| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>Linear Methods - ML - Spark 1.5.2 Documentation</title> |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-2']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.5.2</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="programming-guide.html">Spark Programming Guide</a></li> |
| <li class="divider"></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming</a></li> |
| <li><a href="sql-programming-guide.html">DataFrames and SQL</a></li> |
| <li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li> |
| <li><a href="sparkr.html">SparkR (R on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li> |
| <li><a href="api/java/index.html">Java</a></li> |
| <li><a href="api/python/index.html">Python</a></li> |
| <li><a href="api/R/index.html">R</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="spark-standalone.html">Spark Standalone</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| <li class="divider"></li> |
| <li><a href="ec2-scripts.html">Amazon EC2</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li> |
| <li class="divider"></li> |
| <li><a href="building-spark.html">Building Spark</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v1.5.2</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container" id="content"> |
| |
| <h1 class="title"><a href="ml-guide.html">ML</a> - Linear Methods</h1> |
| |
| |
| <p><code>\[ |
| \newcommand{\R}{\mathbb{R}} |
| \newcommand{\E}{\mathbb{E}} |
| \newcommand{\x}{\mathbf{x}} |
| \newcommand{\y}{\mathbf{y}} |
| \newcommand{\wv}{\mathbf{w}} |
| \newcommand{\av}{\mathbf{\alpha}} |
| \newcommand{\bv}{\mathbf{b}} |
| \newcommand{\N}{\mathbb{N}} |
| \newcommand{\id}{\mathbf{I}} |
| \newcommand{\ind}{\mathbf{1}} |
| \newcommand{\0}{\mathbf{0}} |
| \newcommand{\unit}{\mathbf{e}} |
| \newcommand{\one}{\mathbf{1}} |
| \newcommand{\zero}{\mathbf{0}} |
| \]</code></p> |
| |
| <p>In MLlib, we implement popular linear methods such as logistic |
| regression and linear least squares with $L_1$ or $L_2$ regularization. |
| Refer to <a href="mllib-linear-methods.html">the linear methods in mllib</a> for |
| details. In <code>spark.ml</code>, we also include Pipelines API for <a href="http://en.wikipedia.org/wiki/Elastic_net_regularization">Elastic |
| net</a>, a hybrid |
| of $L_1$ and $L_2$ regularization proposed in <a href="http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf">Zou et al, Regularization |
| and variable selection via the elastic |
| net</a>. |
| Mathematically, it is defined as a convex combination of the $L_1$ and |
| the $L_2$ regularization terms: |
| <code>\[ |
| \alpha \left( \lambda \|\wv\|_1 \right) + (1-\alpha) \left( \frac{\lambda}{2}\|\wv\|_2^2 \right) , \alpha \in [0, 1], \lambda \geq 0 |
| \]</code> |
| By setting $\alpha$ properly, elastic net contains both $L_1$ and $L_2$ |
| regularization as special cases. For example, if a <a href="https://en.wikipedia.org/wiki/Linear_regression">linear |
| regression</a> model is |
| trained with the elastic net parameter $\alpha$ set to $1$, it is |
| equivalent to a |
| <a href="http://en.wikipedia.org/wiki/Least_squares#Lasso_method">Lasso</a> model. |
| On the other hand, if $\alpha$ is set to $0$, the trained model reduces |
| to a <a href="http://en.wikipedia.org/wiki/Tikhonov_regularization">ridge |
| regression</a> model. |
| We implement Pipelines API for both linear regression and logistic |
| regression with elastic net regularization.</p> |
| |
| <h2 id="example-logistic-regression">Example: Logistic Regression</h2> |
| |
| <p>The following example shows how to train a logistic regression model |
| with elastic net regularization. <code>elasticNetParam</code> corresponds to |
| $\alpha$ and <code>regParam</code> corresponds to $\lambda$.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| |
| <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span> |
| |
| <span class="c1">// Load training data</span> |
| <span class="k">val</span> <span class="n">training</span> <span class="k">=</span> <span class="nc">MLUtils</span><span class="o">.</span><span class="n">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">).</span><span class="n">toDF</span><span class="o">()</span> |
| |
| <span class="k">val</span> <span class="n">lr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span> |
| <span class="o">.</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span> |
| |
| <span class="c1">// Fit the model</span> |
| <span class="k">val</span> <span class="n">lrModel</span> <span class="k">=</span> <span class="n">lr</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span> |
| |
| <span class="c1">// Print the weights and intercept for logistic regression</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Weights: ${lrModel.weights} Intercept: ${lrModel.intercept}"</span><span class="o">)</span></code></pre></div> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.SQLContext</span><span class="o">;</span> |
| |
| <span class="kd">public</span> <span class="kd">class</span> <span class="nc">LogisticRegressionWithElasticNetExample</span> <span class="o">{</span> |
| <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setAppName</span><span class="o">(</span><span class="s">"Logistic Regression with Elastic Net Example"</span><span class="o">);</span> |
| |
| <span class="n">SparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span> |
| <span class="n">SQLContext</span> <span class="n">sql</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SQLContext</span><span class="o">(</span><span class="n">sc</span><span class="o">);</span> |
| <span class="n">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">;</span> |
| |
| <span class="c1">// Load training data</span> |
| <span class="n">DataFrame</span> <span class="n">training</span> <span class="o">=</span> <span class="n">sql</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="n">path</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">(),</span> <span class="n">LabeledPoint</span><span class="o">.</span><span class="na">class</span><span class="o">);</span> |
| |
| <span class="n">LogisticRegression</span> <span class="n">lr</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">LogisticRegression</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span> |
| |
| <span class="c1">// Fit the model</span> |
| <span class="n">LogisticRegressionModel</span> <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span> |
| |
| <span class="c1">// Print the weights and intercept for logistic regression</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Weights: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">weights</span><span class="o">()</span> <span class="o">+</span> <span class="s">" Intercept: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span> |
| <span class="o">}</span> |
| <span class="o">}</span></code></pre></div> |
| |
| </div> |
| |
| <div data-lang="python"> |
| |
| <div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LogisticRegression</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span> |
| |
| <span class="c"># Load training data</span> |
| <span class="n">training</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="o">.</span><span class="n">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span><span class="o">.</span><span class="n">toDF</span><span class="p">()</span> |
| |
| <span class="n">lr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span> |
| |
| <span class="c"># Fit the model</span> |
| <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span> |
| |
| <span class="c"># Print the weights and intercept for logistic regression</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Weights: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="o">.</span><span class="n">weights</span><span class="p">))</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="o">.</span><span class="n">intercept</span><span class="p">))</span></code></pre></div> |
| |
| </div> |
| |
| </div> |
| |
| <p>The <code>spark.ml</code> implementation of logistic regression also supports |
| extracting a summary of the model over the training set. Note that the |
| predictions and metrics which are stored as <code>Dataframe</code> in |
| <code>BinaryLogisticRegressionSummary</code> are annotated <code>@transient</code> and hence |
| only available on the driver.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| |
| <p><a href="api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionTrainingSummary"><code>LogisticRegressionTrainingSummary</code></a> |
| provides a summary for a |
| <a href="api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionModel"><code>LogisticRegressionModel</code></a>. |
| Currently, only binary classification is supported and the |
| summary must be explicitly cast to |
| <a href="api/scala/index.html#org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary"><code>BinaryLogisticRegressionTrainingSummary</code></a>. |
| This will likely change when multiclass classification is supported.</p> |
| |
| <p>Continuing the earlier example:</p> |
| |
| <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.BinaryLogisticRegressionSummary</span> |
| |
| <span class="c1">// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier example</span> |
| <span class="k">val</span> <span class="n">trainingSummary</span> <span class="k">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="n">summary</span> |
| |
| <span class="c1">// Obtain the objective per iteration.</span> |
| <span class="k">val</span> <span class="n">objectiveHistory</span> <span class="k">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="n">objectiveHistory</span> |
| <span class="n">objectiveHistory</span><span class="o">.</span><span class="n">foreach</span><span class="o">(</span><span class="n">loss</span> <span class="k">=></span> <span class="n">println</span><span class="o">(</span><span class="n">loss</span><span class="o">))</span> |
| |
| <span class="c1">// Obtain the metrics useful to judge performance on test data.</span> |
| <span class="c1">// We cast the summary to a BinaryLogisticRegressionSummary since the problem is a</span> |
| <span class="c1">// binary classification problem.</span> |
| <span class="k">val</span> <span class="n">binarySummary</span> <span class="k">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="n">asInstanceOf</span><span class="o">[</span><span class="kt">BinaryLogisticRegressionSummary</span><span class="o">]</span> |
| |
| <span class="c1">// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.</span> |
| <span class="k">val</span> <span class="n">roc</span> <span class="k">=</span> <span class="n">binarySummary</span><span class="o">.</span><span class="n">roc</span> |
| <span class="n">roc</span><span class="o">.</span><span class="n">show</span><span class="o">()</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">binarySummary</span><span class="o">.</span><span class="n">areaUnderROC</span><span class="o">)</span> |
| |
| <span class="c1">// Set the model threshold to maximize F-Measure</span> |
| <span class="k">val</span> <span class="n">fMeasure</span> <span class="k">=</span> <span class="n">binarySummary</span><span class="o">.</span><span class="n">fMeasureByThreshold</span> |
| <span class="k">val</span> <span class="n">maxFMeasure</span> <span class="k">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="n">select</span><span class="o">(</span><span class="n">max</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">)).</span><span class="n">head</span><span class="o">().</span><span class="n">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">bestThreshold</span> <span class="k">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="n">where</span><span class="o">(</span><span class="n">$</span><span class="s">"F-Measure"</span> <span class="o">===</span> <span class="n">maxFMeasure</span><span class="o">).</span> |
| <span class="n">select</span><span class="o">(</span><span class="s">"threshold"</span><span class="o">).</span><span class="n">head</span><span class="o">().</span><span class="n">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span> |
| <span class="n">lrModel</span><span class="o">.</span><span class="n">setThreshold</span><span class="o">(</span><span class="n">bestThreshold</span><span class="o">)</span></code></pre></div> |
| |
| </div> |
| |
| <div data-lang="java"> |
| <p><a href="api/java/org/apache/spark/ml/classification/LogisticRegressionTrainingSummary.html"><code>LogisticRegressionTrainingSummary</code></a> |
| provides a summary for a |
| <a href="api/java/org/apache/spark/ml/classification/LogisticRegressionModel.html"><code>LogisticRegressionModel</code></a>. |
| Currently, only binary classification is supported and the |
| summary must be explicitly cast to |
| <a href="api/java/org/apache/spark/ml/classification/BinaryLogisticRegressionTrainingSummary.html"><code>BinaryLogisticRegressionTrainingSummary</code></a>. |
| This will likely change when multiclass classification is supported.</p> |
| |
| <p>Continuing the earlier example:</p> |
| |
| <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionTrainingSummary</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.BinaryLogisticRegressionSummary</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.functions</span><span class="o">;</span> |
| |
| <span class="c1">// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier example</span> |
| <span class="n">LogisticRegressionTrainingSummary</span> <span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">summary</span><span class="o">();</span> |
| |
| <span class="c1">// Obtain the loss per iteration.</span> |
| <span class="kt">double</span><span class="o">[]</span> <span class="n">objectiveHistory</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">objectiveHistory</span><span class="o">();</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">lossPerIteration</span> <span class="o">:</span> <span class="n">objectiveHistory</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">lossPerIteration</span><span class="o">);</span> |
| <span class="o">}</span> |
| |
| <span class="c1">// Obtain the metrics useful to judge performance on test data.</span> |
| <span class="c1">// We cast the summary to a BinaryLogisticRegressionSummary since the problem is a</span> |
| <span class="c1">// binary classification problem.</span> |
| <span class="n">BinaryLogisticRegressionSummary</span> <span class="n">binarySummary</span> <span class="o">=</span> <span class="o">(</span><span class="n">BinaryLogisticRegressionSummary</span><span class="o">)</span> <span class="n">trainingSummary</span><span class="o">;</span> |
| |
| <span class="c1">// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.</span> |
| <span class="n">DataFrame</span> <span class="n">roc</span> <span class="o">=</span> <span class="n">binarySummary</span><span class="o">.</span><span class="na">roc</span><span class="o">();</span> |
| <span class="n">roc</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="n">roc</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"FPR"</span><span class="o">).</span><span class="na">show</span><span class="o">();</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">binarySummary</span><span class="o">.</span><span class="na">areaUnderROC</span><span class="o">());</span> |
| |
| <span class="c1">// Get the threshold corresponding to the maximum F-Measure and rerun LogisticRegression with</span> |
| <span class="c1">// this selected threshold.</span> |
| <span class="n">DataFrame</span> <span class="n">fMeasure</span> <span class="o">=</span> <span class="n">binarySummary</span><span class="o">.</span><span class="na">fMeasureByThreshold</span><span class="o">();</span> |
| <span class="kt">double</span> <span class="n">maxFMeasure</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="n">functions</span><span class="o">.</span><span class="na">max</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">)).</span><span class="na">head</span><span class="o">().</span><span class="na">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span> |
| <span class="kt">double</span> <span class="n">bestThreshold</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="na">where</span><span class="o">(</span><span class="n">fMeasure</span><span class="o">.</span><span class="na">col</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">).</span><span class="na">equalTo</span><span class="o">(</span><span class="n">maxFMeasure</span><span class="o">)).</span> |
| <span class="n">select</span><span class="o">(</span><span class="s">"threshold"</span><span class="o">).</span><span class="na">head</span><span class="o">().</span><span class="na">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span> |
| <span class="n">lrModel</span><span class="o">.</span><span class="na">setThreshold</span><span class="o">(</span><span class="n">bestThreshold</span><span class="o">);</span></code></pre></div> |
| |
| </div> |
| |
| <!--- TODO: Add python model summaries once implemented --> |
| <div data-lang="python"> |
| <p>Logistic regression model summary is not yet supported in Python.</p> |
| </div> |
| |
| </div> |
| |
| <h2 id="example-linear-regression">Example: Linear Regression</h2> |
| |
| <p>The interface for working with linear regression models and model |
| summaries is similar to the logistic regression case. The following |
| example demonstrates training an elastic net regularized linear |
| regression model and extracting model summary statistics.</p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| |
| <div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegression</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span> |
| |
| <span class="c1">// Load training data</span> |
| <span class="k">val</span> <span class="n">training</span> <span class="k">=</span> <span class="nc">MLUtils</span><span class="o">.</span><span class="n">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">).</span><span class="n">toDF</span><span class="o">()</span> |
| |
| <span class="k">val</span> <span class="n">lr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LinearRegression</span><span class="o">()</span> |
| <span class="o">.</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span> |
| |
| <span class="c1">// Fit the model</span> |
| <span class="k">val</span> <span class="n">lrModel</span> <span class="k">=</span> <span class="n">lr</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span> |
| |
| <span class="c1">// Print the weights and intercept for linear regression</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Weights: ${lrModel.weights} Intercept: ${lrModel.intercept}"</span><span class="o">)</span> |
| |
| <span class="c1">// Summarize the model over the training set and print out some metrics</span> |
| <span class="k">val</span> <span class="n">trainingSummary</span> <span class="k">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="n">summary</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"numIterations: ${trainingSummary.totalIterations}"</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"objectiveHistory: ${trainingSummary.objectiveHistory.toList}"</span><span class="o">)</span> |
| <span class="n">trainingSummary</span><span class="o">.</span><span class="n">residuals</span><span class="o">.</span><span class="n">show</span><span class="o">()</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"RMSE: ${trainingSummary.rootMeanSquaredError}"</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">"r2: ${trainingSummary.r2}"</span><span class="o">)</span></code></pre></div> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegression</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegressionModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegressionTrainingSummary</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.util.MLUtils</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.SparkConf</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.DataFrame</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.SQLContext</span><span class="o">;</span> |
| |
| <span class="kd">public</span> <span class="kd">class</span> <span class="nc">LinearRegressionWithElasticNetExample</span> <span class="o">{</span> |
| <span class="kd">public</span> <span class="kd">static</span> <span class="kt">void</span> <span class="nf">main</span><span class="o">(</span><span class="n">String</span><span class="o">[]</span> <span class="n">args</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">SparkConf</span> <span class="n">conf</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkConf</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setAppName</span><span class="o">(</span><span class="s">"Linear Regression with Elastic Net Example"</span><span class="o">);</span> |
| |
| <span class="n">SparkContext</span> <span class="n">sc</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SparkContext</span><span class="o">(</span><span class="n">conf</span><span class="o">);</span> |
| <span class="n">SQLContext</span> <span class="n">sql</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">SQLContext</span><span class="o">(</span><span class="n">sc</span><span class="o">);</span> |
| <span class="n">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">;</span> |
| |
| <span class="c1">// Load training data</span> |
| <span class="n">DataFrame</span> <span class="n">training</span> <span class="o">=</span> <span class="n">sql</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">MLUtils</span><span class="o">.</span><span class="na">loadLibSVMFile</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="n">path</span><span class="o">).</span><span class="na">toJavaRDD</span><span class="o">(),</span> <span class="n">LabeledPoint</span><span class="o">.</span><span class="na">class</span><span class="o">);</span> |
| |
| <span class="n">LinearRegression</span> <span class="n">lr</span> <span class="o">=</span> <span class="k">new</span> <span class="nf">LinearRegression</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span> |
| |
| <span class="c1">// Fit the model</span> |
| <span class="n">LinearRegressionModel</span> <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span> |
| |
| <span class="c1">// Print the weights and intercept for linear regression</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Weights: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">weights</span><span class="o">()</span> <span class="o">+</span> <span class="s">" Intercept: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span> |
| |
| <span class="c1">// Summarize the model over the training set and print out some metrics</span> |
| <span class="n">LinearRegressionTrainingSummary</span> <span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">summary</span><span class="o">();</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"numIterations: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">totalIterations</span><span class="o">());</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"objectiveHistory: "</span> <span class="o">+</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">trainingSummary</span><span class="o">.</span><span class="na">objectiveHistory</span><span class="o">()));</span> |
| <span class="n">trainingSummary</span><span class="o">.</span><span class="na">residuals</span><span class="o">().</span><span class="na">show</span><span class="o">();</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"RMSE: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">rootMeanSquaredError</span><span class="o">());</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"r2: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">r2</span><span class="o">());</span> |
| <span class="o">}</span> |
| <span class="o">}</span></code></pre></div> |
| |
| </div> |
| |
| <div data-lang="python"> |
| <!--- TODO: Add python model summaries once implemented --> |
| |
| <div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">LinearRegression</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">MLUtils</span> |
| |
| <span class="c"># Load training data</span> |
| <span class="n">training</span> <span class="o">=</span> <span class="n">MLUtils</span><span class="o">.</span><span class="n">loadLibSVMFile</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span><span class="o">.</span><span class="n">toDF</span><span class="p">()</span> |
| |
| <span class="n">lr</span> <span class="o">=</span> <span class="n">LinearRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span> |
| |
| <span class="c"># Fit the model</span> |
| <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span> |
| |
| <span class="c"># Print the weights and intercept for linear regression</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Weights: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="o">.</span><span class="n">weights</span><span class="p">))</span> |
| <span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="o">.</span><span class="n">intercept</span><span class="p">))</span> |
| |
| <span class="c"># Linear regression model summary is not yet supported in Python.</span></code></pre></div> |
| |
| </div> |
| |
| </div> |
| |
| <h1 id="optimization">Optimization</h1> |
| |
| <p>The optimization algorithm underlying the implementation is called |
| <a href="http://research-srv.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf">Orthant-Wise Limited-memory |
| QuasiNewton</a> |
| (OWL-QN). It is an extension of L-BFGS that can effectively handle L1 |
| regularization and elastic net.</p> |
| |
| |
| |
| </div> <!-- /container --> |
| |
| <script src="js/vendor/jquery-1.8.0.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |