blob: a317dc7522b4cafaf0d30a243e98250bc16395c9 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.pandas.DataFrame.nunique &#8212; PySpark 3.3.1 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="pyspark.pandas.DataFrame.sem" href="pyspark.pandas.DataFrame.sem.html" />
<link rel="prev" title="pyspark.pandas.DataFrame.quantile" href="pyspark.pandas.DataFrame.quantile.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="../../index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="">
<a href="../../pyspark.sql/index.html">Spark SQL</a>
</li>
<li class="active">
<a href="../index.html">Pandas API on Spark</a>
<ul>
<li class="">
<a href="../io.html">Input/Output</a>
</li>
<li class="">
<a href="../general_functions.html">General functions</a>
</li>
<li class="">
<a href="../series.html">Series</a>
</li>
<li class="active">
<a href="../frame.html">DataFrame</a>
</li>
<li class="">
<a href="../indexing.html">Index objects</a>
</li>
<li class="">
<a href="../window.html">Window</a>
</li>
<li class="">
<a href="../groupby.html">GroupBy</a>
</li>
<li class="">
<a href="../ml.html">Machine Learning utilities</a>
</li>
<li class="">
<a href="../extensions.html">Extensions</a>
</li>
</ul>
</li>
<li class="">
<a href="../../pyspark.ss/index.html">Structured Streaming</a>
</li>
<li class="">
<a href="../../pyspark.ml.html">MLlib (DataFrame-based)</a>
</li>
<li class="">
<a href="../../pyspark.streaming.html">Spark Streaming</a>
</li>
<li class="">
<a href="../../pyspark.mllib.html">MLlib (RDD-based)</a>
</li>
<li class="">
<a href="../../pyspark.html">Spark Core</a>
</li>
<li class="">
<a href="../../pyspark.resource.html">Resource Management</a>
</li>
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<div class="section" id="pyspark-pandas-dataframe-nunique">
<h1>pyspark.pandas.DataFrame.nunique<a class="headerlink" href="#pyspark-pandas-dataframe-nunique" title="Permalink to this headline"></a></h1>
<dl class="py method">
<dt id="pyspark.pandas.DataFrame.nunique">
<code class="sig-prename descclassname">DataFrame.</code><code class="sig-name descname">nunique</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">axis</span><span class="p">:</span> <span class="n">Union<span class="p">[</span>int<span class="p">, </span>str<span class="p">]</span></span> <span class="o">=</span> <span class="default_value">0</span></em>, <em class="sig-param"><span class="n">dropna</span><span class="p">:</span> <span class="n">bool</span> <span class="o">=</span> <span class="default_value">True</span></em>, <em class="sig-param"><span class="n">approx</span><span class="p">:</span> <span class="n">bool</span> <span class="o">=</span> <span class="default_value">False</span></em>, <em class="sig-param"><span class="n">rsd</span><span class="p">:</span> <span class="n">float</span> <span class="o">=</span> <span class="default_value">0.05</span></em><span class="sig-paren">)</span> &#x2192; Series<a class="reference internal" href="../../../_modules/pyspark/pandas/frame.html#DataFrame.nunique"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.pandas.DataFrame.nunique" title="Permalink to this definition"></a></dt>
<dd><p>Return number of unique elements in the object.</p>
<p>Excludes NA values by default.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>axis</strong><span class="classifier">int, default 0 or ‘index’</span></dt><dd><p>Can only be set to 0 at the moment.</p>
</dd>
<dt><strong>dropna</strong><span class="classifier">bool, default True</span></dt><dd><p>Don’t include NaN in the count.</p>
</dd>
<dt><strong>approx: bool, default False</strong></dt><dd><p>If False, will use the exact algorithm and return the exact number of unique.
If True, it uses the HyperLogLog approximate algorithm, which is significantly faster
for large amount of data.
Note: This parameter is specific to pandas-on-Spark and is not found in pandas.</p>
</dd>
<dt><strong>rsd: float, default 0.05</strong></dt><dd><p>Maximum estimation error allowed in the HyperLogLog algorithm.
Note: Just like <code class="docutils literal notranslate"><span class="pre">approx</span></code> this parameter is specific to pandas-on-Spark.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><dl class="simple">
<dt>The number of unique values per column as a pandas-on-Spark Series.</dt><dd></dd>
</dl>
</dd>
</dl>
<p class="rubric">Examples</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">ps</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;A&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="s1">&#39;B&#39;</span><span class="p">:</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">]})</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df</span><span class="o">.</span><span class="n">nunique</span><span class="p">()</span>
<span class="go">A 3</span>
<span class="go">B 1</span>
<span class="go">dtype: int64</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df</span><span class="o">.</span><span class="n">nunique</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="go">A 3</span>
<span class="go">B 2</span>
<span class="go">dtype: int64</span>
</pre></div>
</div>
<p>On big data, we recommend using the approximate algorithm to speed up this function.
The result will be very close to the exact unique count.</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df</span><span class="o">.</span><span class="n">nunique</span><span class="p">(</span><span class="n">approx</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">A 3</span>
<span class="go">B 1</span>
<span class="go">dtype: int64</span>
</pre></div>
</div>
</dd></dl>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="pyspark.pandas.DataFrame.quantile.html" title="previous page">pyspark.pandas.DataFrame.quantile</a>
<a class='right-next' id="next-link" href="pyspark.pandas.DataFrame.sem.html" title="next page">pyspark.pandas.DataFrame.sem</a>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>