>
<li><a href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.4.7</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="sql-programming-guide.html">Spark SQL Guide</a></h3>
<ul>
<li>
<a href="sql-getting-started.html">
Getting Started
</a>
</li>
<li>
<a href="sql-data-sources.html">
Data Sources
</a>
</li>
<li>
<a href="sql-performance-tuning.html">
Performance Tuning
</a>
</li>
<li>
<a href="sql-distributed-sql-engine.html">
Distributed SQL Engine
</a>
</li>
<li>
<a href="sql-pyspark-pandas-with-arrow.html">
PySpark Usage Guide for Pandas with Apache Arrow
</a>
</li>
<li>
<a href="sql-migration-guide.html">
Migration Guide
</a>
</li>
<li>
<a href="sql-reference.html">
<b>Reference</b>
</a>
</li>
<ul>
<li>
<a href="sql-reference.html#data-types">
Data Types
</a>
</li>
<li>
<a href="sql-reference.html#nan-semantics">
NaN Semantics
</a>
</li>
<li>
<a href="sql-reference.html#arithmetic-operations">
Arithmetic operations
</a>
</li>
</ul>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Reference</h1>
<ul id="markdown-toc">
<li><a href="#data-types" id="markdown-toc-data-types">Data Types</a></li>
<li><a href="#nan-semantics" id="markdown-toc-nan-semantics">NaN Semantics</a></li>
<li><a href="#arithmetic-operations" id="markdown-toc-arithmetic-operations">Arithmetic operations</a></li>
</ul>
<h2 id="data-types">Data Types</h2>
<p>Spark SQL and DataFrames support the following data types:</p>
<ul>
<li>Numeric types
<ul>
<li><code>ByteType</code>: Represents 1-byte signed integer numbers.
The range of numbers is from <code>-128</code> to <code>127</code>.</li>
<li><code>ShortType</code>: Represents 2-byte signed integer numbers.
The range of numbers is from <code>-32768</code> to <code>32767</code>.</li>
<li><code>IntegerType</code>: Represents 4-byte signed integer numbers.
The range of numbers is from <code>-2147483648</code> to <code>2147483647</code>.</li>
<li><code>LongType</code>: Represents 8-byte signed integer numbers.
The range of numbers is from <code>-9223372036854775808</code> to <code>9223372036854775807</code>.</li>
<li><code>FloatType</code>: Represents 4-byte single-precision floating point numbers.</li>
<li><code>DoubleType</code>: Represents 8-byte double-precision floating point numbers.</li>
<li><code>DecimalType</code>: Represents arbitrary-precision signed decimal numbers. Backed internally by <code>java.math.BigDecimal</code>. A <code>BigDecimal</code> consists of an arbitrary precision integer unscaled value and a 32-bit integer scale.</li>
</ul>
</li>
<li>String type
<ul>
<li><code>StringType</code>: Represents character string values.</li>
</ul>
</li>
<li>Binary type
<ul>
<li><code>BinaryType</code>: Represents byte sequence values.</li>
</ul>
</li>
<li>Boolean type
<ul>
<li><code>BooleanType</code>: Represents boolean values.</li>
</ul>
</li>
<li>Datetime type
<ul>
<li><code>TimestampType</code>: Represents values comprising values of fields year, month, day,
hour, minute, and second.</li>
<li><code>DateType</code>: Represents values comprising values of fields year, month, day.</li>
</ul>
</li>
<li>Complex types
<ul>
<li><code>ArrayType(elementType, containsNull)</code>: Represents values comprising a sequence of
elements with the type of <code>elementType</code>. <code>containsNull</code> is used to indicate if
elements in a <code>ArrayType</code> value can have <code>null</code> values.</li>
<li><code>MapType(keyType, valueType, valueContainsNull)</code>:
Represents values comprising a set of key-value pairs. The data type of keys are
described by <code>keyType</code> and the data type of values are described by <code>valueType</code>.
For a <code>MapType</code> value, keys are not allowed to have <code>null</code> values. <code>valueContainsNull</code>
is used to indicate if values of a <code>MapType</code> value can have <code>null</code> values.</li>
<li><code>StructType(fields)</code>: Represents values with the structure described by
a sequence of <code>StructField</code>s (<code>fields</code>).
<ul>
<li><code>StructField(name, dataType, nullable)</code>: Represents a field in a <code>StructType</code>.
The name of a field is indicated by <code>name</code>. The data type of a field is indicated
by <code>dataType</code>. <code>nullable</code> is used to indicate if values of this fields can have
<code>null</code> values.</li>
</ul>
</li>
</ul>
</li>
</ul>
<div class="codetabs">
<div data-lang="scala">
<p>All data types of Spark SQL are located in the package <code>org.apache.spark.sql.types</code>.
You can access them by doing</p>
<div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.sql.types._</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/sql/SparkSQLExample.scala" in the Spark repo.</small></div>
<table class="table">
<tr>
<th style="width:20%">Data type</th>
<th style="width:40%">Value type in Scala</th>
<th>API to access or create a data type</th></tr>
<tr>
<td> <b>ByteType</b> </td>
<td> Byte </td>
<td>
ByteType
</td>
</tr>
<tr>
<td> <b>ShortType</b> </td>
<td> Short </td>
<td>
ShortType
</td>
</tr>
<tr>
<td> <b>IntegerType</b> </td>
<td> Int </td>
<td>
IntegerType
</td>
</tr>
<tr>
<td> <b>LongType</b> </td>
<td> Long </td>
<td>
LongType
</td>
</tr>
<tr>
<td> <b>FloatType</b> </td>
<td> Float </td>
<td>
FloatType
</td>
</tr>
<tr>
<td> <b>DoubleType</b> </td>
<td> Double </td>
<td>
DoubleType
</td>
</tr>
<tr>
<td> <b>DecimalType</b> </td>
<td> java.math.BigDecimal </td>
<td>
DecimalType
</td>
</tr>
<tr>
<td> <b>StringType</b> </td>
<td> String </td>
<td>
StringType
</td>
</tr>
<tr>
<td> <b>BinaryType</b> </td>
<td> Array[Byte] </td>
<td>
BinaryType
</td>
</tr>
<tr>
<td> <b>BooleanType</b> </td>
<td> Boolean </td>
<td>
BooleanType
</td>
</tr>
<tr>
<td> <b>TimestampType</b> </td>
<td> java.sql.Timestamp </td>
<td>
TimestampType
</td>
</tr>
<tr>
<td> <b>DateType</b> </td>
<td> java.sql.Date </td>
<td>
DateType
</td>
</tr>
<tr>
<td> <b>ArrayType</b> </td>
<td> scala.collection.Seq </td>
<td>
ArrayType(<i>elementType</i>, [<i>containsNull</i>])<br />
<b>Note:</b> The default value of <i>containsNull</i> is <i>true</i>.
</td>
</tr>
<tr>
<td> <b>MapType</b> </td>
<td> scala.collection.Map </td>
<td>
MapType(<i>keyType</i>, <i>valueType</i>, [<i>valueContainsNull</i>])<br />
<b>Note:</b> The default value of <i>valueContainsNull</i> is <i>true</i>.
</td>
</tr>
<tr>
<td> <b>StructType</b> </td>
<td> org.apache.spark.sql.Row </td>
<td>
StructType(<i>fields</i>)<br />
<b>Note:</b> <i>fields</i> is a Seq of StructFields. Also, two fields with the same
name are not allowed.
</td>
</tr>
<tr>
<td> <b>StructField</b> </td>
<td> The value type in Scala of the data type of this field
(For example, Int for a StructField with the data type IntegerType) </td>
<td>
StructField(<i>name</i>, <i>dataType</i>, [<i>nullable</i>])<br />
<b>Note:</b> The default value of <i>nullable</i> is <i>true</i>.
</td>
</tr>
</table>
</div>
<div data-lang="java">
<p>All data types of Spark SQL are located in the package of
<code>org.apache.spark.sql.types</code>. To access or create a data type,
please use factory methods provided in
<code>org.apache.spark.sql.types.DataTypes</code>.</p>
<table class="table">
<tr>
<th style="width:20%">Data type</th>
<th style="width:40%">Value type in Java</th>
<th>API to access or create a data type</th></tr>
<tr>
<td> <b>ByteType</b> </td>
<td> byte or Byte </td>
<td>
DataTypes.ByteType
</td>
</tr>
<tr>
<td> <b>ShortType</b> </td>
<td> short or Short </td>
<td>
DataTypes.ShortType
</td>
</tr>
<tr>
<td> <b>IntegerType</b> </td>
<td> int or Integer </td>
<td>
DataTypes.IntegerType
</td>
</tr>
<tr>
<td> <b>LongType</b> </td>
<td> long or Long </td>
<td>
DataTypes.LongType
</td>
</tr>
<tr>
<td> <b>FloatType</b> </td>
<td> float or Float </td>
<td>
DataTypes.FloatType
</td>
</tr>
<tr>
<td> <b>DoubleType</b> </td>
<td> double or Double </td>
<td>
DataTypes.DoubleType
</td>
</tr>
<tr>
<td> <b>DecimalType</b> </td>
<td> java.math.BigDecimal </td>
<td>
DataTypes.createDecimalType()<br />
DataTypes.createDecimalType(<i>precision</i>, <i>scale</i>).
</td>
</tr>
<tr>
<td> <b>StringType</b> </td>
<td> String </td>
<td>
DataTypes.StringType
</td>
</tr>
<tr>
<td> <b>BinaryType</b> </td>
<td> byte[] </td>
<td>
DataTypes.BinaryType
</td>
</tr>
<tr>
<td> <b>BooleanType</b> </td>
<td> boolean or Boolean </td>
<td>
DataTypes.BooleanType
</td>
</tr>
<tr>
<td> <b>TimestampType</b> </td>
<td> java.sql.Timestamp </td>
<td>
DataTypes.TimestampType
</td>
</tr>
<tr>
<td> <b>DateType</b> </td>
<td> java.sql.Date </td>
<td>
DataTypes.DateType
</td>
</tr>
<tr>
<td> <b>ArrayType</b> </td>
<td> java.util.List </td>
<td>
DataTypes.createArrayType(<i>elementType</i>)<br />
<b>Note:</b> The value of <i>containsNull</i> will be <i>true</i><br />
DataTypes.createArrayType(<i>elementType</i>, <i>containsNull</i>).
</td>
</tr>
<tr>
<td> <b>MapType</b> </td>
<td> java.util.Map </td>
<td>
DataTypes.createMapType(<i>keyType</i>, <i>valueType</i>)<br />
<b>Note:</b> The value of <i>valueContainsNull</i> will be <i>true</i>.<br />
DataTypes.createMapType(<i>keyType</i>, <i>valueType</i>, <i>valueContainsNull</i>)<br />
</td>
</tr>
<tr>
<td> <b>StructType</b> </td>
<td> org.apache.spark.sql.Row </td>
<td>
DataTypes.createStructType(<i>fields</i>)<br />
<b>Note:</b> <i>fields</i> is a List or an array of StructFields.
Also, two fields with the same name are not allowed.
</td>
</tr>
<tr>
<td> <b>StructField</b> </td>
<td> The value type in Java of the data type of this field
(For example, int for a StructField with the data type IntegerType) </td>
<td>
DataTypes.createStructField(<i>name</i>, <i>dataType</i>, <i>nullable</i>)
</td>
</tr>
</table>
</div>
<div data-lang="python">
<p>All data types of Spark SQL are located in the package of <code>pyspark.sql.types</code>.
You can access them by doing</p>
<figure class="highlight"><pre><code class="language-python" data-lang="python"><span></span><span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="o">*</span></code></pre></figure>
<table class="table">
<tr>
<th style="width:20%">Data type</th>
<th style="width:40%">Value type in Python</th>
<th>API to access or create a data type</th></tr>
<tr>
<td> <b>ByteType</b> </td>
<td>
int or long <br />
<b>Note:</b> Numbers will be converted to 1-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of -128 to 127.
</td>
<td>
ByteType()
</td>
</tr>
<tr>
<td> <b>ShortType</b> </td>
<td>
int or long <br />
<b>Note:</b> Numbers will be converted to 2-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of -32768 to 32767.
</td>
<td>
ShortType()
</td>
</tr>
<tr>
<td> <b>IntegerType</b> </td>
<td> int or long </td>
<td>
IntegerType()
</td>
</tr>
<tr>
<td> <b>LongType</b> </td>
<td>
long <br />
<b>Note:</b> Numbers will be converted to 8-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of
-9223372036854775808 to 9223372036854775807.
Otherwise, please convert data to decimal.Decimal and use DecimalType.
</td>
<td>
LongType()
</td>
</tr>
<tr>
<td> <b>FloatType</b> </td>
<td>
float <br />
<b>Note:</b> Numbers will be converted to 4-byte single-precision floating
point numbers at runtime.
</td>
<td>
FloatType()
</td>
</tr>
<tr>
<td> <b>DoubleType</b> </td>
<td> float </td>
<td>
DoubleType()
</td>
</tr>
<tr>
<td> <b>DecimalType</b> </td>
<td> decimal.Decimal </td>
<td>
DecimalType()
</td>
</tr>
<tr>
<td> <b>StringType</b> </td>
<td> string </td>
<td>
StringType()
</td>
</tr>
<tr>
<td> <b>BinaryType</b> </td>
<td> bytearray </td>
<td>
BinaryType()
</td>
</tr>
<tr>
<td> <b>BooleanType</b> </td>
<td> bool </td>
<td>
BooleanType()
</td>
</tr>
<tr>
<td> <b>TimestampType</b> </td>
<td> datetime.datetime </td>
<td>
TimestampType()
</td>
</tr>
<tr>
<td> <b>DateType</b> </td>
<td> datetime.date </td>
<td>
DateType()
</td>
</tr>
<tr>
<td> <b>ArrayType</b> </td>
<td> list, tuple, or array </td>
<td>
ArrayType(<i>elementType</i>, [<i>containsNull</i>])<br />
<b>Note:</b> The default value of <i>containsNull</i> is <i>True</i>.
</td>
</tr>
<tr>
<td> <b>MapType</b> </td>
<td> dict </td>
<td>
MapType(<i>keyType</i>, <i>valueType</i>, [<i>valueContainsNull</i>])<br />
<b>Note:</b> The default value of <i>valueContainsNull</i> is <i>True</i>.
</td>
</tr>
<tr>
<td> <b>StructType</b> </td>
<td> list or tuple </td>
<td>
StructType(<i>fields</i>)<br />
<b>Note:</b> <i>fields</i> is a Seq of StructFields. Also, two fields with the same
name are not allowed.
</td>
</tr>
<tr>
<td> <b>StructField</b> </td>
<td> The value type in Python of the data type of this field
(For example, Int for a StructField with the data type IntegerType) </td>
<td>
StructField(<i>name</i>, <i>dataType</i>, [<i>nullable</i>])<br />
<b>Note:</b> The default value of <i>nullable</i> is <i>True</i>.
</td>
</tr>
</table>
</div>
<div data-lang="r">
<table class="table">
<tr>
<th style="width:20%">Data type</th>
<th style="width:40%">Value type in R</th>
<th>API to access or create a data type</th></tr>
<tr>
<td> <b>ByteType</b> </td>
<td>
integer <br />
<b>Note:</b> Numbers will be converted to 1-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of -128 to 127.
</td>
<td>
"byte"
</td>
</tr>
<tr>
<td> <b>ShortType</b> </td>
<td>
integer <br />
<b>Note:</b> Numbers will be converted to 2-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of -32768 to 32767.
</td>
<td>
"short"
</td>
</tr>
<tr>
<td> <b>IntegerType</b> </td>
<td> integer </td>
<td>
"integer"
</td>
</tr>
<tr>
<td> <b>LongType</b> </td>
<td>
integer <br />
<b>Note:</b> Numbers will be converted to 8-byte signed integer numbers at runtime.
Please make sure that numbers are within the range of
-9223372036854775808 to 9223372036854775807.
Otherwise, please convert data to decimal.Decimal and use DecimalType.
</td>
<td>
"long"
</td>
</tr>
<tr>
<td> <b>FloatType</b> </td>
<td>
numeric <br />
<b>Note:</b> Numbers will be converted to 4-byte single-precision floating
point numbers at runtime.
</td>
<td>
"float"
</td>
</tr>
<tr>
<td> <b>DoubleType</b> </td>
<td> numeric </td>
<td>
"double"
</td>
</tr>
<tr>
<td> <b>DecimalType</b> </td>
<td> Not supported </td>
<td>
Not supported
</td>
</tr>
<tr>
<td> <b>StringType</b> </td>
<td> character </td>
<td>
"string"
</td>
</tr>
<tr>
<td> <b>BinaryType</b> </td>
<td> raw </td>
<td>
"binary"
</td>
</tr>
<tr>
<td> <b>BooleanType</b> </td>
<td> logical </td>
<td>
"bool"
</td>
</tr>
<tr>
<td> <b>TimestampType</b> </td>
<td> POSIXct </td>
<td>
"timestamp"
</td>
</tr>
<tr>
<td> <b>DateType</b> </td>
<td> Date </td>
<td>
"date"
</td>
</tr>
<tr>
<td> <b>ArrayType</b> </td>
<td> vector or list </td>
<td>
list(type="array", elementType=<i>elementType</i>, containsNull=[<i>containsNull</i>])<br />
<b>Note:</b> The default value of <i>containsNull</i> is <i>TRUE</i>.
</td>
</tr>
<tr>
<td> <b>MapType</b> </td>
<td> environment </td>
<td>
list(type="map", keyType=<i>keyType</i>, valueType=<i>valueType</i>, valueContainsNull=[<i>valueContainsNull</i>])<br />
<b>Note:</b> The default value of <i>valueContainsNull</i> is <i>TRUE</i>.
</td>
</tr>
<tr>
<td> <b>StructType</b> </td>
<td> named list</td>
<td>
list(type="struct", fields=<i>fields</i>)<br />
<b>Note:</b> <i>fields</i> is a Seq of StructFields. Also, two fields with the same
name are not allowed.
</td>
</tr>
<tr>
<td> <b>StructField</b> </td>
<td> The value type in R of the data type of this field
(For example, integer for a StructField with the data type IntegerType) </td>
<td>
list(name=<i>name</i>, type=<i>dataType</i>, nullable=[<i>nullable</i>])<br />
<b>Note:</b> The default value of <i>nullable</i> is <i>TRUE</i>.
</td>
</tr>
</table>
</div>
</div>
<h2 id="nan-semantics">NaN Semantics</h2>
<p>There is specially handling for not-a-number (NaN) when dealing with <code>float</code> or <code>double</code> types that
does not exactly match standard floating point semantics.
Specifically:</p>
<ul>
<li>NaN = NaN returns true.</li>
<li>In aggregations, all NaN values are grouped together.</li>
<li>NaN is treated as a normal value in join keys.</li>
<li>NaN values go last when in ascending order, larger than any other numeric value.</li>
</ul>
<h2 id="arithmetic-operations">Arithmetic operations</h2>
<p>Operations performed on numeric types (with the exception of <code>decimal</code>) are not checked for overflow.
This means that in case an operation causes an overflow, the result is the same that the same operation
returns in a Java/Scala program (eg. if the sum of 2 integers is higher than the maximum value representable,
the result is a negative number).</p>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.12.4.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>