blob: 003ceef78d95fad9c91bd8ef3c90cad73fd4c95f [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.mllib.classification &#8212; PySpark 3.3.1 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.mllib.classification</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">exp</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Iterable</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">overload</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="kn">import</span> <span class="nn">numpy</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">RDD</span><span class="p">,</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">since</span>
<span class="kn">from</span> <span class="nn">pyspark.streaming.dstream</span> <span class="kn">import</span> <span class="n">DStream</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">callMLlibFunc</span><span class="p">,</span> <span class="n">_py2java</span><span class="p">,</span> <span class="n">_java2py</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">_convert_to_vector</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">LabeledPoint</span><span class="p">,</span>
<span class="n">LinearModel</span><span class="p">,</span>
<span class="n">_regression_train_wrapper</span><span class="p">,</span>
<span class="n">StreamingLinearAlgorithm</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">Saveable</span><span class="p">,</span> <span class="n">Loader</span><span class="p">,</span> <span class="n">inherit_doc</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vector</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib._typing</span> <span class="kn">import</span> <span class="n">VectorLike</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">&quot;LogisticRegressionModel&quot;</span><span class="p">,</span>
<span class="s2">&quot;LogisticRegressionWithSGD&quot;</span><span class="p">,</span>
<span class="s2">&quot;LogisticRegressionWithLBFGS&quot;</span><span class="p">,</span>
<span class="s2">&quot;SVMModel&quot;</span><span class="p">,</span>
<span class="s2">&quot;SVMWithSGD&quot;</span><span class="p">,</span>
<span class="s2">&quot;NaiveBayesModel&quot;</span><span class="p">,</span>
<span class="s2">&quot;NaiveBayes&quot;</span><span class="p">,</span>
<span class="s2">&quot;StreamingLogisticRegressionWithSGD&quot;</span><span class="p">,</span>
<span class="p">]</span>
<span class="k">class</span> <span class="nc">LinearClassificationModel</span><span class="p">(</span><span class="n">LinearModel</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A private abstract class representing a multiclass classification</span>
<span class="sd"> model. The categories are represented by int values: 0, 1, 2, etc.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weights</span><span class="p">:</span> <span class="n">Vector</span><span class="p">,</span> <span class="n">intercept</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">LinearClassificationModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">intercept</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setThreshold</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the threshold that separates positive predictions from</span>
<span class="sd"> negative predictions. An example with prediction score greater</span>
<span class="sd"> than or equal to this threshold is identified as a positive,</span>
<span class="sd"> and negative otherwise. It is used for binary classification</span>
<span class="sd"> only.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="o">=</span> <span class="n">value</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">threshold</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Returns the threshold (if any) used for converting raw</span>
<span class="sd"> prediction scores into 0/1 predictions. It is used for</span>
<span class="sd"> binary classification only.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">clearThreshold</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Clears the threshold so that `predict` will output raw</span>
<span class="sd"> prediction scores. It is used for binary classification only.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">test</span><span class="p">:</span> <span class="s2">&quot;VectorLike&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">test</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="o">...</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">test</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]],</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predict values for a single data point or an RDD of points</span>
<span class="sd"> using the model trained.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span>
<div class="viewcode-block" id="LogisticRegressionModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionModel.html#pyspark.mllib.classification.LogisticRegressionModel">[docs]</a><span class="k">class</span> <span class="nc">LogisticRegressionModel</span><span class="p">(</span><span class="n">LinearClassificationModel</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Classification model trained using Multinomial/Binary Logistic</span>
<span class="sd"> Regression.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> weights : :py:class:`pyspark.mllib.linalg.Vector`</span>
<span class="sd"> Weights computed for every feature.</span>
<span class="sd"> intercept : float</span>
<span class="sd"> Intercept computed for this model. (Only used in Binary Logistic</span>
<span class="sd"> Regression. In Multinomial Logistic Regression, the intercepts will</span>
<span class="sd"> not be a single value, so the intercepts will be part of the</span>
<span class="sd"> weights.)</span>
<span class="sd"> numFeatures : int</span>
<span class="sd"> The dimension of the features.</span>
<span class="sd"> numClasses : int</span>
<span class="sd"> The number of possible outcomes for k classes classification problem</span>
<span class="sd"> in Multinomial Logistic Regression. By default, it is binary</span>
<span class="sd"> logistic regression so numClasses will be set to 2.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.mllib.linalg import SparseVector</span>
<span class="sd"> &gt;&gt;&gt; data = [</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0, 1.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [1.0, 0.0]),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; lrm = LogisticRegressionWithSGD.train(sc.parallelize(data), iterations=10)</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict([1.0, 0.0])</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict([0.0, 1.0])</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect()</span>
<span class="sd"> [1, 0]</span>
<span class="sd"> &gt;&gt;&gt; lrm.clearThreshold()</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict([0.0, 1.0])</span>
<span class="sd"> 0.279...</span>
<span class="sd"> &gt;&gt;&gt; sparse_data = [</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),</span>
<span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),</span>
<span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=10)</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict(numpy.array([0.0, 1.0]))</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict(numpy.array([1.0, 0.0]))</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict(SparseVector(2, {1: 1.0}))</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict(SparseVector(2, {0: 1.0}))</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; import os, tempfile</span>
<span class="sd"> &gt;&gt;&gt; path = tempfile.mkdtemp()</span>
<span class="sd"> &gt;&gt;&gt; lrm.save(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel = LogisticRegressionModel.load(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(numpy.array([0.0, 1.0]))</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(SparseVector(2, {0: 1.0}))</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; from shutil import rmtree</span>
<span class="sd"> &gt;&gt;&gt; try:</span>
<span class="sd"> ... rmtree(path)</span>
<span class="sd"> ... except BaseException:</span>
<span class="sd"> ... pass</span>
<span class="sd"> &gt;&gt;&gt; multi_class_data = [</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0, 1.0, 0.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [1.0, 0.0, 0.0]),</span>
<span class="sd"> ... LabeledPoint(2.0, [0.0, 0.0, 1.0])</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; data = sc.parallelize(multi_class_data)</span>
<span class="sd"> &gt;&gt;&gt; mcm = LogisticRegressionWithLBFGS.train(data, iterations=10, numClasses=3)</span>
<span class="sd"> &gt;&gt;&gt; mcm.predict([0.0, 0.5, 0.0])</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; mcm.predict([0.8, 0.0, 0.0])</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; mcm.predict([0.0, 0.0, 0.3])</span>
<span class="sd"> 2</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">weights</span><span class="p">:</span> <span class="n">Vector</span><span class="p">,</span> <span class="n">intercept</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">numFeatures</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">LogisticRegressionModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">intercept</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_numFeatures</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">numFeatures</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">numClasses</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_dataWithBiasSize</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_dataWithBiasSize</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_coeff</span><span class="o">.</span><span class="n">size</span> <span class="o">//</span> <span class="p">(</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">-</span> <span class="mi">1</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_coeff</span><span class="o">.</span><span class="n">toArray</span><span class="p">()</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dataWithBiasSize</span>
<span class="p">)</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">numFeatures</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Dimension of the features.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numFeatures</span>
<span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">numClasses</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Number of possible outcomes for k classes classification problem</span>
<span class="sd"> in Multinomial Logistic Regression.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="s2">&quot;VectorLike&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="o">...</span>
<div class="viewcode-block" id="LogisticRegressionModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionModel.html#pyspark.mllib.classification.LogisticRegressionModel.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]],</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predict values for a single data point or an RDD of points</span>
<span class="sd"> using the model trained.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">v</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">numClasses</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">margin</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">_intercept</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">if</span> <span class="n">margin</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">prob</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">margin</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">exp_margin</span> <span class="o">=</span> <span class="n">exp</span><span class="p">(</span><span class="n">margin</span><span class="p">)</span>
<span class="n">prob</span> <span class="o">=</span> <span class="n">exp_margin</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">exp_margin</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">prob</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">prob</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="k">else</span> <span class="mi">0</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">best_class</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">max_margin</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dataWithBiasSize</span><span class="p">:</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">margin</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">x</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span> <span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">])</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">]</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">margin</span> <span class="o">&gt;</span> <span class="n">max_margin</span><span class="p">:</span>
<span class="n">max_margin</span> <span class="o">=</span> <span class="n">margin</span>
<span class="n">best_class</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">margin</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_weightsMatrix</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">if</span> <span class="n">margin</span> <span class="o">&gt;</span> <span class="n">max_margin</span><span class="p">:</span>
<span class="n">max_margin</span> <span class="o">=</span> <span class="n">margin</span>
<span class="n">best_class</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">best_class</span></div>
<div class="viewcode-block" id="LogisticRegressionModel.save"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionModel.html#pyspark.mllib.classification.LogisticRegressionModel.save">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Save this model to the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">LogisticRegressionModel</span><span class="p">(</span>
<span class="n">_py2java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_coeff</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">intercept</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">numFeatures</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">numClasses</span>
<span class="p">)</span>
<span class="n">java_model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span><span class="p">)</span></div>
<div class="viewcode-block" id="LogisticRegressionModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionModel.html#pyspark.mllib.classification.LogisticRegressionModel.load">[docs]</a> <span class="nd">@classmethod</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;LogisticRegressionModel&quot;</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Load a model from the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">LogisticRegressionModel</span><span class="o">.</span><span class="n">load</span><span class="p">(</span>
<span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">_java2py</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">java_model</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="n">intercept</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">intercept</span><span class="p">()</span>
<span class="n">numFeatures</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">numFeatures</span><span class="p">()</span>
<span class="n">numClasses</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">numClasses</span><span class="p">()</span>
<span class="n">threshold</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">getThreshold</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">LogisticRegressionModel</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">intercept</span><span class="p">,</span> <span class="n">numFeatures</span><span class="p">,</span> <span class="n">numClasses</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">setThreshold</span><span class="p">(</span><span class="n">threshold</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span></div>
<span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span>
<span class="s2">&quot;pyspark.mllib.LogisticRegressionModel: intercept = </span><span class="si">{}</span><span class="s2">, &quot;</span>
<span class="s2">&quot;numFeatures = </span><span class="si">{}</span><span class="s2">, numClasses = </span><span class="si">{}</span><span class="s2">, threshold = </span><span class="si">{}</span><span class="s2">&quot;</span>
<span class="p">)</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_intercept</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numFeatures</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_numClasses</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span><span class="p">)</span></div>
<div class="viewcode-block" id="LogisticRegressionWithSGD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionWithSGD.html#pyspark.mllib.classification.LogisticRegressionWithSGD">[docs]</a><span class="k">class</span> <span class="nc">LogisticRegressionWithSGD</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a classification model for Binary Logistic Regression using Stochastic Gradient Descent.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> .. deprecated:: 2.0.0</span>
<span class="sd"> Use ml.classification.LogisticRegression or LogisticRegressionWithLBFGS.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="LogisticRegressionWithSGD.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionWithSGD.html#pyspark.mllib.classification.LogisticRegressionWithSGD.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span>
<span class="n">iterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span>
<span class="n">step</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">miniBatchFraction</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">initialWeights</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span><span class="p">,</span>
<span class="n">regType</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;l2&quot;</span><span class="p">,</span>
<span class="n">intercept</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">validateData</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">convergenceTol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.001</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">LogisticRegressionModel</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a logistic regression model on the given data.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : :py:class:`pyspark.RDD`</span>
<span class="sd"> The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`.</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> The number of iterations.</span>
<span class="sd"> (default: 100)</span>
<span class="sd"> step : float, optional</span>
<span class="sd"> The step parameter used in SGD.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> miniBatchFraction : float, optional</span>
<span class="sd"> Fraction of data to be used for each SGD iteration.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional</span>
<span class="sd"> The initial weights.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> regParam : float, optional</span>
<span class="sd"> The regularizer parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> regType : str, optional</span>
<span class="sd"> The type of regularizer used for training our model.</span>
<span class="sd"> Supported values:</span>
<span class="sd"> - &quot;l1&quot; for using L1 regularization</span>
<span class="sd"> - &quot;l2&quot; for using L2 regularization (default)</span>
<span class="sd"> - None for no regularization</span>
<span class="sd"> intercept : bool, optional</span>
<span class="sd"> Boolean parameter which indicates the use or not of the</span>
<span class="sd"> augmented representation for training data (i.e., whether bias</span>
<span class="sd"> features are activated or not).</span>
<span class="sd"> (default: False)</span>
<span class="sd"> validateData : bool, optional</span>
<span class="sd"> Boolean parameter which indicates if the algorithm should</span>
<span class="sd"> validate data before training.</span>
<span class="sd"> (default: True)</span>
<span class="sd"> convergenceTol : float, optional</span>
<span class="sd"> A condition which decides iteration termination.</span>
<span class="sd"> (default: 0.001)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">&quot;Deprecated in 2.0.0. Use ml.classification.LogisticRegression or &quot;</span>
<span class="s2">&quot;LogisticRegressionWithLBFGS.&quot;</span><span class="p">,</span>
<span class="ne">FutureWarning</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> <span class="n">i</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainLogisticRegressionModelWithSGD&quot;</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">,</span>
<span class="nb">int</span><span class="p">(</span><span class="n">iterations</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">step</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">miniBatchFraction</span><span class="p">),</span>
<span class="n">i</span><span class="p">,</span>
<span class="nb">float</span><span class="p">(</span><span class="n">regParam</span><span class="p">),</span>
<span class="n">regType</span><span class="p">,</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">intercept</span><span class="p">),</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">validateData</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">convergenceTol</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">_regression_train_wrapper</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">LogisticRegressionModel</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">initialWeights</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="LogisticRegressionWithLBFGS"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionWithLBFGS.html#pyspark.mllib.classification.LogisticRegressionWithLBFGS">[docs]</a><span class="k">class</span> <span class="nc">LogisticRegressionWithLBFGS</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a classification model for Multinomial/Binary Logistic Regression</span>
<span class="sd"> using Limited-memory BFGS.</span>
<span class="sd"> Standard feature scaling and L2 regularization are used by default.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="LogisticRegressionWithLBFGS.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.LogisticRegressionWithLBFGS.html#pyspark.mllib.classification.LogisticRegressionWithLBFGS.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span>
<span class="n">iterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span>
<span class="n">initialWeights</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">regType</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;l2&quot;</span><span class="p">,</span>
<span class="n">intercept</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">corrections</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">tolerance</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-6</span><span class="p">,</span>
<span class="n">validateData</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">LogisticRegressionModel</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a logistic regression model on the given data.</span>
<span class="sd"> .. versionadded:: 1.2.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : :py:class:`pyspark.RDD`</span>
<span class="sd"> The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`.</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> The number of iterations.</span>
<span class="sd"> (default: 100)</span>
<span class="sd"> initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional</span>
<span class="sd"> The initial weights.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> regParam : float, optional</span>
<span class="sd"> The regularizer parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> regType : str, optional</span>
<span class="sd"> The type of regularizer used for training our model.</span>
<span class="sd"> Supported values:</span>
<span class="sd"> - &quot;l1&quot; for using L1 regularization</span>
<span class="sd"> - &quot;l2&quot; for using L2 regularization (default)</span>
<span class="sd"> - None for no regularization</span>
<span class="sd"> intercept : bool, optional</span>
<span class="sd"> Boolean parameter which indicates the use or not of the</span>
<span class="sd"> augmented representation for training data (i.e., whether bias</span>
<span class="sd"> features are activated or not).</span>
<span class="sd"> (default: False)</span>
<span class="sd"> corrections : int, optional</span>
<span class="sd"> The number of corrections used in the LBFGS update.</span>
<span class="sd"> If a known updater is used for binary classification,</span>
<span class="sd"> it calls the ml implementation and this parameter will</span>
<span class="sd"> have no effect. (default: 10)</span>
<span class="sd"> tolerance : float, optional</span>
<span class="sd"> The convergence tolerance of iterations for L-BFGS.</span>
<span class="sd"> (default: 1e-6)</span>
<span class="sd"> validateData : bool, optional</span>
<span class="sd"> Boolean parameter which indicates if the algorithm should</span>
<span class="sd"> validate data before training.</span>
<span class="sd"> (default: True)</span>
<span class="sd"> numClasses : int, optional</span>
<span class="sd"> The number of classes (i.e., outcomes) a label can take in</span>
<span class="sd"> Multinomial Logistic Regression.</span>
<span class="sd"> (default: 2)</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; data = [</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0, 1.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [1.0, 0.0]),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10)</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict([1.0, 0.0])</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; lrm.predict([0.0, 1.0])</span>
<span class="sd"> 0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> <span class="n">i</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainLogisticRegressionModelWithLBFGS&quot;</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">,</span>
<span class="nb">int</span><span class="p">(</span><span class="n">iterations</span><span class="p">),</span>
<span class="n">i</span><span class="p">,</span>
<span class="nb">float</span><span class="p">(</span><span class="n">regParam</span><span class="p">),</span>
<span class="n">regType</span><span class="p">,</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">intercept</span><span class="p">),</span>
<span class="nb">int</span><span class="p">(</span><span class="n">corrections</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">tolerance</span><span class="p">),</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">validateData</span><span class="p">),</span>
<span class="nb">int</span><span class="p">(</span><span class="n">numClasses</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">initialWeights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">numClasses</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">initialWeights</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span><span class="o">.</span><span class="n">features</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">intercept</span><span class="p">:</span>
<span class="n">initialWeights</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span><span class="o">.</span><span class="n">features</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">numClasses</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">initialWeights</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span><span class="o">.</span><span class="n">features</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">numClasses</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_regression_train_wrapper</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">LogisticRegressionModel</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">initialWeights</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="SVMModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMModel.html#pyspark.mllib.classification.SVMModel">[docs]</a><span class="k">class</span> <span class="nc">SVMModel</span><span class="p">(</span><span class="n">LinearClassificationModel</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Model for Support Vector Machines (SVMs).</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> weights : :py:class:`pyspark.mllib.linalg.Vector`</span>
<span class="sd"> Weights computed for every feature.</span>
<span class="sd"> intercept : float</span>
<span class="sd"> Intercept computed for this model.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.mllib.linalg import SparseVector</span>
<span class="sd"> &gt;&gt;&gt; data = [</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [1.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [2.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [3.0])</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; svm = SVMWithSGD.train(sc.parallelize(data), iterations=10)</span>
<span class="sd"> &gt;&gt;&gt; svm.predict([1.0])</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; svm.predict(sc.parallelize([[1.0]])).collect()</span>
<span class="sd"> [1]</span>
<span class="sd"> &gt;&gt;&gt; svm.clearThreshold()</span>
<span class="sd"> &gt;&gt;&gt; svm.predict(numpy.array([1.0]))</span>
<span class="sd"> 1.44...</span>
<span class="sd"> &gt;&gt;&gt; sparse_data = [</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),</span>
<span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),</span>
<span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; svm = SVMWithSGD.train(sc.parallelize(sparse_data), iterations=10)</span>
<span class="sd"> &gt;&gt;&gt; svm.predict(SparseVector(2, {1: 1.0}))</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; svm.predict(SparseVector(2, {0: -1.0}))</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; import os, tempfile</span>
<span class="sd"> &gt;&gt;&gt; path = tempfile.mkdtemp()</span>
<span class="sd"> &gt;&gt;&gt; svm.save(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel = SVMModel.load(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(SparseVector(2, {1: 1.0}))</span>
<span class="sd"> 1</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(SparseVector(2, {0: -1.0}))</span>
<span class="sd"> 0</span>
<span class="sd"> &gt;&gt;&gt; from shutil import rmtree</span>
<span class="sd"> &gt;&gt;&gt; try:</span>
<span class="sd"> ... rmtree(path)</span>
<span class="sd"> ... except BaseException:</span>
<span class="sd"> ... pass</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weights</span><span class="p">:</span> <span class="n">Vector</span><span class="p">,</span> <span class="n">intercept</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SVMModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">intercept</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="s2">&quot;VectorLike&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="o">...</span>
<div class="viewcode-block" id="SVMModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMModel.html#pyspark.mllib.classification.SVMModel.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]],</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predict values for a single data point or an RDD of points</span>
<span class="sd"> using the model trained.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">v</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">margin</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">intercept</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">margin</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">margin</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">_threshold</span> <span class="k">else</span> <span class="mi">0</span></div>
<div class="viewcode-block" id="SVMModel.save"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMModel.html#pyspark.mllib.classification.SVMModel.save">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Save this model to the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">SVMModel</span><span class="p">(</span>
<span class="n">_py2java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_coeff</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">intercept</span>
<span class="p">)</span>
<span class="n">java_model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span><span class="p">)</span></div>
<div class="viewcode-block" id="SVMModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMModel.html#pyspark.mllib.classification.SVMModel.load">[docs]</a> <span class="nd">@classmethod</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;SVMModel&quot;</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Load a model from the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">SVMModel</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">_java2py</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">java_model</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="n">intercept</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">intercept</span><span class="p">()</span>
<span class="n">threshold</span> <span class="o">=</span> <span class="n">java_model</span><span class="o">.</span><span class="n">getThreshold</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">SVMModel</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">intercept</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">setThreshold</span><span class="p">(</span><span class="n">threshold</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span></div></div>
<div class="viewcode-block" id="SVMWithSGD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMWithSGD.html#pyspark.mllib.classification.SVMWithSGD">[docs]</a><span class="k">class</span> <span class="nc">SVMWithSGD</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a Support Vector Machine (SVM) using Stochastic Gradient Descent.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="SVMWithSGD.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.SVMWithSGD.html#pyspark.mllib.classification.SVMWithSGD.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span>
<span class="n">iterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span>
<span class="n">step</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span><span class="p">,</span>
<span class="n">miniBatchFraction</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">initialWeights</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">regType</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;l2&quot;</span><span class="p">,</span>
<span class="n">intercept</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">validateData</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">convergenceTol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.001</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">SVMModel</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a support vector machine on the given data.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : :py:class:`pyspark.RDD`</span>
<span class="sd"> The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`.</span>
<span class="sd"> iterations : int, optional</span>
<span class="sd"> The number of iterations.</span>
<span class="sd"> (default: 100)</span>
<span class="sd"> step : float, optional</span>
<span class="sd"> The step parameter used in SGD.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> regParam : float, optional</span>
<span class="sd"> The regularizer parameter.</span>
<span class="sd"> (default: 0.01)</span>
<span class="sd"> miniBatchFraction : float, optional</span>
<span class="sd"> Fraction of data to be used for each SGD iteration.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> initialWeights : :py:class:`pyspark.mllib.linalg.Vector` or convertible, optional</span>
<span class="sd"> The initial weights.</span>
<span class="sd"> (default: None)</span>
<span class="sd"> regType : str, optional</span>
<span class="sd"> The type of regularizer used for training our model.</span>
<span class="sd"> Allowed values:</span>
<span class="sd"> - &quot;l1&quot; for using L1 regularization</span>
<span class="sd"> - &quot;l2&quot; for using L2 regularization (default)</span>
<span class="sd"> - None for no regularization</span>
<span class="sd"> intercept : bool, optional</span>
<span class="sd"> Boolean parameter which indicates the use or not of the</span>
<span class="sd"> augmented representation for training data (i.e. whether bias</span>
<span class="sd"> features are activated or not).</span>
<span class="sd"> (default: False)</span>
<span class="sd"> validateData : bool, optional</span>
<span class="sd"> Boolean parameter which indicates if the algorithm should</span>
<span class="sd"> validate data before training.</span>
<span class="sd"> (default: True)</span>
<span class="sd"> convergenceTol : float, optional</span>
<span class="sd"> A condition which decides iteration termination.</span>
<span class="sd"> (default: 0.001)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> <span class="n">i</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;trainSVMModelWithSGD&quot;</span><span class="p">,</span>
<span class="n">rdd</span><span class="p">,</span>
<span class="nb">int</span><span class="p">(</span><span class="n">iterations</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">step</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">regParam</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">miniBatchFraction</span><span class="p">),</span>
<span class="n">i</span><span class="p">,</span>
<span class="n">regType</span><span class="p">,</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">intercept</span><span class="p">),</span>
<span class="nb">bool</span><span class="p">(</span><span class="n">validateData</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">convergenceTol</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">_regression_train_wrapper</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">SVMModel</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">initialWeights</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="NaiveBayesModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayesModel.html#pyspark.mllib.classification.NaiveBayesModel">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">NaiveBayesModel</span><span class="p">(</span><span class="n">Saveable</span><span class="p">,</span> <span class="n">Loader</span><span class="p">[</span><span class="s2">&quot;NaiveBayesModel&quot;</span><span class="p">]):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Model for Naive Bayes classifiers.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> labels : :py:class:`numpy.ndarray`</span>
<span class="sd"> List of labels.</span>
<span class="sd"> pi : :py:class:`numpy.ndarray`</span>
<span class="sd"> Log of class priors, whose dimension is C, number of labels.</span>
<span class="sd"> theta : :py:class:`numpy.ndarray`</span>
<span class="sd"> Log of class conditional probabilities, whose dimension is C-by-D,</span>
<span class="sd"> where D is number of features.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.mllib.linalg import SparseVector</span>
<span class="sd"> &gt;&gt;&gt; data = [</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0, 0.0]),</span>
<span class="sd"> ... LabeledPoint(0.0, [0.0, 1.0]),</span>
<span class="sd"> ... LabeledPoint(1.0, [1.0, 0.0]),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; model = NaiveBayes.train(sc.parallelize(data))</span>
<span class="sd"> &gt;&gt;&gt; model.predict(numpy.array([0.0, 1.0]))</span>
<span class="sd"> 0.0</span>
<span class="sd"> &gt;&gt;&gt; model.predict(numpy.array([1.0, 0.0]))</span>
<span class="sd"> 1.0</span>
<span class="sd"> &gt;&gt;&gt; model.predict(sc.parallelize([[1.0, 0.0]])).collect()</span>
<span class="sd"> [1.0]</span>
<span class="sd"> &gt;&gt;&gt; sparse_data = [</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),</span>
<span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),</span>
<span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; model = NaiveBayes.train(sc.parallelize(sparse_data))</span>
<span class="sd"> &gt;&gt;&gt; model.predict(SparseVector(2, {1: 1.0}))</span>
<span class="sd"> 0.0</span>
<span class="sd"> &gt;&gt;&gt; model.predict(SparseVector(2, {0: 1.0}))</span>
<span class="sd"> 1.0</span>
<span class="sd"> &gt;&gt;&gt; import os, tempfile</span>
<span class="sd"> &gt;&gt;&gt; path = tempfile.mkdtemp()</span>
<span class="sd"> &gt;&gt;&gt; model.save(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel = NaiveBayesModel.load(sc, path)</span>
<span class="sd"> &gt;&gt;&gt; sameModel.predict(SparseVector(2, {0: 1.0})) == model.predict(SparseVector(2, {0: 1.0}))</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from shutil import rmtree</span>
<span class="sd"> &gt;&gt;&gt; try:</span>
<span class="sd"> ... rmtree(path)</span>
<span class="sd"> ... except OSError:</span>
<span class="sd"> ... pass</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="n">numpy</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">pi</span><span class="p">:</span> <span class="n">numpy</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">theta</span><span class="p">:</span> <span class="n">numpy</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">labels</span> <span class="o">=</span> <span class="n">labels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pi</span> <span class="o">=</span> <span class="n">pi</span>
<span class="bp">self</span><span class="o">.</span><span class="n">theta</span> <span class="o">=</span> <span class="n">theta</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="s2">&quot;VectorLike&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">numpy</span><span class="o">.</span><span class="n">float64</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">numpy</span><span class="o">.</span><span class="n">float64</span><span class="p">]:</span>
<span class="o">...</span>
<div class="viewcode-block" id="NaiveBayesModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayesModel.html#pyspark.mllib.classification.NaiveBayesModel.predict">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">&quot;VectorLike&quot;</span><span class="p">]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">numpy</span><span class="o">.</span><span class="n">float64</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">numpy</span><span class="o">.</span><span class="n">float64</span><span class="p">]]:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Return the most likely class for a data vector</span>
<span class="sd"> or an RDD of vectors</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">v</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">labels</span><span class="p">[</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pi</span> <span class="o">+</span> <span class="n">x</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="o">.</span><span class="n">transpose</span><span class="p">()))</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="p">]</span></div>
<div class="viewcode-block" id="NaiveBayesModel.save"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayesModel.html#pyspark.mllib.classification.NaiveBayesModel.save">[docs]</a> <span class="k">def</span> <span class="nf">save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Save this model to the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_labels</span> <span class="o">=</span> <span class="n">_py2java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">labels</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
<span class="n">java_pi</span> <span class="o">=</span> <span class="n">_py2java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">pi</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
<span class="n">java_theta</span> <span class="o">=</span> <span class="n">_py2java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">NaiveBayesModel</span><span class="p">(</span>
<span class="n">java_labels</span><span class="p">,</span> <span class="n">java_pi</span><span class="p">,</span> <span class="n">java_theta</span>
<span class="p">)</span>
<span class="n">java_model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span><span class="p">)</span></div>
<div class="viewcode-block" id="NaiveBayesModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayesModel.html#pyspark.mllib.classification.NaiveBayesModel.load">[docs]</a> <span class="nd">@classmethod</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">path</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;NaiveBayesModel&quot;</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Load a model from the given path.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">java_model</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="n">NaiveBayesModel</span><span class="o">.</span><span class="n">load</span><span class="p">(</span>
<span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">path</span>
<span class="p">)</span>
<span class="c1"># Can not unpickle array.array from Pickle in Python3 with &quot;bytes&quot;</span>
<span class="n">py_labels</span> <span class="o">=</span> <span class="n">_java2py</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">java_model</span><span class="o">.</span><span class="n">labels</span><span class="p">(),</span> <span class="s2">&quot;latin1&quot;</span><span class="p">)</span>
<span class="n">py_pi</span> <span class="o">=</span> <span class="n">_java2py</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">java_model</span><span class="o">.</span><span class="n">pi</span><span class="p">(),</span> <span class="s2">&quot;latin1&quot;</span><span class="p">)</span>
<span class="n">py_theta</span> <span class="o">=</span> <span class="n">_java2py</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">java_model</span><span class="o">.</span><span class="n">theta</span><span class="p">(),</span> <span class="s2">&quot;latin1&quot;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">NaiveBayesModel</span><span class="p">(</span><span class="n">py_labels</span><span class="p">,</span> <span class="n">py_pi</span><span class="p">,</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">py_theta</span><span class="p">))</span></div></div>
<div class="viewcode-block" id="NaiveBayes"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayes.html#pyspark.mllib.classification.NaiveBayes">[docs]</a><span class="k">class</span> <span class="nc">NaiveBayes</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a Multinomial Naive Bayes model.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="NaiveBayes.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.NaiveBayes.html#pyspark.mllib.classification.NaiveBayes.train">[docs]</a> <span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> <span class="n">lambda_</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">NaiveBayesModel</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train a Naive Bayes model given an RDD of (label, features)</span>
<span class="sd"> vectors.</span>
<span class="sd"> This is the `Multinomial NB &lt;http://tinyurl.com/lsdw6p&gt;`_ which</span>
<span class="sd"> can handle all kinds of discrete data. For example, by</span>
<span class="sd"> converting documents into TF-IDF vectors, it can be used for</span>
<span class="sd"> document classification. By making every vector a 0-1 vector,</span>
<span class="sd"> it can also be used as `Bernoulli NB &lt;http://tinyurl.com/p7c96j6&gt;`_.</span>
<span class="sd"> The input feature values must be nonnegative.</span>
<span class="sd"> .. versionadded:: 0.9.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> data : :py:class:`pyspark.RDD`</span>
<span class="sd"> The training data, an RDD of :py:class:`pyspark.mllib.regression.LabeledPoint`.</span>
<span class="sd"> lambda\\_ : float, optional</span>
<span class="sd"> The smoothing parameter.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">first</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">LabeledPoint</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;`data` should be an RDD of LabeledPoint&quot;</span><span class="p">)</span>
<span class="n">labels</span><span class="p">,</span> <span class="n">pi</span><span class="p">,</span> <span class="n">theta</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;trainNaiveBayesModel&quot;</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">lambda_</span><span class="p">)</span>
<span class="k">return</span> <span class="n">NaiveBayesModel</span><span class="p">(</span><span class="n">labels</span><span class="o">.</span><span class="n">toArray</span><span class="p">(),</span> <span class="n">pi</span><span class="o">.</span><span class="n">toArray</span><span class="p">(),</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">theta</span><span class="p">))</span></div></div>
<div class="viewcode-block" id="StreamingLogisticRegressionWithSGD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.StreamingLogisticRegressionWithSGD.html#pyspark.mllib.classification.StreamingLogisticRegressionWithSGD">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">StreamingLogisticRegressionWithSGD</span><span class="p">(</span><span class="n">StreamingLinearAlgorithm</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Train or predict a logistic regression model on streaming data.</span>
<span class="sd"> Training uses Stochastic Gradient Descent to update the model based on</span>
<span class="sd"> each new batch of incoming data from a DStream.</span>
<span class="sd"> Each batch of data is assumed to be an RDD of LabeledPoints.</span>
<span class="sd"> The number of data points per batch can vary, but the number</span>
<span class="sd"> of features must be constant. An initial weight</span>
<span class="sd"> vector must be provided.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> stepSize : float, optional</span>
<span class="sd"> Step size for each iteration of gradient descent.</span>
<span class="sd"> (default: 0.1)</span>
<span class="sd"> numIterations : int, optional</span>
<span class="sd"> Number of iterations run for each batch of data.</span>
<span class="sd"> (default: 50)</span>
<span class="sd"> miniBatchFraction : float, optional</span>
<span class="sd"> Fraction of each batch of data to use for updates.</span>
<span class="sd"> (default: 1.0)</span>
<span class="sd"> regParam : float, optional</span>
<span class="sd"> L2 Regularization parameter.</span>
<span class="sd"> (default: 0.0)</span>
<span class="sd"> convergenceTol : float, optional</span>
<span class="sd"> Value used to determine when to terminate iterations.</span>
<span class="sd"> (default: 0.001)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">stepSize</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
<span class="n">numIterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span>
<span class="n">miniBatchFraction</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">regParam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">convergenceTol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.001</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stepSize</span> <span class="o">=</span> <span class="n">stepSize</span>
<span class="bp">self</span><span class="o">.</span><span class="n">numIterations</span> <span class="o">=</span> <span class="n">numIterations</span>
<span class="bp">self</span><span class="o">.</span><span class="n">regParam</span> <span class="o">=</span> <span class="n">regParam</span>
<span class="bp">self</span><span class="o">.</span><span class="n">miniBatchFraction</span> <span class="o">=</span> <span class="n">miniBatchFraction</span>
<span class="bp">self</span><span class="o">.</span><span class="n">convergenceTol</span> <span class="o">=</span> <span class="n">convergenceTol</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">LogisticRegressionModel</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nb">super</span><span class="p">(</span><span class="n">StreamingLogisticRegressionWithSGD</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">)</span>
<div class="viewcode-block" id="StreamingLogisticRegressionWithSGD.setInitialWeights"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.StreamingLogisticRegressionWithSGD.html#pyspark.mllib.classification.StreamingLogisticRegressionWithSGD.setInitialWeights">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">setInitialWeights</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">initialWeights</span><span class="p">:</span> <span class="s2">&quot;VectorLike&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;StreamingLogisticRegressionWithSGD&quot;</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Set the initial value of weights.</span>
<span class="sd"> This must be set before running trainOn and predictOn.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">initialWeights</span> <span class="o">=</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">initialWeights</span><span class="p">)</span>
<span class="c1"># LogisticRegressionWithSGD does only binary classification.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_model</span> <span class="o">=</span> <span class="n">LogisticRegressionModel</span><span class="p">(</span>
<span class="n">initialWeights</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">initialWeights</span><span class="o">.</span><span class="n">size</span><span class="p">,</span> <span class="mi">2</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="StreamingLogisticRegressionWithSGD.trainOn"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.classification.StreamingLogisticRegressionWithSGD.html#pyspark.mllib.classification.StreamingLogisticRegressionWithSGD.trainOn">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">trainOn</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dstream</span><span class="p">:</span> <span class="s2">&quot;DStream[LabeledPoint]&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;Train the model on the incoming dstream.&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_validate</span><span class="p">(</span><span class="n">dstream</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># LogisticRegressionWithSGD.train raises an error for an empty RDD.</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">rdd</span><span class="o">.</span><span class="n">isEmpty</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_model</span> <span class="o">=</span> <span class="n">LogisticRegressionWithSGD</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
<span class="n">rdd</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">numIterations</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">stepSize</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">miniBatchFraction</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="o">.</span><span class="n">weights</span><span class="p">,</span> <span class="c1"># type: ignore[union-attr]</span>
<span class="n">regParam</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">regParam</span><span class="p">,</span>
<span class="n">convergenceTol</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">convergenceTol</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">dstream</span><span class="o">.</span><span class="n">foreachRDD</span><span class="p">(</span><span class="n">update</span><span class="p">)</span></div></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.mllib.classification</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">classification</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">spark</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;mllib.classification tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>