blob: b2c82327afb98557fea99c7fde50adb1e3081c4e [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.mllib.recommendation &#8212; PySpark 3.3.1 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.mllib.recommendation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">array</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">namedtuple</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">since</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">callMLlibFunc</span><span class="p">,</span> <span class="n">inherit_doc</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">JavaLoader</span><span class="p">,</span> <span class="n">JavaSaveable</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;MatrixFactorizationModel&quot;</span><span class="p">,</span> <span class="s2">&quot;ALS&quot;</span><span class="p">,</span> <span class="s2">&quot;Rating&quot;</span><span class="p">]</span>
<div class="viewcode-block" id="Rating"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.Rating.html#pyspark.mllib.recommendation.Rating">[docs]</a><span class="k">class</span> <span class="nc">Rating</span><span class="p">(</span><span class="n">namedtuple</span><span class="p">(</span><span class="s2">&quot;Rating&quot;</span><span class="p">,</span> <span class="p">[</span><span class="s2">&quot;user&quot;</span><span class="p">,</span> <span class="s2">&quot;product&quot;</span><span class="p">,</span> <span class="s2">&quot;rating&quot;</span><span class="p">])):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Represents a (user, product, rating) tuple.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; r = Rating(1, 2, 5.0)</span>
<span class="sd"> &gt;&gt;&gt; (r.user, r.product, r.rating)</span>
<span class="sd"> (1, 2, 5.0)</span>
<span class="sd"> &gt;&gt;&gt; (r[0], r[1], r[2])</span>
<span class="sd"> (1, 2, 5.0)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__reduce__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="n">Rating</span><span class="p">,</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">user</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">product</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rating</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">MatrixFactorizationModel</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">JavaSaveable</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;A matrix factorisation model trained by regularized alternating</span>
<span class="sd"> least-squares.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; r1 = (1, 1, 1.0)</span>
<span class="sd"> &gt;&gt;&gt; r2 = (1, 2, 2.0)</span>
<span class="sd"> &gt;&gt;&gt; r3 = (2, 1, 2.0)</span>
<span class="sd"> &gt;&gt;&gt; ratings = sc.parallelize([r1, r2, r3])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.trainImplicit(ratings, 1, seed=10)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; testset = sc.parallelize([(1, 2), (1, 1)])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 2, seed=0)</span>
<span class="sd"> &gt;&gt;&gt; model.predictAll(testset).collect()</span>
<span class="sd"> [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)]</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 4, seed=10)</span>
<span class="sd"> &gt;&gt;&gt; model.userFeatures().collect()</span>
<span class="sd"> [(1, array(&#39;d&#39;, [...])), (2, array(&#39;d&#39;, [...]))]</span>
<span class="sd"> &gt;&gt;&gt; model.recommendUsers(1, 2)</span>
<span class="sd"> [Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]</span>
<span class="sd"> &gt;&gt;&gt; model.recommendProducts(1, 2)</span>
<span class="sd"> [Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]</span>
<span class="sd"> &gt;&gt;&gt; model.rank</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; first_user = model.userFeatures().take(1)[0]</span>
<span class="sd"> &gt;&gt;&gt; latents = first_user[1]</span>
<span class="sd"> &gt;&gt;&gt; len(latents)</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; model.productFeatures().collect()</span>
<span class="sd"> [(1, array(&#39;d&#39;, [...])), (2, array(&#39;d&#39;, [...]))]</span>
<span class="sd"> &gt;&gt;&gt; first_product = model.productFeatures().take(1)[0]</span>
<span class="sd"> &gt;&gt;&gt; latents = first_product[1]</span>
<span class="sd"> &gt;&gt;&gt; len(latents)</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; products_for_users = model.recommendProductsForUsers(1).collect()</span>
<span class="sd"> &gt;&gt;&gt; len(products_for_users)</span>
<span class="sd"> 2</span>
<span class="sd"> &gt;&gt;&gt; products_for_users[0]</span>
<span class="sd"> (1, (Rating(user=1, product=2, rating=...),))</span>
<span class="sd"> &gt;&gt;&gt; users_for_products = model.recommendUsersForProducts(1).collect()</span>
<span class="sd"> &gt;&gt;&gt; len(users_for_products)</span>
<span class="sd"> 2</span>
<span class="sd"> &gt;&gt;&gt; users_for_products[0]</span>
<span class="sd"> (1, (Rating(user=2, product=1, rating=...),))</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(ratings, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 3.73...</span>
<span class="sd"> &gt;&gt;&gt; df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)])</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.train(df, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 3.73...</span>
<span class="sd"> &gt;&gt;&gt; model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=123456789)</span>
<span class="sd"> &gt;&gt;&gt; model.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; import os, tempfile</span>
<span class="sd"> &gt;&gt;&gt; path = tempfile.mkdtemp()</span>
<span class="sd"> &gt;&gt;&gt; model.save(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel = MatrixFactorizationModel.load(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(2, 2)</span>
<span class="sd"> 0.4...</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predictAll(testset).collect()</span>
<span class="sd"> [Rating(...</span>
<span class="sd"> &gt;&gt;&gt; from shutil import rmtree</span>
<span class="sd"> &gt;&gt;&gt; try:</span>
<span class="sd"> ... rmtree(path)</span>
<span class="sd"> ... except OSError:</span>
<span class="sd"> ... pass</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="MatrixFactorizationModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predict">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user</span><span class="p">,</span> <span class="n">product</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predicts rating for the given user and product.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">user</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">product</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.predictAll"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predictAll">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predictAll</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user_product</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a list of predicted ratings for input user and product</span>
<span class="sd"> pairs.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">user_product</span><span class="p">,</span> <span class="n">RDD</span><span class="p">),</span> <span class="s2">&quot;user_product should be RDD of (user, product)&quot;</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">user_product</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">first</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">&quot;user_product should be RDD of (user, product)&quot;</span>
<span class="n">user_product</span> <span class="o">=</span> <span class="n">user_product</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">u_p</span><span class="p">:</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">u_p</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">int</span><span class="p">(</span><span class="n">u_p</span><span class="p">[</span><span class="mi">1</span><span class="p">])))</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;predict&quot;</span><span class="p">,</span> <span class="n">user_product</span><span class="p">)</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.userFeatures"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.userFeatures">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">userFeatures</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a paired RDD, where the first element is the user and the</span>
<span class="sd"> second is an array of features corresponding to that user.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;getUserFeatures&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="s2">&quot;d&quot;</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.productFeatures"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.productFeatures">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">productFeatures</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns a paired RDD, where the first element is the product and the</span>
<span class="sd"> second is an array of features corresponding to that product.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;getProductFeatures&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">array</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="s2">&quot;d&quot;</span><span class="p">,</span> <span class="n">v</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendUsers"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendUsers">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recommendUsers</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">product</span><span class="p">,</span> <span class="n">num</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of users for a given product and</span>
<span class="sd"> returns a list of Rating objects sorted by the predicted rating in</span>
<span class="sd"> descending order.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recommendUsers&quot;</span><span class="p">,</span> <span class="n">product</span><span class="p">,</span> <span class="n">num</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendProducts"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendProducts">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">recommendProducts</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">user</span><span class="p">,</span> <span class="n">num</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of products for a given user and</span>
<span class="sd"> returns a list of Rating objects sorted by the predicted rating in</span>
<span class="sd"> descending order.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;recommendProducts&quot;</span><span class="p">,</span> <span class="n">user</span><span class="p">,</span> <span class="n">num</span><span class="p">))</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendProductsForUsers"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendProductsForUsers">[docs]</a> <span class="k">def</span> <span class="nf">recommendProductsForUsers</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of products for all users. The</span>
<span class="sd"> number of recommendations returned per user may be less than &quot;num&quot;.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;wrappedRecommendProductsForUsers&quot;</span><span class="p">,</span> <span class="n">num</span><span class="p">)</span></div>
<div class="viewcode-block" id="MatrixFactorizationModel.recommendUsersForProducts"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.recommendUsersForProducts">[docs]</a> <span class="k">def</span> <span class="nf">recommendUsersForProducts</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Recommends the top &quot;num&quot; number of users for all products. The</span>
<span class="sd"> number of recommendations returned per product may be less than</span>
<span class="sd"> &quot;num&quot;.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;wrappedRecommendUsersForProducts&quot;</span><span class="p">,</span> <span class="n">num</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">rank</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Rank for the features in this model&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">&quot;rank&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="MatrixFactorizationModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.MatrixFactorizationModel.html#pyspark.mllib.recommendation.MatrixFactorizationModel.load">[docs]</a> <span class="nd">@classmethod</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.3.1&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Load a model from the given path&quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_load_java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span>
<span class="n">wrapper</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">MatrixFactorizationModelWrapper</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">wrapper</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="ALS"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS">[docs]</a><span class="k">class</span> <span class="nc">ALS</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;Alternating Least Squares matrix factorization</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">_prepare</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">ratings</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ratings</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ratings</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span>
<span class="n">ratings</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">rdd</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Ratings should be represented by either an RDD or a DataFrame, &quot;</span>
<span class="s2">&quot;but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">ratings</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">Rating</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
<span class="n">ratings</span> <span class="o">=</span> <span class="n">ratings</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">Rating</span><span class="p">(</span><span class="o">*</span><span class="n">x</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;Expect a Rating or a tuple/list, but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">first</span><span class="p">))</span>
<span class="k">return</span> <span class="n">ratings</span>
<div class="viewcode-block" id="ALS.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span> <span class="n">ratings</span><span class="p">,</span> <span class="n">rank</span><span class="p">,</span> <span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">lambda_</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">blocks</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">nonnegative</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a matrix factorization model given an RDD of ratings by users</span>
<span class="sd"> for a subset of products. The ratings matrix is approximated as the</span>
<span class="sd"> product of two lower-rank matrices of a given rank (number of</span>
<span class="sd"> features). To solve for these features, ALS is run iteratively with</span>
<span class="sd"> a configurable level of parallelism.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ratings : :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of `Rating` or (userID, productID, rating) tuple.</span>
<span class="sd"> rank : int</span>
<span class="sd"> Number of features to use (also referred to as the number of latent factors).</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> Number of iterations of ALS.</span>
<span class="sd"> (default: 5)</span>
<span class="sd"> lambda\\_ : float, optional</span>
<span class="sd"> Regularization parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> blocks : int, optional</span>
<span class="sd"> Number of blocks used to parallelize the computation. A value</span>
<span class="sd"> of -1 will use an auto-configured number of blocks.</span>
<span class="sd"> (default: -1)</span>
<span class="sd"> nonnegative : bool, optional</span>
<span class="sd"> A value of True will solve least-squares with nonnegativity</span>
<span class="sd"> constraints.</span>
<span class="sd"> (default: False)</span>
<span class="sd"> seed : bool, optional</span>
<span class="sd"> Random seed for initial matrix factorization model. A value</span>
<span class="sd"> of None will use system time as the seed.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainALSModel&quot;</span><span class="p">,</span>
<span class="bp">cls</span><span class="o">.</span><span class="n">_prepare</span><span class="p">(</span><span class="n">ratings</span><span class="p">),</span>
<span class="n">rank</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div>
<div class="viewcode-block" id="ALS.trainImplicit"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.recommendation.ALS.html#pyspark.mllib.recommendation.ALS.trainImplicit">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">trainImplicit</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">ratings</span><span class="p">,</span>
<span class="n">rank</span><span class="p">,</span>
<span class="n">iterations</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span>
<span class="n">lambda_</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span>
<span class="n">blocks</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a matrix factorization model given an RDD of &#39;implicit</span>
<span class="sd"> preferences&#39; of users for a subset of products. The ratings matrix</span>
<span class="sd"> is approximated as the product of two lower-rank matrices of a</span>
<span class="sd"> given rank (number of features). To solve for these features, ALS</span>
<span class="sd"> is run iteratively with a configurable level of parallelism.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ratings : :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of `Rating` or (userID, productID, rating) tuple.</span>
<span class="sd"> rank : int</span>
<span class="sd"> Number of features to use (also referred to as the number of latent factors).</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> Number of iterations of ALS.</span>
<span class="sd"> (default: 5)</span>
<span class="sd"> lambda\\_ : float, optional</span>
<span class="sd"> Regularization parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> blocks : int, optional</span>
<span class="sd"> Number of blocks used to parallelize the computation. A value</span>
<span class="sd"> of -1 will use an auto-configured number of blocks.</span>
<span class="sd"> (default: -1)</span>
<span class="sd"> alpha : float, optional</span>
<span class="sd"> A constant used in computing confidence.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> nonnegative : bool, optional</span>
<span class="sd"> A value of True will solve least-squares with nonnegativity</span>
<span class="sd"> constraints.</span>
<span class="sd"> (default: False)</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed for initial matrix factorization model. A value</span>
<span class="sd"> of None will use system time as the seed.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainImplicitALSModel&quot;</span><span class="p">,</span>
<span class="bp">cls</span><span class="o">.</span><span class="n">_prepare</span><span class="p">(</span><span class="n">ratings</span><span class="p">),</span>
<span class="n">rank</span><span class="p">,</span>
<span class="n">iterations</span><span class="p">,</span>
<span class="n">lambda_</span><span class="p">,</span>
<span class="n">blocks</span><span class="p">,</span>
<span class="n">alpha</span><span class="p">,</span>
<span class="n">nonnegative</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">MatrixFactorizationModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">():</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">pyspark.mllib.recommendation</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SQLContext</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">recommendation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">,</span> <span class="s2">&quot;PythonTest&quot;</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">sc</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sqlContext&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">SQLContext</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>