blob: 44d38c161ee771f36f3b68fa0d1848d628f8439c [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Classification and regression - Spark 3.3.0 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" />
<link rel="stylesheet" href="css/docsearch.css">
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<nav class="navbar fixed-top navbar-expand-md navbar-light bg-light" id="topbar">
<div class="container">
<div class="navbar-header">
<div class="navbar-brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">3.3.0</span>
</div>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarCollapse" aria-controls="navbarCollapse"
aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarCollapse">
<ul class="navbar-nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a>
<div class="dropdown-menu" aria-labelledby="navbarQuickStart">
<a class="dropdown-item" href="quick-start.html">Quick Start</a>
<a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a>
<a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a>
<a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a>
<a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a>
<a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a>
<a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a>
<a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a>
<a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a>
<div class="dropdown-menu" aria-labelledby="navbarAPIDocs">
<a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a>
<a class="dropdown-item" href="api/java/index.html">Java</a>
<a class="dropdown-item" href="api/python/index.html">Python</a>
<a class="dropdown-item" href="api/R/index.html">R</a>
<a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a>
<div class="dropdown-menu" aria-labelledby="navbarDeploying">
<a class="dropdown-item" href="cluster-overview.html">Overview</a>
<a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a>
<a class="dropdown-item" href="running-on-mesos.html">Mesos</a>
<a class="dropdown-item" href="running-on-yarn.html">YARN</a>
<a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a>
</div>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarMore">
<a class="dropdown-item" href="configuration.html">Configuration</a>
<a class="dropdown-item" href="monitoring.html">Monitoring</a>
<a class="dropdown-item" href="tuning.html">Tuning Guide</a>
<a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a>
<a class="dropdown-item" href="security.html">Security</a>
<a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a>
<a class="dropdown-item" href="migration-guide.html">Migration Guide</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="building-spark.html">Building Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a>
<a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a>
</div>
</li>
<li class="nav-item">
<input type="text" id="docsearch-input" placeholder="Search the docs…">
</li>
</ul>
<!--<span class="navbar-text navbar-right"><span class="version-text">v3.3.0</span></span>-->
</div>
</div>
</nav>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">MLlib: Main Guide</a></h3>
<ul>
<li>
<a href="ml-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="ml-datasource.html">
Data sources
</a>
</li>
<li>
<a href="ml-pipeline.html">
Pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
Clustering
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-frequent-pattern-mining.html">
Frequent Pattern Mining
</a>
</li>
<li>
<a href="ml-tuning.html">
Model selection and tuning
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar mr-3" id="content">
<h1 class="title">Classification and regression</h1>
<p><code class="language-plaintext highlighter-rouge">\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]</code></p>
<p>This page covers algorithms for Classification and Regression. It also includes sections
discussing specific classes of algorithms, such as linear methods, trees, and ensembles.</p>
<p><strong>Table of Contents</strong></p>
<ul id="markdown-toc">
<li><a href="#classification" id="markdown-toc-classification">Classification</a> <ul>
<li><a href="#logistic-regression" id="markdown-toc-logistic-regression">Logistic regression</a> <ul>
<li><a href="#binomial-logistic-regression" id="markdown-toc-binomial-logistic-regression">Binomial logistic regression</a></li>
<li><a href="#multinomial-logistic-regression" id="markdown-toc-multinomial-logistic-regression">Multinomial logistic regression</a></li>
</ul>
</li>
<li><a href="#decision-tree-classifier" id="markdown-toc-decision-tree-classifier">Decision tree classifier</a></li>
<li><a href="#random-forest-classifier" id="markdown-toc-random-forest-classifier">Random forest classifier</a></li>
<li><a href="#gradient-boosted-tree-classifier" id="markdown-toc-gradient-boosted-tree-classifier">Gradient-boosted tree classifier</a></li>
<li><a href="#multilayer-perceptron-classifier" id="markdown-toc-multilayer-perceptron-classifier">Multilayer perceptron classifier</a></li>
<li><a href="#linear-support-vector-machine" id="markdown-toc-linear-support-vector-machine">Linear Support Vector Machine</a></li>
<li><a href="#one-vs-rest-classifier-aka-one-vs-all" id="markdown-toc-one-vs-rest-classifier-aka-one-vs-all">One-vs-Rest classifier (a.k.a. One-vs-All)</a></li>
<li><a href="#naive-bayes" id="markdown-toc-naive-bayes">Naive Bayes</a></li>
<li><a href="#factorization-machines-classifier" id="markdown-toc-factorization-machines-classifier">Factorization machines classifier</a></li>
</ul>
</li>
<li><a href="#regression" id="markdown-toc-regression">Regression</a> <ul>
<li><a href="#linear-regression" id="markdown-toc-linear-regression">Linear regression</a></li>
<li><a href="#generalized-linear-regression" id="markdown-toc-generalized-linear-regression">Generalized linear regression</a> <ul>
<li><a href="#available-families" id="markdown-toc-available-families">Available families</a></li>
</ul>
</li>
<li><a href="#decision-tree-regression" id="markdown-toc-decision-tree-regression">Decision tree regression</a></li>
<li><a href="#random-forest-regression" id="markdown-toc-random-forest-regression">Random forest regression</a></li>
<li><a href="#gradient-boosted-tree-regression" id="markdown-toc-gradient-boosted-tree-regression">Gradient-boosted tree regression</a></li>
<li><a href="#survival-regression" id="markdown-toc-survival-regression">Survival regression</a></li>
<li><a href="#isotonic-regression" id="markdown-toc-isotonic-regression">Isotonic regression</a></li>
<li><a href="#factorization-machines-regressor" id="markdown-toc-factorization-machines-regressor">Factorization machines regressor</a></li>
</ul>
</li>
<li><a href="#linear-methods" id="markdown-toc-linear-methods">Linear methods</a></li>
<li><a href="#factorization-machines" id="markdown-toc-factorization-machines">Factorization Machines</a></li>
<li><a href="#decision-trees" id="markdown-toc-decision-trees">Decision trees</a> <ul>
<li><a href="#inputs-and-outputs" id="markdown-toc-inputs-and-outputs">Inputs and Outputs</a> <ul>
<li><a href="#input-columns" id="markdown-toc-input-columns">Input Columns</a></li>
<li><a href="#output-columns" id="markdown-toc-output-columns">Output Columns</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#tree-ensembles" id="markdown-toc-tree-ensembles">Tree Ensembles</a> <ul>
<li><a href="#random-forests" id="markdown-toc-random-forests">Random Forests</a> <ul>
<li><a href="#inputs-and-outputs-1" id="markdown-toc-inputs-and-outputs-1">Inputs and Outputs</a> <ul>
<li><a href="#input-columns-1" id="markdown-toc-input-columns-1">Input Columns</a></li>
<li><a href="#output-columns-predictions" id="markdown-toc-output-columns-predictions">Output Columns (Predictions)</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#gradient-boosted-trees-gbts" id="markdown-toc-gradient-boosted-trees-gbts">Gradient-Boosted Trees (GBTs)</a> <ul>
<li><a href="#inputs-and-outputs-2" id="markdown-toc-inputs-and-outputs-2">Inputs and Outputs</a> <ul>
<li><a href="#input-columns-2" id="markdown-toc-input-columns-2">Input Columns</a></li>
<li><a href="#output-columns-predictions-1" id="markdown-toc-output-columns-predictions-1">Output Columns (Predictions)</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<h1 id="classification">Classification</h1>
<h2 id="logistic-regression">Logistic regression</h2>
<p>Logistic regression is a popular method to predict a categorical response. It is a special case of <a href="https://en.wikipedia.org/wiki/Generalized_linear_model">Generalized Linear models</a> that predicts the probability of the outcomes.
In <code class="language-plaintext highlighter-rouge">spark.ml</code> logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression. Use the <code class="language-plaintext highlighter-rouge">family</code>
parameter to select between these two algorithms, or leave it unset and Spark will infer the correct variant.</p>
<blockquote>
<p>Multinomial logistic regression can be used for binary classification by setting the <code class="language-plaintext highlighter-rouge">family</code> param to &#8220;multinomial&#8221;. It will produce two sets of coefficients and two intercepts.</p>
</blockquote>
<blockquote>
<p>When fitting LogisticRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.</p>
</blockquote>
<h3 id="binomial-logistic-regression">Binomial logistic regression</h3>
<p>For more background and more details about the implementation of binomial logistic regression, refer to the documentation of <a href="mllib-linear-methods.html#logistic-regression">logistic regression in <code class="language-plaintext highlighter-rouge">spark.mllib</code></a>.</p>
<p><strong>Examples</strong></p>
<p>The following example shows how to train binomial and multinomial logistic regression
models for binary classification with elastic net regularization. <code class="language-plaintext highlighter-rouge">elasticNetParam</code> corresponds to
$\alpha$ and <code class="language-plaintext highlighter-rouge">regParam</code> corresponds to $\lambda$.</p>
<div class="codetabs">
<div data-lang="scala">
<p>More details on parameters can be found in the <a href="api/scala/org/apache/spark/ml/classification/LogisticRegression.html">Scala API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span>
<span class="c1">// Load training data</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">lr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="py">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="c1">// Fit the model</span>
<span class="k">val</span> <span class="nv">lrModel</span> <span class="k">=</span> <span class="nv">lr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercept for logistic regression</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}"</span><span class="o">)</span>
<span class="c1">// We can also use the multinomial family for binary classification</span>
<span class="k">val</span> <span class="nv">mlr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="py">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFamily</span><span class="o">(</span><span class="s">"multinomial"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">mlrModel</span> <span class="k">=</span> <span class="nv">mlr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercepts for logistic regression with multinomial family</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Multinomial coefficients: ${mlrModel.coefficientMatrix}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Multinomial intercepts: ${mlrModel.interceptVector}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>More details on parameters can be found in the <a href="api/java/org/apache/spark/ml/classification/LogisticRegression.html">Java API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="nc">LogisticRegression</span> <span class="n">lr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span>
<span class="c1">// Fit the model</span>
<span class="nc">LogisticRegressionModel</span> <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercept for logistic regression</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: "</span>
<span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">coefficients</span><span class="o">()</span> <span class="o">+</span> <span class="s">" Intercept: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span>
<span class="c1">// We can also use the multinomial family for binary classification</span>
<span class="nc">LogisticRegression</span> <span class="n">mlr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFamily</span><span class="o">(</span><span class="s">"multinomial"</span><span class="o">);</span>
<span class="c1">// Fit the model</span>
<span class="nc">LogisticRegressionModel</span> <span class="n">mlrModel</span> <span class="o">=</span> <span class="n">mlr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercepts for logistic regression with multinomial family</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Multinomial coefficients: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">coefficientMatrix</span><span class="o">()</span>
<span class="o">+</span> <span class="s">"\nMultinomial intercepts: "</span> <span class="o">+</span> <span class="n">mlrModel</span><span class="o">.</span><span class="na">interceptVector</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>More details on parameters can be found in the <a href="api/python/reference/api/pyspark.ml.classification.LogisticRegression.html">Python API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="c1"># Load training data
</span><span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="n">lr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercept for logistic regression
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">coefficients</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span>
<span class="c1"># We can also use the multinomial family for binary classification
</span><span class="n">mlr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">family</span><span class="o">=</span><span class="s">"multinomial"</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">mlrModel</span> <span class="o">=</span> <span class="n">mlr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercepts for logistic regression with multinomial family
</span><span class="k">print</span><span class="p">(</span><span class="s">"Multinomial coefficients: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">mlrModel</span><span class="p">.</span><span class="n">coefficientMatrix</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Multinomial intercepts: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">mlrModel</span><span class="p">.</span><span class="n">interceptVector</span><span class="p">))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/logistic_regression_with_elastic_net.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>More details on parameters can be found in the <a href="api/R/spark.logit.html">R API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit an binomial logistic regression model with spark.logit</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.logit</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">,</span><span class="w"> </span><span class="n">regParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.3</span><span class="p">,</span><span class="w"> </span><span class="n">elasticNetParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.8</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/logit.R" in the Spark repo.</small></div>
</div>
</div>
<p>The <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation of logistic regression also supports
extracting a summary of the model over the training set. Note that the
predictions and metrics which are stored as <code class="language-plaintext highlighter-rouge">DataFrame</code> in
<code class="language-plaintext highlighter-rouge">LogisticRegressionSummary</code> are annotated <code class="language-plaintext highlighter-rouge">@transient</code> and hence
only available on the driver.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/org/apache/spark/ml/classification/LogisticRegressionTrainingSummary.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionTrainingSummary</code></a>
provides a summary for a
<a href="api/scala/org/apache/spark/ml/classification/LogisticRegressionModel.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionModel</code></a>.
In the case of binary classification, certain additional metrics are
available, e.g. ROC curve. The binary summary can be accessed via the
<code class="language-plaintext highlighter-rouge">binarySummary</code> method. See <a href="api/scala/org/apache/spark/ml/classification/BinaryLogisticRegressionTrainingSummary.html"><code class="language-plaintext highlighter-rouge">BinaryLogisticRegressionTrainingSummary</code></a>.</p>
<p>Continuing the earlier example:</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span>
<span class="c1">// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier</span>
<span class="c1">// example</span>
<span class="k">val</span> <span class="nv">trainingSummary</span> <span class="k">=</span> <span class="nv">lrModel</span><span class="o">.</span><span class="py">binarySummary</span>
<span class="c1">// Obtain the objective per iteration.</span>
<span class="k">val</span> <span class="nv">objectiveHistory</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">objectiveHistory</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"objectiveHistory:"</span><span class="o">)</span>
<span class="nv">objectiveHistory</span><span class="o">.</span><span class="py">foreach</span><span class="o">(</span><span class="n">loss</span> <span class="k">=&gt;</span> <span class="nf">println</span><span class="o">(</span><span class="n">loss</span><span class="o">))</span>
<span class="c1">// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.</span>
<span class="k">val</span> <span class="nv">roc</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">roc</span>
<span class="nv">roc</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"areaUnderROC: ${trainingSummary.areaUnderROC}"</span><span class="o">)</span>
<span class="c1">// Set the model threshold to maximize F-Measure</span>
<span class="k">val</span> <span class="nv">fMeasure</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">fMeasureByThreshold</span>
<span class="k">val</span> <span class="nv">maxFMeasure</span> <span class="k">=</span> <span class="nv">fMeasure</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="nf">max</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">)).</span><span class="py">head</span><span class="o">().</span><span class="py">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">bestThreshold</span> <span class="k">=</span> <span class="nv">fMeasure</span><span class="o">.</span><span class="py">where</span><span class="o">(</span><span class="n">$</span><span class="s">"F-Measure"</span> <span class="o">===</span> <span class="n">maxFMeasure</span><span class="o">)</span>
<span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"threshold"</span><span class="o">).</span><span class="py">head</span><span class="o">().</span><span class="py">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="nv">lrModel</span><span class="o">.</span><span class="py">setThreshold</span><span class="o">(</span><span class="n">bestThreshold</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/ml/classification/LogisticRegressionTrainingSummary.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionTrainingSummary</code></a>
provides a summary for a
<a href="api/java/org/apache/spark/ml/classification/LogisticRegressionModel.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionModel</code></a>.
In the case of binary classification, certain additional metrics are
available, e.g. ROC curve. The binary summary can be accessed via the
<code class="language-plaintext highlighter-rouge">binarySummary</code> method. See <a href="api/java/org/apache/spark/ml/classification/BinaryLogisticRegressionTrainingSummary.html"><code class="language-plaintext highlighter-rouge">BinaryLogisticRegressionTrainingSummary</code></a>.</p>
<p>Continuing the earlier example:</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.functions</span><span class="o">;</span>
<span class="c1">// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier</span>
<span class="c1">// example</span>
<span class="nc">BinaryLogisticRegressionTrainingSummary</span> <span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">binarySummary</span><span class="o">();</span>
<span class="c1">// Obtain the loss per iteration.</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">objectiveHistory</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">objectiveHistory</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">lossPerIteration</span> <span class="o">:</span> <span class="n">objectiveHistory</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">lossPerIteration</span><span class="o">);</span>
<span class="o">}</span>
<span class="c1">// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">roc</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">roc</span><span class="o">();</span>
<span class="n">roc</span><span class="o">.</span><span class="na">show</span><span class="o">();</span>
<span class="n">roc</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"FPR"</span><span class="o">).</span><span class="na">show</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">trainingSummary</span><span class="o">.</span><span class="na">areaUnderROC</span><span class="o">());</span>
<span class="c1">// Get the threshold corresponding to the maximum F-Measure and rerun LogisticRegression with</span>
<span class="c1">// this selected threshold.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">fMeasure</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">fMeasureByThreshold</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">maxFMeasure</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="n">functions</span><span class="o">.</span><span class="na">max</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">)).</span><span class="na">head</span><span class="o">().</span><span class="na">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">bestThreshold</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="o">.</span><span class="na">where</span><span class="o">(</span><span class="n">fMeasure</span><span class="o">.</span><span class="na">col</span><span class="o">(</span><span class="s">"F-Measure"</span><span class="o">).</span><span class="na">equalTo</span><span class="o">(</span><span class="n">maxFMeasure</span><span class="o">))</span>
<span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"threshold"</span><span class="o">).</span><span class="na">head</span><span class="o">().</span><span class="na">getDouble</span><span class="o">(</span><span class="mi">0</span><span class="o">);</span>
<span class="n">lrModel</span><span class="o">.</span><span class="na">setThreshold</span><span class="o">(</span><span class="n">bestThreshold</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p><a href="api/python/reference/api/pyspark.ml.classification.LogisticRegressionSummary.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionTrainingSummary</code></a>
provides a summary for a
<a href="api/python/reference/api/pyspark.ml.classification.LogisticRegressionModel.html"><code class="language-plaintext highlighter-rouge">LogisticRegressionModel</code></a>.
In the case of binary classification, certain additional metrics are
available, e.g. ROC curve. See <a href="api/python/reference/api/pyspark.ml.classification.BinaryLogisticRegressionTrainingSummary.html"><code class="language-plaintext highlighter-rouge">BinaryLogisticRegressionTrainingSummary</code></a>.</p>
<p>Continuing the earlier example:</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="c1"># Extract the summary from the returned LogisticRegressionModel instance trained
# in the earlier example
</span><span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="p">.</span><span class="n">summary</span>
<span class="c1"># Obtain the objective per iteration
</span><span class="n">objectiveHistory</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">objectiveHistory</span>
<span class="k">print</span><span class="p">(</span><span class="s">"objectiveHistory:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">objective</span> <span class="ow">in</span> <span class="n">objectiveHistory</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">objective</span><span class="p">)</span>
<span class="c1"># Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">roc</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s">"areaUnderROC: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">areaUnderROC</span><span class="p">))</span>
<span class="c1"># Set the model threshold to maximize F-Measure
</span><span class="n">fMeasure</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">fMeasureByThreshold</span>
<span class="n">maxFMeasure</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="p">.</span><span class="n">groupBy</span><span class="p">().</span><span class="nb">max</span><span class="p">(</span><span class="s">'F-Measure'</span><span class="p">).</span><span class="n">select</span><span class="p">(</span><span class="s">'max(F-Measure)'</span><span class="p">).</span><span class="n">head</span><span class="p">()</span>
<span class="n">bestThreshold</span> <span class="o">=</span> <span class="n">fMeasure</span><span class="p">.</span><span class="n">where</span><span class="p">(</span><span class="n">fMeasure</span><span class="p">[</span><span class="s">'F-Measure'</span><span class="p">]</span> <span class="o">==</span> <span class="n">maxFMeasure</span><span class="p">[</span><span class="s">'max(F-Measure)'</span><span class="p">])</span> \
<span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">'threshold'</span><span class="p">).</span><span class="n">head</span><span class="p">()[</span><span class="s">'threshold'</span><span class="p">]</span>
<span class="n">lr</span><span class="p">.</span><span class="n">setThreshold</span><span class="p">(</span><span class="n">bestThreshold</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/logistic_regression_summary_example.py" in the Spark repo.</small></div>
</div>
</div>
<h3 id="multinomial-logistic-regression">Multinomial logistic regression</h3>
<p>Multiclass classification is supported via multinomial logistic (softmax) regression. In multinomial logistic regression,
the algorithm produces $K$ sets of coefficients, or a matrix of dimension $K \times J$ where $K$ is the number of outcome
classes and $J$ is the number of features. If the algorithm is fit with an intercept term then a length $K$ vector of
intercepts is available.</p>
<blockquote>
<p>Multinomial coefficients are available as <code class="language-plaintext highlighter-rouge">coefficientMatrix</code> and intercepts are available as <code class="language-plaintext highlighter-rouge">interceptVector</code>.</p>
</blockquote>
<blockquote>
<p><code class="language-plaintext highlighter-rouge">coefficients</code> and <code class="language-plaintext highlighter-rouge">intercept</code> methods on a logistic regression model trained with multinomial family are not supported. Use <code class="language-plaintext highlighter-rouge">coefficientMatrix</code> and <code class="language-plaintext highlighter-rouge">interceptVector</code> instead.</p>
</blockquote>
<p>The conditional probabilities of the outcome classes $k \in {1, 2, &#8230;, K}$ are modeled using the softmax function.</p>
<p><code class="language-plaintext highlighter-rouge">\[
P(Y=k|\mathbf{X}, \boldsymbol{\beta}_k, \beta_{0k}) = \frac{e^{\boldsymbol{\beta}_k \cdot \mathbf{X} + \beta_{0k}}}{\sum_{k'=0}^{K-1} e^{\boldsymbol{\beta}_{k'} \cdot \mathbf{X} + \beta_{0k'}}}
\]</code></p>
<p>We minimize the weighted negative log-likelihood, using a multinomial response model, with elastic-net penalty to control for overfitting.</p>
<p><code class="language-plaintext highlighter-rouge">\[
\min_{\beta, \beta_0} -\left[\sum_{i=1}^L w_i \cdot \log P(Y = y_i|\mathbf{x}_i)\right] + \lambda \left[\frac{1}{2}\left(1 - \alpha\right)||\boldsymbol{\beta}||_2^2 + \alpha ||\boldsymbol{\beta}||_1\right]
\]</code></p>
<p>For a detailed derivation please see <a href="https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_log-linear_model">here</a>.</p>
<p><strong>Examples</strong></p>
<p>The following example shows how to train a multiclass logistic regression
model with elastic net regularization, as well as extract the multiclass
training summary for evaluating the model.</p>
<div class="codetabs">
<div data-lang="scala">
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span>
<span class="c1">// Load training data</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="n">spark</span>
<span class="o">.</span><span class="py">read</span>
<span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">lr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="py">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="c1">// Fit the model</span>
<span class="k">val</span> <span class="nv">lrModel</span> <span class="k">=</span> <span class="nv">lr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercept for multinomial logistic regression</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: \n${lrModel.coefficientMatrix}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Intercepts: \n${lrModel.interceptVector}"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">trainingSummary</span> <span class="k">=</span> <span class="nv">lrModel</span><span class="o">.</span><span class="py">summary</span>
<span class="c1">// Obtain the objective per iteration</span>
<span class="k">val</span> <span class="nv">objectiveHistory</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">objectiveHistory</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"objectiveHistory:"</span><span class="o">)</span>
<span class="nv">objectiveHistory</span><span class="o">.</span><span class="py">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
<span class="c1">// for multiclass, we can inspect metrics on a per-label basis</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"False positive rate by label:"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">falsePositiveRateByLabel</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">rate</span><span class="o">,</span> <span class="n">label</span><span class="o">)</span> <span class="k">=&gt;</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"label $label: $rate"</span><span class="o">)</span>
<span class="o">}</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"True positive rate by label:"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">truePositiveRateByLabel</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">rate</span><span class="o">,</span> <span class="n">label</span><span class="o">)</span> <span class="k">=&gt;</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"label $label: $rate"</span><span class="o">)</span>
<span class="o">}</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"Precision by label:"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">precisionByLabel</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">prec</span><span class="o">,</span> <span class="n">label</span><span class="o">)</span> <span class="k">=&gt;</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"label $label: $prec"</span><span class="o">)</span>
<span class="o">}</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"Recall by label:"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">recallByLabel</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">rec</span><span class="o">,</span> <span class="n">label</span><span class="o">)</span> <span class="k">=&gt;</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"label $label: $rec"</span><span class="o">)</span>
<span class="o">}</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"F-measure by label:"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">fMeasureByLabel</span><span class="o">.</span><span class="py">zipWithIndex</span><span class="o">.</span><span class="py">foreach</span> <span class="o">{</span> <span class="nf">case</span> <span class="o">(</span><span class="n">f</span><span class="o">,</span> <span class="n">label</span><span class="o">)</span> <span class="k">=&gt;</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"label $label: $f"</span><span class="o">)</span>
<span class="o">}</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">accuracy</span>
<span class="k">val</span> <span class="nv">falsePositiveRate</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">weightedFalsePositiveRate</span>
<span class="k">val</span> <span class="nv">truePositiveRate</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">weightedTruePositiveRate</span>
<span class="k">val</span> <span class="nv">fMeasure</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">weightedFMeasure</span>
<span class="k">val</span> <span class="nv">precision</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">weightedPrecision</span>
<span class="k">val</span> <span class="nv">recall</span> <span class="k">=</span> <span class="nv">trainingSummary</span><span class="o">.</span><span class="py">weightedRecall</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Accuracy: $accuracy\nFPR: $falsePositiveRate\nTPR: $truePositiveRate\n"</span> <span class="o">+</span>
<span class="n">s</span><span class="s">"F-measure: $fMeasure\nPrecision: $precision\nRecall: $recall"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/MulticlassLogisticRegressionWithElasticNetExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegressionTrainingSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">);</span>
<span class="nc">LogisticRegression</span> <span class="n">lr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span>
<span class="c1">// Fit the model</span>
<span class="nc">LogisticRegressionModel</span> <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercept for multinomial logistic regression</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: \n"</span>
<span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">coefficientMatrix</span><span class="o">()</span> <span class="o">+</span> <span class="s">" \nIntercept: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">interceptVector</span><span class="o">());</span>
<span class="nc">LogisticRegressionTrainingSummary</span> <span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">summary</span><span class="o">();</span>
<span class="c1">// Obtain the loss per iteration.</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">objectiveHistory</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">objectiveHistory</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">lossPerIteration</span> <span class="o">:</span> <span class="n">objectiveHistory</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">lossPerIteration</span><span class="o">);</span>
<span class="o">}</span>
<span class="c1">// for multiclass, we can inspect metrics on a per-label basis</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"False positive rate by label:"</span><span class="o">);</span>
<span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">fprLabel</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">falsePositiveRateByLabel</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">fpr</span> <span class="o">:</span> <span class="n">fprLabel</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"label "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">fpr</span><span class="o">);</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"True positive rate by label:"</span><span class="o">);</span>
<span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">tprLabel</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">truePositiveRateByLabel</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">tpr</span> <span class="o">:</span> <span class="n">tprLabel</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"label "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">tpr</span><span class="o">);</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Precision by label:"</span><span class="o">);</span>
<span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">precLabel</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">precisionByLabel</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">prec</span> <span class="o">:</span> <span class="n">precLabel</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"label "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">prec</span><span class="o">);</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Recall by label:"</span><span class="o">);</span>
<span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">recLabel</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">recallByLabel</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">rec</span> <span class="o">:</span> <span class="n">recLabel</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"label "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">rec</span><span class="o">);</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"F-measure by label:"</span><span class="o">);</span>
<span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">fLabel</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">fMeasureByLabel</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">double</span> <span class="n">f</span> <span class="o">:</span> <span class="n">fLabel</span><span class="o">)</span> <span class="o">{</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"label "</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">": "</span> <span class="o">+</span> <span class="n">f</span><span class="o">);</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">accuracy</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">falsePositiveRate</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">weightedFalsePositiveRate</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">truePositiveRate</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">weightedTruePositiveRate</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">fMeasure</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">weightedFMeasure</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">precision</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">weightedPrecision</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">recall</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">weightedRecall</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Accuracy: "</span> <span class="o">+</span> <span class="n">accuracy</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"FPR: "</span> <span class="o">+</span> <span class="n">falsePositiveRate</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"TPR: "</span> <span class="o">+</span> <span class="n">truePositiveRate</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"F-measure: "</span> <span class="o">+</span> <span class="n">fMeasure</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Precision: "</span> <span class="o">+</span> <span class="n">precision</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Recall: "</span> <span class="o">+</span> <span class="n">recall</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaMulticlassLogisticRegressionWithElasticNetExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="c1"># Load training data
</span><span class="n">training</span> <span class="o">=</span> <span class="n">spark</span> \
<span class="p">.</span><span class="n">read</span> \
<span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span> \
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">)</span>
<span class="n">lr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercept for multinomial logistic regression
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: </span><span class="se">\n</span><span class="s">"</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">coefficientMatrix</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">interceptVector</span><span class="p">))</span>
<span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="p">.</span><span class="n">summary</span>
<span class="c1"># Obtain the objective per iteration
</span><span class="n">objectiveHistory</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">objectiveHistory</span>
<span class="k">print</span><span class="p">(</span><span class="s">"objectiveHistory:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">objective</span> <span class="ow">in</span> <span class="n">objectiveHistory</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">objective</span><span class="p">)</span>
<span class="c1"># for multiclass, we can inspect metrics on a per-label basis
</span><span class="k">print</span><span class="p">(</span><span class="s">"False positive rate by label:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">rate</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">falsePositiveRateByLabel</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"label %d: %s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">rate</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"True positive rate by label:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">rate</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">truePositiveRateByLabel</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"label %d: %s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">rate</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Precision by label:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">prec</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">precisionByLabel</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"label %d: %s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">prec</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Recall by label:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">rec</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">recallByLabel</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"label %d: %s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">rec</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"F-measure by label:"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">f</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">fMeasureByLabel</span><span class="p">()):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"label %d: %s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">f</span><span class="p">))</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">accuracy</span>
<span class="n">falsePositiveRate</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">weightedFalsePositiveRate</span>
<span class="n">truePositiveRate</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">weightedTruePositiveRate</span>
<span class="n">fMeasure</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">weightedFMeasure</span><span class="p">()</span>
<span class="n">precision</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">weightedPrecision</span>
<span class="n">recall</span> <span class="o">=</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">weightedRecall</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Accuracy: %s</span><span class="se">\n</span><span class="s">FPR: %s</span><span class="se">\n</span><span class="s">TPR: %s</span><span class="se">\n</span><span class="s">F-measure: %s</span><span class="se">\n</span><span class="s">Precision: %s</span><span class="se">\n</span><span class="s">Recall: %s"</span>
<span class="o">%</span> <span class="p">(</span><span class="n">accuracy</span><span class="p">,</span> <span class="n">falsePositiveRate</span><span class="p">,</span> <span class="n">truePositiveRate</span><span class="p">,</span> <span class="n">fMeasure</span><span class="p">,</span> <span class="n">precision</span><span class="p">,</span> <span class="n">recall</span><span class="p">))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/multiclass_logistic_regression_with_elastic_net.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>More details on parameters can be found in the <a href="api/R/spark.logit.html">R API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a multinomial logistic regression model with spark.logit</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.logit</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">,</span><span class="w"> </span><span class="n">regParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.3</span><span class="p">,</span><span class="w"> </span><span class="n">elasticNetParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.8</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/logit.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="decision-tree-classifier">Decision tree classifier</h2>
<p>Decision trees are a popular family of classification and regression methods.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#decision-trees">section on decision trees</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the <code class="language-plaintext highlighter-rouge">DataFrame</code> which the Decision Tree algorithm can recognize.</p>
<div class="codetabs">
<div data-lang="scala">
<p>More details on parameters can be found in the <a href="api/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.html">Scala API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.DecisionTreeClassificationModel</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.DecisionTreeClassifier</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">IndexToString</span><span class="o">,</span> <span class="nc">StringIndexer</span><span class="o">,</span> <span class="nc">VectorIndexer</span><span class="o">}</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="k">val</span> <span class="nv">labelIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span> <span class="c1">// features with &gt; 4 distinct values are treated as continuous.</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a DecisionTree model.</span>
<span class="k">val</span> <span class="nv">dt</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">DecisionTreeClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="k">val</span> <span class="nv">labelConverter</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setLabels</span><span class="o">(</span><span class="nv">labelIndexer</span><span class="o">.</span><span class="py">labelsArray</span><span class="o">(</span><span class="mi">0</span><span class="o">))</span>
<span class="c1">// Chain indexers and tree in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">dt</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test Error = ${(1.0 - accuracy)}"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">treeModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">DecisionTreeClassificationModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned classification tree model:\n ${treeModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>More details on parameters can be found in the <a href="api/java/org/apache/spark/ml/classification/DecisionTreeClassifier.html">Java API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.DecisionTreeClassifier</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.DecisionTreeClassificationModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span>
<span class="o">.</span><span class="na">read</span><span class="o">()</span>
<span class="o">.</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="nc">StringIndexerModel</span> <span class="n">labelIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span> <span class="c1">// features with &gt; 4 distinct values are treated as continuous.</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a DecisionTree model.</span>
<span class="nc">DecisionTreeClassifier</span> <span class="n">dt</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">DecisionTreeClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">);</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="nc">IndexToString</span> <span class="n">labelConverter</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLabels</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">.</span><span class="na">labelsArray</span><span class="o">()[</span><span class="mi">0</span><span class="o">]);</span>
<span class="c1">// Chain indexers and tree in a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]{</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">dt</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test Error = "</span> <span class="o">+</span> <span class="o">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="o">));</span>
<span class="nc">DecisionTreeClassificationModel</span> <span class="n">treeModel</span> <span class="o">=</span>
<span class="o">(</span><span class="nc">DecisionTreeClassificationModel</span><span class="o">)</span> <span class="o">(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">2</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned classification tree model:\n"</span> <span class="o">+</span> <span class="n">treeModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>More details on parameters can be found in the <a href="api/python/reference/api/pyspark.ml.classification.DecisionTreeClassifier.html">Python API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">DecisionTreeClassifier</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">StringIndexer</span><span class="p">,</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load the data stored in LIBSVM format as a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
</span><span class="n">labelIndexer</span> <span class="o">=</span> <span class="n">StringIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# We specify maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a DecisionTree model.
</span><span class="n">dt</span> <span class="o">=</span> <span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">)</span>
<span class="c1"># Chain indexers and tree in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">labelIndexer</span><span class="p">,</span> <span class="n">featureIndexer</span><span class="p">,</span> <span class="n">dt</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexers.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"indexedLabel"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test Error = %g "</span> <span class="o">%</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">))</span>
<span class="n">treeModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="c1"># summary only
</span><span class="k">print</span><span class="p">(</span><span class="n">treeModel</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/decision_tree_classification_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.decisionTree.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a DecisionTree classification model with spark.decisionTree</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.decisionTree</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"classification"</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/decisionTree.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="random-forest-classifier">Random forest classifier</h2>
<p>Random forests are a popular family of classification and regression methods.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#random-forests">section on random forests</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the <code class="language-plaintext highlighter-rouge">DataFrame</code> which the tree-based algorithms can recognize.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/RandomForestClassifier.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.</span><span class="o">{</span><span class="nc">RandomForestClassificationModel</span><span class="o">,</span> <span class="nc">RandomForestClassifier</span><span class="o">}</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">IndexToString</span><span class="o">,</span> <span class="nc">StringIndexer</span><span class="o">,</span> <span class="nc">VectorIndexer</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="k">val</span> <span class="nv">labelIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a RandomForest model.</span>
<span class="k">val</span> <span class="nv">rf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RandomForestClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setNumTrees</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="k">val</span> <span class="nv">labelConverter</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setLabels</span><span class="o">(</span><span class="nv">labelIndexer</span><span class="o">.</span><span class="py">labelsArray</span><span class="o">(</span><span class="mi">0</span><span class="o">))</span>
<span class="c1">// Chain indexers and forest in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">rf</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test Error = ${(1.0 - accuracy)}"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rfModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">RandomForestClassificationModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned classification forest model:\n ${rfModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/RandomForestClassifier.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.RandomForestClassificationModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.RandomForestClassifier</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="nc">StringIndexerModel</span> <span class="n">labelIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing)</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a RandomForest model.</span>
<span class="nc">RandomForestClassifier</span> <span class="n">rf</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RandomForestClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">);</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="nc">IndexToString</span> <span class="n">labelConverter</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLabels</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">.</span><span class="na">labelsArray</span><span class="o">()[</span><span class="mi">0</span><span class="o">]);</span>
<span class="c1">// Chain indexers and forest in a Pipeline</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">rf</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test Error = "</span> <span class="o">+</span> <span class="o">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="o">));</span>
<span class="nc">RandomForestClassificationModel</span> <span class="n">rfModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">RandomForestClassificationModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">2</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned classification forest model:\n"</span> <span class="o">+</span> <span class="n">rfModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaRandomForestClassifierExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.RandomForestClassifier.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">RandomForestClassifier</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">IndexToString</span><span class="p">,</span> <span class="n">StringIndexer</span><span class="p">,</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
</span><span class="n">labelIndexer</span> <span class="o">=</span> <span class="n">StringIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# Set maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a RandomForest model.
</span><span class="n">rf</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">numTrees</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="c1"># Convert indexed labels back to original labels.
</span><span class="n">labelConverter</span> <span class="o">=</span> <span class="n">IndexToString</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"predictedLabel"</span><span class="p">,</span>
<span class="n">labels</span><span class="o">=</span><span class="n">labelIndexer</span><span class="p">.</span><span class="n">labels</span><span class="p">)</span>
<span class="c1"># Chain indexers and forest in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">labelIndexer</span><span class="p">,</span> <span class="n">featureIndexer</span><span class="p">,</span> <span class="n">rf</span><span class="p">,</span> <span class="n">labelConverter</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexers.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"predictedLabel"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test Error = %g"</span> <span class="o">%</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">))</span>
<span class="n">rfModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="n">rfModel</span><span class="p">)</span> <span class="c1"># summary only</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/random_forest_classifier_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.randomForest.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a random forest classification model with spark.randomForest</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.randomForest</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"classification"</span><span class="p">,</span><span class="w"> </span><span class="n">numTrees</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/randomForest.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="gradient-boosted-tree-classifier">Gradient-boosted tree classifier</h2>
<p>Gradient-boosted trees (GBTs) are a popular classification and regression method using ensembles of decision trees.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#gradient-boosted-trees-gbts">section on GBTs</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the <code class="language-plaintext highlighter-rouge">DataFrame</code> which the tree-based algorithms can recognize.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/GBTClassifier.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.</span><span class="o">{</span><span class="nc">GBTClassificationModel</span><span class="o">,</span> <span class="nc">GBTClassifier</span><span class="o">}</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">IndexToString</span><span class="o">,</span> <span class="nc">StringIndexer</span><span class="o">,</span> <span class="nc">VectorIndexer</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="k">val</span> <span class="nv">labelIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a GBT model.</span>
<span class="k">val</span> <span class="nv">gbt</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GBTClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeatureSubsetStrategy</span><span class="o">(</span><span class="s">"auto"</span><span class="o">)</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="k">val</span> <span class="nv">labelConverter</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setLabels</span><span class="o">(</span><span class="nv">labelIndexer</span><span class="o">.</span><span class="py">labelsArray</span><span class="o">(</span><span class="mi">0</span><span class="o">))</span>
<span class="c1">// Chain indexers and GBT in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">gbt</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test Error = ${1.0 - accuracy}"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">gbtModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">GBTClassificationModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned classification GBT model:\n ${gbtModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/GradientBoostedTreeClassifierExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/GBTClassifier.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.GBTClassificationModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.GBTClassifier</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span>
<span class="o">.</span><span class="na">read</span><span class="o">()</span>
<span class="o">.</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="nc">StringIndexerModel</span> <span class="n">labelIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing)</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a GBT model.</span>
<span class="nc">GBTClassifier</span> <span class="n">gbt</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">GBTClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="nc">IndexToString</span> <span class="n">labelConverter</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLabels</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">.</span><span class="na">labelsArray</span><span class="o">()[</span><span class="mi">0</span><span class="o">]);</span>
<span class="c1">// Chain indexers and GBT in a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureIndexer</span><span class="o">,</span> <span class="n">gbt</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexers.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test Error = "</span> <span class="o">+</span> <span class="o">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="o">));</span>
<span class="nc">GBTClassificationModel</span> <span class="n">gbtModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">GBTClassificationModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">2</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned classification GBT model:\n"</span> <span class="o">+</span> <span class="n">gbtModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaGradientBoostedTreeClassifierExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.GBTClassifier.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">GBTClassifier</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">StringIndexer</span><span class="p">,</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
</span><span class="n">labelIndexer</span> <span class="o">=</span> <span class="n">StringIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# Set maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a GBT model.
</span><span class="n">gbt</span> <span class="o">=</span> <span class="n">GBTClassifier</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="c1"># Chain indexers and GBT in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">labelIndexer</span><span class="p">,</span> <span class="n">featureIndexer</span><span class="p">,</span> <span class="n">gbt</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexers.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"indexedLabel"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test Error = %g"</span> <span class="o">%</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">))</span>
<span class="n">gbtModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="n">gbtModel</span><span class="p">)</span> <span class="c1"># summary only</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/gradient_boosted_tree_classifier_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.gbt.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a GBT classification model with spark.gbt</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.gbt</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"classification"</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/gbt.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="multilayer-perceptron-classifier">Multilayer perceptron classifier</h2>
<p>Multilayer perceptron classifier (MLPC) is a classifier based on the <a href="https://en.wikipedia.org/wiki/Feedforward_neural_network">feedforward artificial neural network</a>.
MLPC consists of multiple layers of nodes.
Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes map inputs to outputs
by a linear combination of the inputs with the node&#8217;s weights <code class="language-plaintext highlighter-rouge">$\wv$</code> and bias <code class="language-plaintext highlighter-rouge">$\bv$</code> and applying an activation function.
This can be written in matrix form for MLPC with <code class="language-plaintext highlighter-rouge">$K+1$</code> layers as follows:
<code class="language-plaintext highlighter-rouge">\[
\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K)
\]</code>
Nodes in intermediate layers use sigmoid (logistic) function:
<code class="language-plaintext highlighter-rouge">\[
\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}}
\]</code>
Nodes in the output layer use softmax function:
<code class="language-plaintext highlighter-rouge">\[
\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}
\]</code>
The number of nodes <code class="language-plaintext highlighter-rouge">$N$</code> in the output layer corresponds to the number of classes.</p>
<p>MLPC employs backpropagation for learning the model. We use the logistic loss function for optimization and L-BFGS as an optimization routine.</p>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.MultilayerPerceptronClassifier</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">)</span>
<span class="c1">// Split the data into train and test</span>
<span class="k">val</span> <span class="nv">splits</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">),</span> <span class="n">seed</span> <span class="k">=</span> <span class="mi">1234L</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">train</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">0</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">test</span> <span class="k">=</span> <span class="nf">splits</span><span class="o">(</span><span class="mi">1</span><span class="o">)</span>
<span class="c1">// specify layers for the neural network:</span>
<span class="c1">// input layer of size 4 (features), two intermediate of size 5 and 4</span>
<span class="c1">// and output of size 3 (classes)</span>
<span class="k">val</span> <span class="nv">layers</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">[</span><span class="kt">Int</span><span class="o">](</span><span class="mi">4</span><span class="o">,</span> <span class="mi">5</span><span class="o">,</span> <span class="mi">4</span><span class="o">,</span> <span class="mi">3</span><span class="o">)</span>
<span class="c1">// create the trainer and set its parameters</span>
<span class="k">val</span> <span class="nv">trainer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MultilayerPerceptronClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLayers</span><span class="o">(</span><span class="n">layers</span><span class="o">)</span>
<span class="o">.</span><span class="py">setBlockSize</span><span class="o">(</span><span class="mi">128</span><span class="o">)</span>
<span class="o">.</span><span class="py">setSeed</span><span class="o">(</span><span class="mi">1234L</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">100</span><span class="o">)</span>
<span class="c1">// train the model</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">trainer</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">train</span><span class="o">)</span>
<span class="c1">// compute accuracy on the test set</span>
<span class="k">val</span> <span class="nv">result</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">test</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">predictionAndLabels</span> <span class="k">=</span> <span class="nv">result</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test set accuracy = ${evaluator.evaluate(predictionAndLabels)}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.MultilayerPerceptronClassifier</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">String</span> <span class="n">path</span> <span class="o">=</span> <span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">;</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">dataFrame</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="n">path</span><span class="o">);</span>
<span class="c1">// Split the data into train and test</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">dataFrame</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">},</span> <span class="mi">1234L</span><span class="o">);</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">train</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// specify layers for the neural network:</span>
<span class="c1">// input layer of size 4 (features), two intermediate of size 5 and 4</span>
<span class="c1">// and output of size 3 (classes)</span>
<span class="kt">int</span><span class="o">[]</span> <span class="n">layers</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]</span> <span class="o">{</span><span class="mi">4</span><span class="o">,</span> <span class="mi">5</span><span class="o">,</span> <span class="mi">4</span><span class="o">,</span> <span class="mi">3</span><span class="o">};</span>
<span class="c1">// create the trainer and set its parameters</span>
<span class="nc">MultilayerPerceptronClassifier</span> <span class="n">trainer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MultilayerPerceptronClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLayers</span><span class="o">(</span><span class="n">layers</span><span class="o">)</span>
<span class="o">.</span><span class="na">setBlockSize</span><span class="o">(</span><span class="mi">128</span><span class="o">)</span>
<span class="o">.</span><span class="na">setSeed</span><span class="o">(</span><span class="mi">1234L</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">100</span><span class="o">);</span>
<span class="c1">// train the model</span>
<span class="nc">MultilayerPerceptronClassificationModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">trainer</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">train</span><span class="o">);</span>
<span class="c1">// compute accuracy on the test set</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">test</span><span class="o">);</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictionAndLabels</span> <span class="o">=</span> <span class="n">result</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">);</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test set accuracy = "</span> <span class="o">+</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictionAndLabels</span><span class="o">));</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.MultilayerPerceptronClassifier.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">MultilayerPerceptronClassifier</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load training data
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span>\
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">)</span>
<span class="c1"># Split the data into train and test
</span><span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="mi">1234</span><span class="p">)</span>
<span class="n">train</span> <span class="o">=</span> <span class="n">splits</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="c1"># specify layers for the neural network:
# input layer of size 4 (features), two intermediate of size 5 and 4
# and output of size 3 (classes)
</span><span class="n">layers</span> <span class="o">=</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span>
<span class="c1"># create the trainer and set its parameters
</span><span class="n">trainer</span> <span class="o">=</span> <span class="n">MultilayerPerceptronClassifier</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">layers</span><span class="o">=</span><span class="n">layers</span><span class="p">,</span> <span class="n">blockSize</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1234</span><span class="p">)</span>
<span class="c1"># train the model
</span><span class="n">model</span> <span class="o">=</span> <span class="n">trainer</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train</span><span class="p">)</span>
<span class="c1"># compute accuracy on the test set
</span><span class="n">result</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
<span class="n">predictionAndLabels</span> <span class="o">=</span> <span class="n">result</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">)</span>
<span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test set accuracy = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictionAndLabels</span><span class="p">)))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/multilayer_perceptron_classification.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.mlp.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># specify layers for the neural network:</span><span class="w">
</span><span class="c1"># input layer of size 4 (features), two intermediate of size 5 and 4</span><span class="w">
</span><span class="c1"># and output of size 3 (classes)</span><span class="w">
</span><span class="n">layers</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">4</span><span class="p">,</span><span class="w"> </span><span class="m">5</span><span class="p">,</span><span class="w"> </span><span class="m">4</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit a multi-layer perceptron neural network model with spark.mlp</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.mlp</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100</span><span class="p">,</span><span class="w">
</span><span class="n">layers</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">layers</span><span class="p">,</span><span class="w"> </span><span class="n">blockSize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">128</span><span class="p">,</span><span class="w"> </span><span class="n">seed</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1234</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/mlp.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="linear-support-vector-machine">Linear Support Vector Machine</h2>
<p>A <a href="https://en.wikipedia.org/wiki/Support_vector_machine">support vector machine</a> constructs a hyperplane
or set of hyperplanes in a high- or infinite-dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data points of any class (so-called functional margin),
since in general the larger the margin the lower the generalization error of the classifier. LinearSVC
in Spark ML supports binary classification with linear SVM. Internally, it optimizes the
<a href="https://en.wikipedia.org/wiki/Hinge_loss">Hinge Loss</a> using OWLQN optimizer.</p>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/LinearSVC.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.LinearSVC</span>
<span class="c1">// Load training data</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">lsvc</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LinearSVC</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.1</span><span class="o">)</span>
<span class="c1">// Fit the model</span>
<span class="k">val</span> <span class="nv">lsvcModel</span> <span class="k">=</span> <span class="nv">lsvc</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercept for linear svc</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: ${lsvcModel.coefficients} Intercept: ${lsvcModel.intercept}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LinearSVCExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/LinearSVC.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LinearSVC</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LinearSVCModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="nc">LinearSVC</span> <span class="n">lsvc</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LinearSVC</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.1</span><span class="o">);</span>
<span class="c1">// Fit the model</span>
<span class="nc">LinearSVCModel</span> <span class="n">lsvcModel</span> <span class="o">=</span> <span class="n">lsvc</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercept for LinearSVC</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: "</span>
<span class="o">+</span> <span class="n">lsvcModel</span><span class="o">.</span><span class="na">coefficients</span><span class="o">()</span> <span class="o">+</span> <span class="s">" Intercept: "</span> <span class="o">+</span> <span class="n">lsvcModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLinearSVCExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.LinearSVC.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LinearSVC</span>
<span class="c1"># Load training data
</span><span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="n">lsvc</span> <span class="o">=</span> <span class="n">LinearSVC</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">lsvcModel</span> <span class="o">=</span> <span class="n">lsvc</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercept for linear SVC
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lsvcModel</span><span class="p">.</span><span class="n">coefficients</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lsvcModel</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/linearsvc.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.svmLinear.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># load training data</span><span class="w">
</span><span class="n">t</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">as.data.frame</span><span class="p">(</span><span class="n">Titanic</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">t</span><span class="p">)</span><span class="w">
</span><span class="c1"># fit Linear SVM model</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.svmLinear</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">Survived</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">.</span><span class="p">,</span><span class="w"> </span><span class="n">regParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.01</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">prediction</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">training</span><span class="p">)</span><span class="w">
</span><span class="n">showDF</span><span class="p">(</span><span class="n">prediction</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/svmLinear.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="one-vs-rest-classifier-aka-one-vs-all">One-vs-Rest classifier (a.k.a. One-vs-All)</h2>
<p><a href="http://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest">OneVsRest</a> is an example of a machine learning reduction for performing multiclass classification given a base classifier that can perform binary classification efficiently. It is also known as &#8220;One-vs-All.&#8221;</p>
<p><code class="language-plaintext highlighter-rouge">OneVsRest</code> is implemented as an <code class="language-plaintext highlighter-rouge">Estimator</code>. For the base classifier, it takes instances of <code class="language-plaintext highlighter-rouge">Classifier</code> and creates a binary classification problem for each of the k classes. The classifier for class i is trained to predict whether the label is i or not, distinguishing class i from all other classes.</p>
<p>Predictions are done by evaluating each binary classifier and the index of the most confident classifier is output as label.</p>
<p><strong>Examples</strong></p>
<p>The example below demonstrates how to load the
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/iris.scale">Iris dataset</a>, parse it as a DataFrame and perform multiclass classification using <code class="language-plaintext highlighter-rouge">OneVsRest</code>. The test error is calculated to measure the algorithm accuracy.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/OneVsRest.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.</span><span class="o">{</span><span class="nc">LogisticRegression</span><span class="o">,</span> <span class="nc">OneVsRest</span><span class="o">}</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="c1">// load data file.</span>
<span class="k">val</span> <span class="nv">inputData</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">)</span>
<span class="c1">// generate the train/test split.</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">train</span><span class="o">,</span> <span class="n">test</span><span class="o">)</span> <span class="k">=</span> <span class="nv">inputData</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.8</span><span class="o">,</span> <span class="mf">0.2</span><span class="o">))</span>
<span class="c1">// instantiate the base classifier</span>
<span class="k">val</span> <span class="nv">classifier</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setTol</span><span class="o">(</span><span class="mi">1</span><span class="n">E</span><span class="o">-</span><span class="mi">6</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFitIntercept</span><span class="o">(</span><span class="kc">true</span><span class="o">)</span>
<span class="c1">// instantiate the One Vs Rest Classifier.</span>
<span class="k">val</span> <span class="nv">ovr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">OneVsRest</span><span class="o">().</span><span class="py">setClassifier</span><span class="o">(</span><span class="n">classifier</span><span class="o">)</span>
<span class="c1">// train the multiclass model.</span>
<span class="k">val</span> <span class="nv">ovrModel</span> <span class="k">=</span> <span class="nv">ovr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">train</span><span class="o">)</span>
<span class="c1">// score the model on test data.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">ovrModel</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">test</span><span class="o">)</span>
<span class="c1">// obtain evaluator.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="c1">// compute the classification error on test data.</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test Error = ${1 - accuracy}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/OneVsRestExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/OneVsRest.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.LogisticRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.OneVsRest</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.OneVsRestModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// load data file.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">inputData</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="o">);</span>
<span class="c1">// generate the train/test split.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">tmp</span> <span class="o">=</span> <span class="n">inputData</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.8</span><span class="o">,</span> <span class="mf">0.2</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">train</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">test</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// configure the base classifier.</span>
<span class="nc">LogisticRegression</span> <span class="n">classifier</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LogisticRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setTol</span><span class="o">(</span><span class="mi">1</span><span class="no">E</span><span class="o">-</span><span class="mi">6</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFitIntercept</span><span class="o">(</span><span class="kc">true</span><span class="o">);</span>
<span class="c1">// instantiate the One Vs Rest Classifier.</span>
<span class="nc">OneVsRest</span> <span class="n">ovr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">OneVsRest</span><span class="o">().</span><span class="na">setClassifier</span><span class="o">(</span><span class="n">classifier</span><span class="o">);</span>
<span class="c1">// train the multiclass model.</span>
<span class="nc">OneVsRestModel</span> <span class="n">ovrModel</span> <span class="o">=</span> <span class="n">ovr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">train</span><span class="o">);</span>
<span class="c1">// score the model on test data.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">ovrModel</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">test</span><span class="o">)</span>
<span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">);</span>
<span class="c1">// obtain evaluator.</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="c1">// compute the classification error on test data.</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test Error = "</span> <span class="o">+</span> <span class="o">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">accuracy</span><span class="o">));</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaOneVsRestExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.OneVsRest.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">LogisticRegression</span><span class="p">,</span> <span class="n">OneVsRest</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># load data file.
</span><span class="n">inputData</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span> \
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">)</span>
<span class="c1"># generate the train/test split.
</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">test</span><span class="p">)</span> <span class="o">=</span> <span class="n">inputData</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">])</span>
<span class="c1"># instantiate the base classifier.
</span><span class="n">lr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">tol</span><span class="o">=</span><span class="mf">1E-6</span><span class="p">,</span> <span class="n">fitIntercept</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="c1"># instantiate the One Vs Rest Classifier.
</span><span class="n">ovr</span> <span class="o">=</span> <span class="n">OneVsRest</span><span class="p">(</span><span class="n">classifier</span><span class="o">=</span><span class="n">lr</span><span class="p">)</span>
<span class="c1"># train the multiclass model.
</span><span class="n">ovrModel</span> <span class="o">=</span> <span class="n">ovr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train</span><span class="p">)</span>
<span class="c1"># score the model on test data.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">ovrModel</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
<span class="c1"># obtain evaluator.
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="c1"># compute the classification error on test data.
</span><span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test Error = %g"</span> <span class="o">%</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">accuracy</span><span class="p">))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/one_vs_rest_example.py" in the Spark repo.</small></div>
</div>
</div>
<h2 id="naive-bayes">Naive Bayes</h2>
<p><a href="http://en.wikipedia.org/wiki/Naive_Bayes_classifier">Naive Bayes classifiers</a> are a family of simple
probabilistic, multiclass classifiers based on applying Bayes&#8217; theorem with strong (naive) independence
assumptions between every pair of features.</p>
<p>Naive Bayes can be trained very efficiently. With a single pass over the training data,
it computes the conditional probability distribution of each feature given each label.
For prediction, it applies Bayes&#8217; theorem to compute the conditional probability distribution
of each label given an observation.</p>
<p>MLlib supports <a href="http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Multinomial_naive_Bayes">Multinomial naive Bayes</a>,
<a href="https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf">Complement naive Bayes</a>,
<a href="http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html">Bernoulli naive Bayes</a>
and <a href="https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Gaussian_naive_Bayes">Gaussian naive Bayes</a>.</p>
<p><em>Input data</em>:
These Multinomial, Complement and Bernoulli models are typically used for <a href="http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html">document classification</a>.
Within that context, each observation is a document and each feature represents a term.
A feature&#8217;s value is the frequency of the term (in Multinomial or Complement Naive Bayes) or
a zero or one indicating whether the term was found in the document (in Bernoulli Naive Bayes).
Feature values for Multinomial and Bernoulli models must be <em>non-negative</em>. The model type is selected with an optional parameter
&#8220;multinomial&#8221;, &#8220;complement&#8221;, &#8220;bernoulli&#8221; or &#8220;gaussian&#8221;, with &#8220;multinomial&#8221; as the default.
For document classification, the input feature vectors should usually be sparse vectors.
Since the training data is only used once, it is not necessary to cache it.</p>
<p><a href="http://en.wikipedia.org/wiki/Lidstone_smoothing">Additive smoothing</a> can be used by
setting the parameter $\lambda$ (default to $1.0$).</p>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/NaiveBayes.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.NaiveBayes</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing)</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">),</span> <span class="n">seed</span> <span class="k">=</span> <span class="mi">1234L</span><span class="o">)</span>
<span class="c1">// Train a NaiveBayes model.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">NaiveBayes</span><span class="o">()</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="c1">// Select (prediction, true label) and compute test error</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test set accuracy = $accuracy"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/NaiveBayes.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.NaiveBayes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.NaiveBayesModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">dataFrame</span> <span class="o">=</span>
<span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Split the data into train and test</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">dataFrame</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.6</span><span class="o">,</span> <span class="mf">0.4</span><span class="o">},</span> <span class="mi">1234L</span><span class="o">);</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">train</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// create the trainer and set its parameters</span>
<span class="nc">NaiveBayes</span> <span class="n">nb</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">NaiveBayes</span><span class="o">();</span>
<span class="c1">// train the model</span>
<span class="nc">NaiveBayesModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">nb</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">train</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">test</span><span class="o">);</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">show</span><span class="o">();</span>
<span class="c1">// compute accuracy on the test set</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test set accuracy = "</span> <span class="o">+</span> <span class="n">accuracy</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaNaiveBayesExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.NaiveBayes.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">NaiveBayes</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load training data
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span> \
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Split the data into train and test
</span><span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="mi">1234</span><span class="p">)</span>
<span class="n">train</span> <span class="o">=</span> <span class="n">splits</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">test</span> <span class="o">=</span> <span class="n">splits</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="c1"># create the trainer and set its parameters
</span><span class="n">nb</span> <span class="o">=</span> <span class="n">NaiveBayes</span><span class="p">(</span><span class="n">smoothing</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">modelType</span><span class="o">=</span><span class="s">"multinomial"</span><span class="p">)</span>
<span class="c1"># train the model
</span><span class="n">model</span> <span class="o">=</span> <span class="n">nb</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train</span><span class="p">)</span>
<span class="c1"># select example rows to display.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">test</span><span class="p">)</span>
<span class="n">predictions</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># compute accuracy on the test set
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span>
<span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test set accuracy = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">accuracy</span><span class="p">))</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/naive_bayes_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.naiveBayes.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Fit a Bernoulli naive Bayes model with spark.naiveBayes</span><span class="w">
</span><span class="n">titanic</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">as.data.frame</span><span class="p">(</span><span class="n">Titanic</span><span class="p">)</span><span class="w">
</span><span class="n">titanicDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">titanic</span><span class="p">[</span><span class="n">titanic</span><span class="o">$</span><span class="n">Freq</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="m">-5</span><span class="p">])</span><span class="w">
</span><span class="n">nbDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">titanicDF</span><span class="w">
</span><span class="n">nbTestDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">titanicDF</span><span class="w">
</span><span class="n">nbModel</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.naiveBayes</span><span class="p">(</span><span class="n">nbDF</span><span class="p">,</span><span class="w"> </span><span class="n">Survived</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">Class</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">Sex</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">Age</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">nbModel</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">nbPredictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">nbModel</span><span class="p">,</span><span class="w"> </span><span class="n">nbTestDF</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">nbPredictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/naiveBayes.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="factorization-machines-classifier">Factorization machines classifier</h2>
<p>For more background and more details about the implementation of factorization machines,
refer to the <a href="ml-classification-regression.html#factorization-machines">Factorization Machines section</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets,
train on the first dataset, and then evaluate on the held-out test set.
We scale features to be between 0 and 1 to prevent the exploding gradient problem.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/classification/FMClassifier.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.classification.</span><span class="o">{</span><span class="nc">FMClassificationModel</span><span class="o">,</span> <span class="nc">FMClassifier</span><span class="o">}</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.</span><span class="o">{</span><span class="nc">IndexToString</span><span class="o">,</span> <span class="nc">MinMaxScaler</span><span class="o">,</span> <span class="nc">StringIndexer</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="k">val</span> <span class="nv">labelIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Scale features.</span>
<span class="k">val</span> <span class="nv">featureScaler</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MinMaxScaler</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a FM model.</span>
<span class="k">val</span> <span class="nv">fm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">FMClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setStepSize</span><span class="o">(</span><span class="mf">0.001</span><span class="o">)</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="k">val</span> <span class="nv">labelConverter</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setLabels</span><span class="o">(</span><span class="nv">labelIndexer</span><span class="o">.</span><span class="py">labelsArray</span><span class="o">(</span><span class="mi">0</span><span class="o">))</span>
<span class="c1">// Create a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureScaler</span><span class="o">,</span> <span class="n">fm</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">))</span>
<span class="c1">// Train model.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test accuracy.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">accuracy</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Test set accuracy = $accuracy"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">fmModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">FMClassificationModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Factors: ${fmModel.factors} Linear: ${fmModel.linear} "</span> <span class="o">+</span>
<span class="n">s</span><span class="s">"Intercept: ${fmModel.intercept}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/FMClassifierExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/classification/FMClassifier.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.FMClassificationModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.classification.FMClassifier</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span>
<span class="o">.</span><span class="na">read</span><span class="o">()</span>
<span class="o">.</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Index labels, adding metadata to the label column.</span>
<span class="c1">// Fit on whole dataset to include all labels in index.</span>
<span class="nc">StringIndexerModel</span> <span class="n">labelIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StringIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Scale features.</span>
<span class="nc">MinMaxScalerModel</span> <span class="n">featureScaler</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MinMaxScaler</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing)</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a FM model.</span>
<span class="nc">FMClassifier</span> <span class="n">fm</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">FMClassifier</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setStepSize</span><span class="o">(</span><span class="mf">0.001</span><span class="o">);</span>
<span class="c1">// Convert indexed labels back to original labels.</span>
<span class="nc">IndexToString</span> <span class="n">labelConverter</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IndexToString</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLabels</span><span class="o">(</span><span class="n">labelIndexer</span><span class="o">.</span><span class="na">labelsArray</span><span class="o">()[</span><span class="mi">0</span><span class="o">]);</span>
<span class="c1">// Create a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">labelIndexer</span><span class="o">,</span> <span class="n">featureScaler</span><span class="o">,</span> <span class="n">fm</span><span class="o">,</span> <span class="n">labelConverter</span><span class="o">});</span>
<span class="c1">// Train model.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"predictedLabel"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test accuracy.</span>
<span class="nc">MulticlassClassificationEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"indexedLabel"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"accuracy"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Test Accuracy = "</span> <span class="o">+</span> <span class="n">accuracy</span><span class="o">);</span>
<span class="nc">FMClassificationModel</span> <span class="n">fmModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">FMClassificationModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">2</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Factors: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">factors</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Linear: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">linear</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaFMClassifierExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.classification.FMClassifier.html">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.classification</span> <span class="kn">import</span> <span class="n">FMClassifier</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">MinMaxScaler</span><span class="p">,</span> <span class="n">StringIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">MulticlassClassificationEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
</span><span class="n">labelIndexer</span> <span class="o">=</span> <span class="n">StringIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Scale features.
</span><span class="n">featureScaler</span> <span class="o">=</span> <span class="n">MinMaxScaler</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"scaledFeatures"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a FM model.
</span><span class="n">fm</span> <span class="o">=</span> <span class="n">FMClassifier</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">featuresCol</span><span class="o">=</span><span class="s">"scaledFeatures"</span><span class="p">,</span> <span class="n">stepSize</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="c1"># Create a Pipeline.
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">labelIndexer</span><span class="p">,</span> <span class="n">featureScaler</span><span class="p">,</span> <span class="n">fm</span><span class="p">])</span>
<span class="c1"># Train model.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"indexedLabel"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test accuracy
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">MulticlassClassificationEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"indexedLabel"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"accuracy"</span><span class="p">)</span>
<span class="n">accuracy</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Test set accuracy = %g"</span> <span class="o">%</span> <span class="n">accuracy</span><span class="p">)</span>
<span class="n">fmModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Factors: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">factors</span><span class="p">))</span> <span class="c1"># type: ignore
</span><span class="k">print</span><span class="p">(</span><span class="s">"Linear: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">linear</span><span class="p">))</span> <span class="c1"># type: ignore
</span><span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span> <span class="c1"># type: ignore</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/fm_classifier_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.fmClassifier.html">R API docs</a> for more details.</p>
<p>Note: At the moment SparkR doesn&#8217;t support feature scaling.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a FM classification model</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.fmClassifier</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/fmClassifier.R" in the Spark repo.</small></div>
</div>
</div>
<h1 id="regression">Regression</h1>
<h2 id="linear-regression">Linear regression</h2>
<p>The interface for working with linear regression models and model
summaries is similar to the logistic regression case.</p>
<blockquote>
<p>When fitting LinearRegressionModel without intercept on dataset with constant nonzero column by &#8220;l-bfgs&#8221; solver, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.</p>
</blockquote>
<p><strong>Examples</strong></p>
<p>The following
example demonstrates training an elastic net regularized linear
regression model and extracting model summary statistics.</p>
<div class="codetabs">
<div data-lang="scala">
<p>More details on parameters can be found in the <a href="api/scala/org/apache/spark/ml/regression/LinearRegression.html">Scala API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegression</span>
<span class="c1">// Load training data</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">lr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LinearRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="py">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">)</span>
<span class="c1">// Fit the model</span>
<span class="k">val</span> <span class="nv">lrModel</span> <span class="k">=</span> <span class="nv">lr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercept for linear regression</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}"</span><span class="o">)</span>
<span class="c1">// Summarize the model over the training set and print out some metrics</span>
<span class="k">val</span> <span class="nv">trainingSummary</span> <span class="k">=</span> <span class="nv">lrModel</span><span class="o">.</span><span class="py">summary</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"numIterations: ${trainingSummary.totalIterations}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"objectiveHistory: [${trainingSummary.objectiveHistory.mkString("</span><span class="o">,</span><span class="s">")}]"</span><span class="o">)</span>
<span class="nv">trainingSummary</span><span class="o">.</span><span class="py">residuals</span><span class="o">.</span><span class="py">show</span><span class="o">()</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"RMSE: ${trainingSummary.rootMeanSquaredError}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"r2: ${trainingSummary.r2}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>More details on parameters can be found in the <a href="api/java/org/apache/spark/ml/regression/LinearRegression.html">Java API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.LinearRegressionTrainingSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load training data.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="o">);</span>
<span class="nc">LinearRegression</span> <span class="n">lr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">LinearRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="o">.</span><span class="na">setElasticNetParam</span><span class="o">(</span><span class="mf">0.8</span><span class="o">);</span>
<span class="c1">// Fit the model.</span>
<span class="nc">LinearRegressionModel</span> <span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercept for linear regression.</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: "</span>
<span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">coefficients</span><span class="o">()</span> <span class="o">+</span> <span class="s">" Intercept: "</span> <span class="o">+</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span>
<span class="c1">// Summarize the model over the training set and print out some metrics.</span>
<span class="nc">LinearRegressionTrainingSummary</span> <span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="o">.</span><span class="na">summary</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"numIterations: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">totalIterations</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"objectiveHistory: "</span> <span class="o">+</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">trainingSummary</span><span class="o">.</span><span class="na">objectiveHistory</span><span class="o">()));</span>
<span class="n">trainingSummary</span><span class="o">.</span><span class="na">residuals</span><span class="o">().</span><span class="na">show</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"RMSE: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">rootMeanSquaredError</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"r2: "</span> <span class="o">+</span> <span class="n">trainingSummary</span><span class="o">.</span><span class="na">r2</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<!--- TODO: Add python model summaries once implemented -->
<p>More details on parameters can be found in the <a href="api/python/reference/api/pyspark.ml.regression.LinearRegression.html#pyspark.ml.regression.LinearRegression">Python API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">LinearRegression</span>
<span class="c1"># Load training data
</span><span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span>\
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">)</span>
<span class="n">lr</span> <span class="o">=</span> <span class="n">LinearRegression</span><span class="p">(</span><span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">elasticNetParam</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">lrModel</span> <span class="o">=</span> <span class="n">lr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercept for linear regression
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: %s"</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">coefficients</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: %s"</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">lrModel</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span>
<span class="c1"># Summarize the model over the training set and print out some metrics
</span><span class="n">trainingSummary</span> <span class="o">=</span> <span class="n">lrModel</span><span class="p">.</span><span class="n">summary</span>
<span class="k">print</span><span class="p">(</span><span class="s">"numIterations: %d"</span> <span class="o">%</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">totalIterations</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"objectiveHistory: %s"</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">trainingSummary</span><span class="p">.</span><span class="n">objectiveHistory</span><span class="p">))</span>
<span class="n">trainingSummary</span><span class="p">.</span><span class="n">residuals</span><span class="p">.</span><span class="n">show</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s">"RMSE: %f"</span> <span class="o">%</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">rootMeanSquaredError</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"r2: %f"</span> <span class="o">%</span> <span class="n">trainingSummary</span><span class="p">.</span><span class="n">r2</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/linear_regression_with_elastic_net.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>More details on parameters can be found in the <a href="api/R/spark.lm.html">R API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a linear regression model</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.lm</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">regParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.3</span><span class="p">,</span><span class="w"> </span><span class="n">elasticNetParam</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0.8</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span><span class="w">
</span><span class="c1"># Summarize</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/lm_with_elastic_net.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="generalized-linear-regression">Generalized linear regression</h2>
<p>Contrasted with linear regression where the output is assumed to follow a Gaussian
distribution, <a href="https://en.wikipedia.org/wiki/Generalized_linear_model">generalized linear models</a> (GLMs) are specifications of linear models where the response variable $Y_i$ follows some
distribution from the <a href="https://en.wikipedia.org/wiki/Exponential_family">exponential family of distributions</a>.
Spark&#8217;s <code class="language-plaintext highlighter-rouge">GeneralizedLinearRegression</code> interface
allows for flexible specification of GLMs which can be used for various types of
prediction problems including linear regression, Poisson regression, logistic regression, and others.
Currently in <code class="language-plaintext highlighter-rouge">spark.ml</code>, only a subset of the exponential family distributions are supported and they are listed
<a href="#available-families">below</a>.</p>
<p><strong>NOTE</strong>: Spark currently only supports up to 4096 features through its <code class="language-plaintext highlighter-rouge">GeneralizedLinearRegression</code>
interface, and will throw an exception if this constraint is exceeded. See the <a href="ml-advanced">advanced section</a> for more details.
Still, for linear and logistic regression, models with an increased number of features can be trained
using the <code class="language-plaintext highlighter-rouge">LinearRegression</code> and <code class="language-plaintext highlighter-rouge">LogisticRegression</code> estimators.</p>
<p>GLMs require exponential family distributions that can be written in their &#8220;canonical&#8221; or &#8220;natural&#8221; form, aka
<a href="https://en.wikipedia.org/wiki/Natural_exponential_family">natural exponential family distributions</a>. The form of a natural exponential family distribution is given as:</p>
\[f_Y(y|\theta, \tau) = h(y, \tau)\exp{\left( \frac{\theta \cdot y - A(\theta)}{d(\tau)} \right)}\]
<p>where $\theta$ is the parameter of interest and $\tau$ is a dispersion parameter. In a GLM the response variable $Y_i$ is assumed to be drawn from a natural exponential family distribution:</p>
\[Y_i \sim f\left(\cdot|\theta_i, \tau \right)\]
<p>where the parameter of interest $\theta_i$ is related to the expected value of the response variable $\mu_i$ by</p>
\[\mu_i = A'(\theta_i)\]
<p>Here, $A&#8217;(\theta_i)$ is defined by the form of the distribution selected. GLMs also allow specification
of a link function, which defines the relationship between the expected value of the response variable $\mu_i$
and the so called <em>linear predictor</em> $\eta_i$:</p>
\[g(\mu_i) = \eta_i = \vec{x_i}^T \cdot \vec{\beta}\]
<p>Often, the link function is chosen such that $A&#8217; = g^{-1}$, which yields a simplified relationship
between the parameter of interest $\theta$ and the linear predictor $\eta$. In this case, the link
function $g(\mu)$ is said to be the &#8220;canonical&#8221; link function.</p>
\[\theta_i = A'^{-1}(\mu_i) = g(g^{-1}(\eta_i)) = \eta_i\]
<p>A GLM finds the regression coefficients $\vec{\beta}$ which maximize the likelihood function.</p>
\[\max_{\vec{\beta}} \mathcal{L}(\vec{\theta}|\vec{y},X) =
\prod_{i=1}^{N} h(y_i, \tau) \exp{\left(\frac{y_i\theta_i - A(\theta_i)}{d(\tau)}\right)}\]
<p>where the parameter of interest $\theta_i$ is related to the regression coefficients $\vec{\beta}$
by</p>
\[\theta_i = A'^{-1}(g^{-1}(\vec{x_i} \cdot \vec{\beta}))\]
<p>Spark&#8217;s generalized linear regression interface also provides summary statistics for diagnosing the
fit of GLM models, including residuals, p-values, deviances, the Akaike information criterion, and
others.</p>
<p><a href="http://data.princeton.edu/wws509/notes/">See here</a> for a more comprehensive review of GLMs and their applications.</p>
<h3 id="available-families">Available families</h3>
<table class="table">
<thead>
<tr>
<th>Family</th>
<th>Response Type</th>
<th>Supported Links</th></tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>Continuous</td>
<td>Identity*, Log, Inverse</td>
</tr>
<tr>
<td>Binomial</td>
<td>Binary</td>
<td>Logit*, Probit, CLogLog</td>
</tr>
<tr>
<td>Poisson</td>
<td>Count</td>
<td>Log*, Identity, Sqrt</td>
</tr>
<tr>
<td>Gamma</td>
<td>Continuous</td>
<td>Inverse*, Identity, Log</td>
</tr>
<tr>
<td>Tweedie</td>
<td>Zero-inflated continuous</td>
<td>Power link function</td>
</tr>
<tfoot><tr><td colspan="4">* Canonical Link</td></tr></tfoot>
</tbody>
</table>
<p><strong>Examples</strong></p>
<p>The following example demonstrates training a GLM with a Gaussian response and identity link
function and extracting model summary statistics.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.GeneralizedLinearRegression</span>
<span class="c1">// Load training data</span>
<span class="k">val</span> <span class="nv">dataset</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">glr</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GeneralizedLinearRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setFamily</span><span class="o">(</span><span class="s">"gaussian"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setLink</span><span class="o">(</span><span class="s">"identity"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="py">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">)</span>
<span class="c1">// Fit the model</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">glr</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="c1">// Print the coefficients and intercept for generalized linear regression model</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: ${model.coefficients}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Intercept: ${model.intercept}"</span><span class="o">)</span>
<span class="c1">// Summarize the model over the training set and print out some metrics</span>
<span class="k">val</span> <span class="nv">summary</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">summary</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficient Standard Errors: ${summary.coefficientStandardErrors.mkString("</span><span class="o">,</span><span class="s">")}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"T Values: ${summary.tValues.mkString("</span><span class="o">,</span><span class="s">")}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"P Values: ${summary.pValues.mkString("</span><span class="o">,</span><span class="s">")}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Dispersion: ${summary.dispersion}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Null Deviance: ${summary.nullDeviance}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Residual Degree Of Freedom Null: ${summary.residualDegreeOfFreedomNull}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Deviance: ${summary.deviance}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Residual Degree Of Freedom: ${summary.residualDegreeOfFreedom}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"AIC: ${summary.aic}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="s">"Deviance Residuals: "</span><span class="o">)</span>
<span class="nv">summary</span><span class="o">.</span><span class="py">residuals</span><span class="o">().</span><span class="py">show</span><span class="o">()</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/GeneralizedLinearRegressionExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/GeneralizedLinearRegression.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.GeneralizedLinearRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.GeneralizedLinearRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.GeneralizedLinearRegressionTrainingSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// Load training data</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="o">);</span>
<span class="nc">GeneralizedLinearRegression</span> <span class="n">glr</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">GeneralizedLinearRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setFamily</span><span class="o">(</span><span class="s">"gaussian"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setLink</span><span class="o">(</span><span class="s">"identity"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="o">.</span><span class="na">setRegParam</span><span class="o">(</span><span class="mf">0.3</span><span class="o">);</span>
<span class="c1">// Fit the model</span>
<span class="nc">GeneralizedLinearRegressionModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">glr</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="c1">// Print the coefficients and intercept for generalized linear regression model</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">coefficients</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span>
<span class="c1">// Summarize the model over the training set and print out some metrics</span>
<span class="nc">GeneralizedLinearRegressionTrainingSummary</span> <span class="n">summary</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">summary</span><span class="o">();</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficient Standard Errors: "</span>
<span class="o">+</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">toString</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">coefficientStandardErrors</span><span class="o">()));</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"T Values: "</span> <span class="o">+</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">toString</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">tValues</span><span class="o">()));</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"P Values: "</span> <span class="o">+</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">toString</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">pValues</span><span class="o">()));</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Dispersion: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">dispersion</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Null Deviance: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">nullDeviance</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Residual Degree Of Freedom Null: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">residualDegreeOfFreedomNull</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Deviance: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">deviance</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Residual Degree Of Freedom: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">residualDegreeOfFreedom</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"AIC: "</span> <span class="o">+</span> <span class="n">summary</span><span class="o">.</span><span class="na">aic</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Deviance Residuals: "</span><span class="o">);</span>
<span class="n">summary</span><span class="o">.</span><span class="na">residuals</span><span class="o">().</span><span class="na">show</span><span class="o">();</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaGeneralizedLinearRegressionExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.GeneralizedLinearRegression.html#pyspark.ml.regression.GeneralizedLinearRegression">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">GeneralizedLinearRegression</span>
<span class="c1"># Load training data
</span><span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span>\
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">)</span>
<span class="n">glr</span> <span class="o">=</span> <span class="n">GeneralizedLinearRegression</span><span class="p">(</span><span class="n">family</span><span class="o">=</span><span class="s">"gaussian"</span><span class="p">,</span> <span class="n">link</span><span class="o">=</span><span class="s">"identity"</span><span class="p">,</span> <span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">regParam</span><span class="o">=</span><span class="mf">0.3</span><span class="p">)</span>
<span class="c1"># Fit the model
</span><span class="n">model</span> <span class="o">=</span> <span class="n">glr</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="c1"># Print the coefficients and intercept for generalized linear regression model
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">coefficients</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span>
<span class="c1"># Summarize the model over the training set and print out some metrics
</span><span class="n">summary</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">summary</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Coefficient Standard Errors: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">coefficientStandardErrors</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"T Values: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">tValues</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"P Values: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">pValues</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Dispersion: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">dispersion</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Null Deviance: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">nullDeviance</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Residual Degree Of Freedom Null: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">residualDegreeOfFreedomNull</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Deviance: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">deviance</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Residual Degree Of Freedom: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">residualDegreeOfFreedom</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"AIC: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">summary</span><span class="p">.</span><span class="n">aic</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Deviance Residuals: "</span><span class="p">)</span>
<span class="n">summary</span><span class="p">.</span><span class="n">residuals</span><span class="p">().</span><span class="n">show</span><span class="p">()</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/generalized_linear_regression_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.glm.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit a generalized linear model of family "gaussian" with spark.glm</span><span class="w">
</span><span class="n">df_list</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">randomSplit</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">7</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">),</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">gaussianDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df_list</span><span class="p">[[</span><span class="m">1</span><span class="p">]]</span><span class="w">
</span><span class="n">gaussianTestDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df_list</span><span class="p">[[</span><span class="m">2</span><span class="p">]]</span><span class="w">
</span><span class="n">gaussianGLM</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.glm</span><span class="p">(</span><span class="n">gaussianDF</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">family</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"gaussian"</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">gaussianGLM</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">gaussianPredictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">gaussianGLM</span><span class="p">,</span><span class="w"> </span><span class="n">gaussianTestDF</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">gaussianPredictions</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit a generalized linear model with glm (R-compliant)</span><span class="w">
</span><span class="n">gaussianGLM2</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">glm</span><span class="p">(</span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">gaussianDF</span><span class="p">,</span><span class="w"> </span><span class="n">family</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"gaussian"</span><span class="p">)</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">gaussianGLM2</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit a generalized linear model of family "binomial" with spark.glm</span><span class="w">
</span><span class="n">training2</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training2</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">transform</span><span class="p">(</span><span class="n">training2</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cast</span><span class="p">(</span><span class="n">training2</span><span class="o">$</span><span class="n">label</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="s2">"integer"</span><span class="p">))</span><span class="w">
</span><span class="n">df_list2</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">randomSplit</span><span class="p">(</span><span class="n">training2</span><span class="p">,</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">7</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">),</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w">
</span><span class="n">binomialDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df_list2</span><span class="p">[[</span><span class="m">1</span><span class="p">]]</span><span class="w">
</span><span class="n">binomialTestDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df_list2</span><span class="p">[[</span><span class="m">2</span><span class="p">]]</span><span class="w">
</span><span class="n">binomialGLM</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.glm</span><span class="p">(</span><span class="n">binomialDF</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">family</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"binomial"</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">binomialGLM</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">binomialPredictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">binomialGLM</span><span class="p">,</span><span class="w"> </span><span class="n">binomialTestDF</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">binomialPredictions</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit a generalized linear model of family "tweedie" with spark.glm</span><span class="w">
</span><span class="n">training3</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_multiclass_classification_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">tweedieDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">transform</span><span class="p">(</span><span class="n">training3</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">training3</span><span class="o">$</span><span class="n">label</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nf">exp</span><span class="p">(</span><span class="n">randn</span><span class="p">(</span><span class="m">10</span><span class="p">)))</span><span class="w">
</span><span class="n">tweedieGLM</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.glm</span><span class="p">(</span><span class="n">tweedieDF</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">family</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"tweedie"</span><span class="p">,</span><span class="w">
</span><span class="n">var.power</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1.2</span><span class="p">,</span><span class="w"> </span><span class="n">link.power</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">tweedieGLM</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/glm.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="decision-tree-regression">Decision tree regression</h2>
<p>Decision trees are a popular family of classification and regression methods.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#decision-trees">section on decision trees</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the <code class="language-plaintext highlighter-rouge">DataFrame</code> which the Decision Tree algorithm can recognize.</p>
<div class="codetabs">
<div data-lang="scala">
<p>More details on parameters can be found in the <a href="api/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.html">Scala API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.DecisionTreeRegressionModel</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.DecisionTreeRegressor</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Here, we treat features with &gt; 4 distinct values as continuous.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a DecisionTree model.</span>
<span class="k">val</span> <span class="nv">dt</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">DecisionTreeRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="c1">// Chain indexer and tree in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">dt</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rmse</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Root Mean Squared Error (RMSE) on test data = $rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">treeModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">DecisionTreeRegressionModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned regression tree model:\n ${treeModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>More details on parameters can be found in the <a href="api/java/org/apache/spark/ml/regression/DecisionTreeRegressor.html">Java API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexerModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.DecisionTreeRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.DecisionTreeRegressor</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load the data stored in LIBSVM format as a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a DecisionTree model.</span>
<span class="nc">DecisionTreeRegressor</span> <span class="n">dt</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">DecisionTreeRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">);</span>
<span class="c1">// Chain indexer and tree in a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]{</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">dt</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="nc">RegressionEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = "</span> <span class="o">+</span> <span class="n">rmse</span><span class="o">);</span>
<span class="nc">DecisionTreeRegressionModel</span> <span class="n">treeModel</span> <span class="o">=</span>
<span class="o">(</span><span class="nc">DecisionTreeRegressionModel</span><span class="o">)</span> <span class="o">(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">1</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned regression tree model:\n"</span> <span class="o">+</span> <span class="n">treeModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaDecisionTreeRegressionExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>More details on parameters can be found in the <a href="api/python/reference/api/pyspark.ml.regression.DecisionTreeRegressor.html#pyspark.ml.regression.DecisionTreeRegressor">Python API documentation</a>.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">DecisionTreeRegressor</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">RegressionEvaluator</span>
<span class="c1"># Load the data stored in LIBSVM format as a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# We specify maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a DecisionTree model.
</span><span class="n">dt</span> <span class="o">=</span> <span class="n">DecisionTreeRegressor</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">)</span>
<span class="c1"># Chain indexer and tree in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">featureIndexer</span><span class="p">,</span> <span class="n">dt</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexer.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">RegressionEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"rmse"</span><span class="p">)</span>
<span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = %g"</span> <span class="o">%</span> <span class="n">rmse</span><span class="p">)</span>
<span class="n">treeModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="c1"># summary only
</span><span class="k">print</span><span class="p">(</span><span class="n">treeModel</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/decision_tree_regression_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.decisionTree.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a DecisionTree regression model with spark.decisionTree</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.decisionTree</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"regression"</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/decisionTree.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="random-forest-regression">Random forest regression</h2>
<p>Random forests are a popular family of classification and regression methods.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#random-forests">section on random forests</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the <code class="language-plaintext highlighter-rouge">DataFrame</code> which the tree-based algorithms can recognize.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/RandomForestRegressor.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.</span><span class="o">{</span><span class="nc">RandomForestRegressionModel</span><span class="o">,</span> <span class="nc">RandomForestRegressor</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a RandomForest model.</span>
<span class="k">val</span> <span class="nv">rf</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RandomForestRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="c1">// Chain indexer and forest in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">rf</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rmse</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Root Mean Squared Error (RMSE) on test data = $rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rfModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">RandomForestRegressionModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned regression forest model:\n ${rfModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/RandomForestRegressorExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/RandomForestRegressor.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexerModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.RandomForestRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.RandomForestRegressor</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing)</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a RandomForest model.</span>
<span class="nc">RandomForestRegressor</span> <span class="n">rf</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RandomForestRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">);</span>
<span class="c1">// Chain indexer and forest in a Pipeline</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">rf</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error</span>
<span class="nc">RegressionEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = "</span> <span class="o">+</span> <span class="n">rmse</span><span class="o">);</span>
<span class="nc">RandomForestRegressionModel</span> <span class="n">rfModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">RandomForestRegressionModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">1</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned regression forest model:\n"</span> <span class="o">+</span> <span class="n">rfModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaRandomForestRegressorExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html#pyspark.ml.regression.RandomForestRegressor">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">RandomForestRegressor</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">RegressionEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# Set maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a RandomForest model.
</span><span class="n">rf</span> <span class="o">=</span> <span class="n">RandomForestRegressor</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">)</span>
<span class="c1"># Chain indexer and forest in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">featureIndexer</span><span class="p">,</span> <span class="n">rf</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexer.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">RegressionEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"rmse"</span><span class="p">)</span>
<span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = %g"</span> <span class="o">%</span> <span class="n">rmse</span><span class="p">)</span>
<span class="n">rfModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="n">rfModel</span><span class="p">)</span> <span class="c1"># summary only</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/random_forest_regressor_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.randomForest.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a random forest regression model with spark.randomForest</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.randomForest</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"regression"</span><span class="p">,</span><span class="w"> </span><span class="n">numTrees</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/randomForest.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="gradient-boosted-tree-regression">Gradient-boosted tree regression</h2>
<p>Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees.
More information about the <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation can be found further in the <a href="#gradient-boosted-trees-gbts">section on GBTs</a>.</p>
<p><strong>Examples</strong></p>
<p>Note: For this example dataset, <code class="language-plaintext highlighter-rouge">GBTRegressor</code> actually only needs 1 iteration, but that will not
be true in general.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/GBTRegressor.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.</span><span class="o">{</span><span class="nc">GBTRegressionModel</span><span class="o">,</span> <span class="nc">GBTRegressor</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="k">val</span> <span class="nv">featureIndexer</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a GBT model.</span>
<span class="k">val</span> <span class="nv">gbt</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GBTRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="c1">// Chain indexer and GBT in a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">gbt</span><span class="o">))</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rmse</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Root Mean Squared Error (RMSE) on test data = $rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">gbtModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">GBTRegressionModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Learned regression GBT model:\n ${gbtModel.toDebugString}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/GradientBoostedTreeRegressorExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/GBTRegressor.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexer</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.VectorIndexerModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.GBTRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.GBTRegressor</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Automatically identify categorical features, and index them.</span>
<span class="c1">// Set maxCategories so features with &gt; 4 distinct values are treated as continuous.</span>
<span class="nc">VectorIndexerModel</span> <span class="n">featureIndexer</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">VectorIndexer</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxCategories</span><span class="o">(</span><span class="mi">4</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a GBT model.</span>
<span class="nc">GBTRegressor</span> <span class="n">gbt</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">GBTRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"indexedFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span>
<span class="c1">// Chain indexer and GBT in a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">().</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">featureIndexer</span><span class="o">,</span> <span class="n">gbt</span><span class="o">});</span>
<span class="c1">// Train model. This also runs the indexer.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="nc">RegressionEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = "</span> <span class="o">+</span> <span class="n">rmse</span><span class="o">);</span>
<span class="nc">GBTRegressionModel</span> <span class="n">gbtModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">GBTRegressionModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">1</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Learned regression GBT model:\n"</span> <span class="o">+</span> <span class="n">gbtModel</span><span class="o">.</span><span class="na">toDebugString</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaGradientBoostedTreeRegressorExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.GBTRegressor.html#pyspark.ml.regression.GBTRegressor">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">GBTRegressor</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">VectorIndexer</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">RegressionEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Automatically identify categorical features, and index them.
# Set maxCategories so features with &gt; 4 distinct values are treated as continuous.
</span><span class="n">featureIndexer</span> <span class="o">=</span>\
<span class="n">VectorIndexer</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxCategories</span><span class="o">=</span><span class="mi">4</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a GBT model.
</span><span class="n">gbt</span> <span class="o">=</span> <span class="n">GBTRegressor</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="s">"indexedFeatures"</span><span class="p">,</span> <span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="c1"># Chain indexer and GBT in a Pipeline
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">featureIndexer</span><span class="p">,</span> <span class="n">gbt</span><span class="p">])</span>
<span class="c1"># Train model. This also runs the indexer.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">RegressionEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"rmse"</span><span class="p">)</span>
<span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = %g"</span> <span class="o">%</span> <span class="n">rmse</span><span class="p">)</span>
<span class="n">gbtModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="n">gbtModel</span><span class="p">)</span> <span class="c1"># summary only</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/gradient_boosted_tree_regressor_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.gbt.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit a GBT regression model with spark.gbt</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.gbt</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="s2">"regression"</span><span class="p">,</span><span class="w"> </span><span class="n">maxIter</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">10</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/gbt.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="survival-regression">Survival regression</h2>
<p>In <code class="language-plaintext highlighter-rouge">spark.ml</code>, we implement the <a href="https://en.wikipedia.org/wiki/Accelerated_failure_time_model">Accelerated failure time (AFT)</a>
model which is a parametric survival regression model for censored data.
It describes a model for the log of survival time, so it&#8217;s often called a
log-linear model for survival analysis. Different from a
<a href="https://en.wikipedia.org/wiki/Proportional_hazards_model">Proportional hazards</a> model
designed for the same purpose, the AFT model is easier to parallelize
because each instance contributes to the objective function independently.</p>
<p>Given the values of the covariates $x^{&#8216;}$, for random lifetime $t_{i}$ of
subjects i = 1, &#8230;, n, with possible right-censoring,
the likelihood function under the AFT model is given as:
<code class="language-plaintext highlighter-rouge">\[
L(\beta,\sigma)=\prod_{i=1}^n[\frac{1}{\sigma}f_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})]^{\delta_{i}}S_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})^{1-\delta_{i}}
\]</code>
Where $\delta_{i}$ is the indicator of the event has occurred i.e. uncensored or not.
Using $\epsilon_{i}=\frac{\log{t_{i}}-x^{&#8216;}\beta}{\sigma}$, the log-likelihood function
assumes the form:
<code class="language-plaintext highlighter-rouge">\[
\iota(\beta,\sigma)=\sum_{i=1}^{n}[-\delta_{i}\log\sigma+\delta_{i}\log{f_{0}}(\epsilon_{i})+(1-\delta_{i})\log{S_{0}(\epsilon_{i})}]
\]</code>
Where $S_{0}(\epsilon_{i})$ is the baseline survivor function,
and $f_{0}(\epsilon_{i})$ is the corresponding density function.</p>
<p>The most commonly used AFT model is based on the Weibull distribution of the survival time.
The Weibull distribution for lifetime corresponds to the extreme value distribution for the
log of the lifetime, and the $S_{0}(\epsilon)$ function is:
<code class="language-plaintext highlighter-rouge">\[
S_{0}(\epsilon_{i})=\exp(-e^{\epsilon_{i}})
\]</code>
the $f_{0}(\epsilon_{i})$ function is:
<code class="language-plaintext highlighter-rouge">\[
f_{0}(\epsilon_{i})=e^{\epsilon_{i}}\exp(-e^{\epsilon_{i}})
\]</code>
The log-likelihood function for AFT model with a Weibull distribution of lifetime is:
<code class="language-plaintext highlighter-rouge">\[
\iota(\beta,\sigma)= -\sum_{i=1}^n[\delta_{i}\log\sigma-\delta_{i}\epsilon_{i}+e^{\epsilon_{i}}]
\]</code>
Due to minimizing the negative log-likelihood equivalent to maximum a posteriori probability,
the loss function we use to optimize is $-\iota(\beta,\sigma)$.
The gradient functions for $\beta$ and $\log\sigma$ respectively are:
<code class="language-plaintext highlighter-rouge">\[
\frac{\partial (-\iota)}{\partial \beta}=\sum_{1=1}^{n}[\delta_{i}-e^{\epsilon_{i}}]\frac{x_{i}}{\sigma}
\]</code>
<code class="language-plaintext highlighter-rouge">\[
\frac{\partial (-\iota)}{\partial (\log\sigma)}=\sum_{i=1}^{n}[\delta_{i}+(\delta_{i}-e^{\epsilon_{i}})\epsilon_{i}]
\]</code></p>
<p>The AFT model can be formulated as a convex optimization problem,
i.e. the task of finding a minimizer of a convex function $-\iota(\beta,\sigma)$
that depends on the coefficients vector $\beta$ and the log of scale parameter $\log\sigma$.
The optimization algorithm underlying the implementation is L-BFGS.
The implementation matches the result from R&#8217;s survival function
<a href="https://stat.ethz.ch/R-manual/R-devel/library/survival/html/survreg.html">survreg</a></p>
<blockquote>
<p>When fitting AFTSurvivalRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is different from R survival::survreg.</p>
</blockquote>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/AFTSurvivalRegression.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.AFTSurvivalRegression</span>
<span class="k">val</span> <span class="nv">training</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">createDataFrame</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span>
<span class="o">(</span><span class="mf">1.218</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.560</span><span class="o">,</span> <span class="o">-</span><span class="mf">0.605</span><span class="o">)),</span>
<span class="o">(</span><span class="mf">2.949</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">0.346</span><span class="o">,</span> <span class="mf">2.158</span><span class="o">)),</span>
<span class="o">(</span><span class="mf">3.627</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.380</span><span class="o">,</span> <span class="mf">0.231</span><span class="o">)),</span>
<span class="o">(</span><span class="mf">0.273</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">0.520</span><span class="o">,</span> <span class="mf">1.151</span><span class="o">)),</span>
<span class="o">(</span><span class="mf">4.199</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">0.795</span><span class="o">,</span> <span class="o">-</span><span class="mf">0.226</span><span class="o">))</span>
<span class="o">)).</span><span class="py">toDF</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"censor"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">quantileProbabilities</span> <span class="k">=</span> <span class="nc">Array</span><span class="o">(</span><span class="mf">0.3</span><span class="o">,</span> <span class="mf">0.6</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">aft</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">AFTSurvivalRegression</span><span class="o">()</span>
<span class="o">.</span><span class="py">setQuantileProbabilities</span><span class="o">(</span><span class="n">quantileProbabilities</span><span class="o">)</span>
<span class="o">.</span><span class="py">setQuantilesCol</span><span class="o">(</span><span class="s">"quantiles"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">aft</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">training</span><span class="o">)</span>
<span class="c1">// Print the coefficients, intercept and scale parameter for AFT survival regression</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Coefficients: ${model.coefficients}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Intercept: ${model.intercept}"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Scale: ${model.scale}"</span><span class="o">)</span>
<span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">training</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="kc">false</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/AFTSurvivalRegressionExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/AFTSurvivalRegression.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.AFTSurvivalRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.AFTSurvivalRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.VectorUDT</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span>
<span class="nc">List</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span>
<span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">1.218</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.560</span><span class="o">,</span> <span class="o">-</span><span class="mf">0.605</span><span class="o">)),</span>
<span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">2.949</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.346</span><span class="o">,</span> <span class="mf">2.158</span><span class="o">)),</span>
<span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">3.627</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.380</span><span class="o">,</span> <span class="mf">0.231</span><span class="o">)),</span>
<span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.273</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.520</span><span class="o">,</span> <span class="mf">1.151</span><span class="o">)),</span>
<span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">4.199</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.795</span><span class="o">,</span> <span class="o">-</span><span class="mf">0.226</span><span class="o">))</span>
<span class="o">);</span>
<span class="nc">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StructType</span><span class="o">(</span><span class="k">new</span> <span class="nc">StructField</span><span class="o">[]{</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="nc">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"censor"</span><span class="o">,</span> <span class="nc">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span>
<span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="k">new</span> <span class="nc">VectorUDT</span><span class="o">(),</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span>
<span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span>
<span class="kt">double</span><span class="o">[]</span> <span class="n">quantileProbabilities</span> <span class="o">=</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">0.3</span><span class="o">,</span> <span class="mf">0.6</span><span class="o">};</span>
<span class="nc">AFTSurvivalRegression</span> <span class="n">aft</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">AFTSurvivalRegression</span><span class="o">()</span>
<span class="o">.</span><span class="na">setQuantileProbabilities</span><span class="o">(</span><span class="n">quantileProbabilities</span><span class="o">)</span>
<span class="o">.</span><span class="na">setQuantilesCol</span><span class="o">(</span><span class="s">"quantiles"</span><span class="o">);</span>
<span class="nc">AFTSurvivalRegressionModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">aft</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">training</span><span class="o">);</span>
<span class="c1">// Print the coefficients, intercept and scale parameter for AFT survival regression</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">coefficients</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Scale: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">scale</span><span class="o">());</span>
<span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">training</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaAFTSurvivalRegressionExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.AFTSurvivalRegression.html#pyspark.ml.regression.AFTSurvivalRegression">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">AFTSurvivalRegression</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span>
<span class="n">training</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">createDataFrame</span><span class="p">([</span>
<span class="p">(</span><span class="mf">1.218</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.560</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.605</span><span class="p">)),</span>
<span class="p">(</span><span class="mf">2.949</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">0.346</span><span class="p">,</span> <span class="mf">2.158</span><span class="p">)),</span>
<span class="p">(</span><span class="mf">3.627</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.380</span><span class="p">,</span> <span class="mf">0.231</span><span class="p">)),</span>
<span class="p">(</span><span class="mf">0.273</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">0.520</span><span class="p">,</span> <span class="mf">1.151</span><span class="p">)),</span>
<span class="p">(</span><span class="mf">4.199</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">0.795</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.226</span><span class="p">))],</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"censor"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">])</span>
<span class="n">quantileProbabilities</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">]</span>
<span class="n">aft</span> <span class="o">=</span> <span class="n">AFTSurvivalRegression</span><span class="p">(</span><span class="n">quantileProbabilities</span><span class="o">=</span><span class="n">quantileProbabilities</span><span class="p">,</span>
<span class="n">quantilesCol</span><span class="o">=</span><span class="s">"quantiles"</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">aft</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">training</span><span class="p">)</span>
<span class="c1"># Print the coefficients, intercept and scale parameter for AFT survival regression
</span><span class="k">print</span><span class="p">(</span><span class="s">"Coefficients: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">coefficients</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Scale: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">scale</span><span class="p">))</span>
<span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">training</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/aft_survival_regression.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.survreg.html">R API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Use the ovarian dataset available in R survival package</span><span class="w">
</span><span class="n">library</span><span class="p">(</span><span class="n">survival</span><span class="p">)</span><span class="w">
</span><span class="c1"># Fit an accelerated failure time (AFT) survival regression model with spark.survreg</span><span class="w">
</span><span class="n">ovarianDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">suppressWarnings</span><span class="p">(</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">ovarian</span><span class="p">))</span><span class="w">
</span><span class="n">aftDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">ovarianDF</span><span class="w">
</span><span class="n">aftTestDF</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">ovarianDF</span><span class="w">
</span><span class="n">aftModel</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.survreg</span><span class="p">(</span><span class="n">aftDF</span><span class="p">,</span><span class="w"> </span><span class="n">Surv</span><span class="p">(</span><span class="n">futime</span><span class="p">,</span><span class="w"> </span><span class="n">fustat</span><span class="p">)</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">ecog_ps</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">rx</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">aftModel</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">aftPredictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">aftModel</span><span class="p">,</span><span class="w"> </span><span class="n">aftTestDF</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">aftPredictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/survreg.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="isotonic-regression">Isotonic regression</h2>
<p><a href="http://en.wikipedia.org/wiki/Isotonic_regression">Isotonic regression</a>
belongs to the family of regression algorithms. Formally isotonic regression is a problem where
given a finite set of real numbers <code class="language-plaintext highlighter-rouge">$Y = {y_1, y_2, ..., y_n}$</code> representing observed responses
and <code class="language-plaintext highlighter-rouge">$X = {x_1, x_2, ..., x_n}$</code> the unknown response values to be fitted
finding a function that minimizes</p>
<p><code class="language-plaintext highlighter-rouge">\begin{equation}
f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2
\end{equation}</code></p>
<p>with respect to complete order subject to
<code class="language-plaintext highlighter-rouge">$x_1\le x_2\le ...\le x_n$</code> where <code class="language-plaintext highlighter-rouge">$w_i$</code> are positive weights.
The resulting function is called isotonic regression and it is unique.
It can be viewed as least squares problem under order restriction.
Essentially isotonic regression is a
<a href="http://en.wikipedia.org/wiki/Monotonic_function">monotonic function</a>
best fitting the original data points.</p>
<p>We implement a
<a href="https://doi.org/10.1198/TECH.2010.10111">pool adjacent violators algorithm</a>
which uses an approach to
<a href="https://doi.org/10.1007/978-3-642-99789-1_10">parallelizing isotonic regression</a>.
The training input is a DataFrame which contains three columns
label, features and weight. Additionally, IsotonicRegression algorithm has one
optional parameter called $isotonic$ defaulting to true.
This argument specifies if the isotonic regression is
isotonic (monotonically increasing) or antitonic (monotonically decreasing).</p>
<p>Training returns an IsotonicRegressionModel that can be used to predict
labels for both known and unknown features. The result of isotonic regression
is treated as piecewise linear function. The rules for prediction therefore are:</p>
<ul>
<li>If the prediction input exactly matches a training feature
then associated prediction is returned. In case there are multiple predictions with the same
feature then one of them is returned. Which one is undefined
(same as java.util.Arrays.binarySearch).</li>
<li>If the prediction input is lower or higher than all training features
then prediction with lowest or highest feature is returned respectively.
In case there are multiple predictions with the same feature
then the lowest or highest is returned respectively.</li>
<li>If the prediction input falls between two training features then prediction is treated
as piecewise linear function and interpolated value is calculated from the
predictions of the two closest features. In case there are multiple values
with the same feature then the same rules as in previous point are used.</li>
</ul>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Scala docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.IsotonicRegression</span>
<span class="c1">// Loads data.</span>
<span class="k">val</span> <span class="nv">dataset</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Trains an isotonic regression model.</span>
<span class="k">val</span> <span class="nv">ir</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">()</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">ir</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Boundaries in increasing order: ${model.boundaries}\n"</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Predictions associated with the boundaries: ${model.predictions}\n"</span><span class="o">)</span>
<span class="c1">// Makes predictions.</span>
<span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">).</span><span class="py">show</span><span class="o">()</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/IsotonicRegression.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Java docs</a> for details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.IsotonicRegression</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.IsotonicRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// Loads data.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Trains an isotonic regression model.</span>
<span class="nc">IsotonicRegression</span> <span class="n">ir</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">IsotonicRegression</span><span class="o">();</span>
<span class="nc">IsotonicRegressionModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">ir</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Boundaries in increasing order: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">boundaries</span><span class="o">()</span> <span class="o">+</span> <span class="s">"\n"</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Predictions associated with the boundaries: "</span> <span class="o">+</span> <span class="n">model</span><span class="o">.</span><span class="na">predictions</span><span class="o">()</span> <span class="o">+</span> <span class="s">"\n"</span><span class="o">);</span>
<span class="c1">// Makes predictions.</span>
<span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">).</span><span class="na">show</span><span class="o">();</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.IsotonicRegression.html#pyspark.ml.regression.IsotonicRegression"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> Python docs</a> for more details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">IsotonicRegression</span>
<span class="c1"># Loads data.
</span><span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">)</span>\
<span class="p">.</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Trains an isotonic regression model.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">IsotonicRegression</span><span class="p">().</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Boundaries in increasing order: %s</span><span class="se">\n</span><span class="s">"</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">boundaries</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Predictions associated with the boundaries: %s</span><span class="se">\n</span><span class="s">"</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="n">model</span><span class="p">.</span><span class="n">predictions</span><span class="p">))</span>
<span class="c1"># Makes predictions.
</span><span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">dataset</span><span class="p">).</span><span class="n">show</span><span class="p">()</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/isotonic_regression_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.isoreg.html"><code class="language-plaintext highlighter-rouge">IsotonicRegression</code> R API docs</a> for more details on the API.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_isotonic_regression_libsvm_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">df</span><span class="w">
</span><span class="c1"># Fit an isotonic regression model with spark.isoreg</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.isoreg</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">,</span><span class="w"> </span><span class="n">isotonic</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">FALSE</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/isoreg.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="factorization-machines-regressor">Factorization machines regressor</h2>
<p>For more background and more details about the implementation of factorization machines,
refer to the <a href="ml-classification-regression.html#factorization-machines">Factorization Machines section</a>.</p>
<p><strong>Examples</strong></p>
<p>The following examples load a dataset in LibSVM format, split it into training and test sets,
train on the first dataset, and then evaluate on the held-out test set.
We scale features to be between 0 and 1 to prevent the exploding gradient problem.</p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/org/apache/spark/ml/regression/FMRegressor.html">Scala API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.feature.MinMaxScaler</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.regression.</span><span class="o">{</span><span class="nc">FMRegressionModel</span><span class="o">,</span> <span class="nc">FMRegressor</span><span class="o">}</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="py">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">)</span>
<span class="c1">// Scale features.</span>
<span class="k">val</span> <span class="nv">featureScaler</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">MinMaxScaler</span><span class="o">()</span>
<span class="o">.</span><span class="py">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setOutputCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">data</span><span class="o">)</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="k">val</span> <span class="nv">Array</span><span class="o">(</span><span class="n">trainingData</span><span class="o">,</span> <span class="n">testData</span><span class="o">)</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">randomSplit</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">))</span>
<span class="c1">// Train a FM model.</span>
<span class="k">val</span> <span class="nv">fm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">FMRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setFeaturesCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setStepSize</span><span class="o">(</span><span class="mf">0.001</span><span class="o">)</span>
<span class="c1">// Create a Pipeline.</span>
<span class="k">val</span> <span class="nv">pipeline</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">()</span>
<span class="o">.</span><span class="py">setStages</span><span class="o">(</span><span class="nc">Array</span><span class="o">(</span><span class="n">featureScaler</span><span class="o">,</span> <span class="n">fm</span><span class="o">))</span>
<span class="c1">// Train model.</span>
<span class="k">val</span> <span class="nv">model</span> <span class="k">=</span> <span class="nv">pipeline</span><span class="o">.</span><span class="py">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">)</span>
<span class="c1">// Make predictions.</span>
<span class="k">val</span> <span class="nv">predictions</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">)</span>
<span class="c1">// Select example rows to display.</span>
<span class="nv">predictions</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">show</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="k">val</span> <span class="nv">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="py">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="py">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">rmse</span> <span class="k">=</span> <span class="nv">evaluator</span><span class="o">.</span><span class="py">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Root Mean Squared Error (RMSE) on test data = $rmse"</span><span class="o">)</span>
<span class="k">val</span> <span class="nv">fmModel</span> <span class="k">=</span> <span class="nv">model</span><span class="o">.</span><span class="py">stages</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="py">asInstanceOf</span><span class="o">[</span><span class="kt">FMRegressionModel</span><span class="o">]</span>
<span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Factors: ${fmModel.factors} Linear: ${fmModel.linear} "</span> <span class="o">+</span>
<span class="n">s</span><span class="s">"Intercept: ${fmModel.intercept}"</span><span class="o">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/FMRegressorExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/regression/FMRegressor.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.ml.Pipeline</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.PipelineStage</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.RegressionEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.MinMaxScaler</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.feature.MinMaxScalerModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.FMRegressionModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.regression.FMRegressor</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Load and parse the data file, converting it to a DataFrame.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="o">);</span>
<span class="c1">// Scale features.</span>
<span class="nc">MinMaxScalerModel</span> <span class="n">featureScaler</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">MinMaxScaler</span><span class="o">()</span>
<span class="o">.</span><span class="na">setInputCol</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setOutputCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">data</span><span class="o">);</span>
<span class="c1">// Split the data into training and test sets (30% held out for testing).</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;[]</span> <span class="n">splits</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">randomSplit</span><span class="o">(</span><span class="k">new</span> <span class="kt">double</span><span class="o">[]</span> <span class="o">{</span><span class="mf">0.7</span><span class="o">,</span> <span class="mf">0.3</span><span class="o">});</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">trainingData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">0</span><span class="o">];</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">testData</span> <span class="o">=</span> <span class="n">splits</span><span class="o">[</span><span class="mi">1</span><span class="o">];</span>
<span class="c1">// Train a FM model.</span>
<span class="nc">FMRegressor</span> <span class="n">fm</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">FMRegressor</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setFeaturesCol</span><span class="o">(</span><span class="s">"scaledFeatures"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setStepSize</span><span class="o">(</span><span class="mf">0.001</span><span class="o">);</span>
<span class="c1">// Create a Pipeline.</span>
<span class="nc">Pipeline</span> <span class="n">pipeline</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">Pipeline</span><span class="o">().</span><span class="na">setStages</span><span class="o">(</span><span class="k">new</span> <span class="nc">PipelineStage</span><span class="o">[]</span> <span class="o">{</span><span class="n">featureScaler</span><span class="o">,</span> <span class="n">fm</span><span class="o">});</span>
<span class="c1">// Train model.</span>
<span class="nc">PipelineModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">trainingData</span><span class="o">);</span>
<span class="c1">// Make predictions.</span>
<span class="nc">Dataset</span><span class="o">&lt;</span><span class="nc">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">testData</span><span class="o">);</span>
<span class="c1">// Select example rows to display.</span>
<span class="n">predictions</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">show</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span>
<span class="c1">// Select (prediction, true label) and compute test error.</span>
<span class="nc">RegressionEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">RegressionEvaluator</span><span class="o">()</span>
<span class="o">.</span><span class="na">setLabelCol</span><span class="o">(</span><span class="s">"label"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setPredictionCol</span><span class="o">(</span><span class="s">"prediction"</span><span class="o">)</span>
<span class="o">.</span><span class="na">setMetricName</span><span class="o">(</span><span class="s">"rmse"</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = "</span> <span class="o">+</span> <span class="n">rmse</span><span class="o">);</span>
<span class="nc">FMRegressionModel</span> <span class="n">fmModel</span> <span class="o">=</span> <span class="o">(</span><span class="nc">FMRegressionModel</span><span class="o">)(</span><span class="n">model</span><span class="o">.</span><span class="na">stages</span><span class="o">()[</span><span class="mi">1</span><span class="o">]);</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Factors: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">factors</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Linear: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">linear</span><span class="o">());</span>
<span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="n">fmModel</span><span class="o">.</span><span class="na">intercept</span><span class="o">());</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaFMRegressorExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/reference/api/pyspark.ml.regression.FMRegressor.html#pyspark.ml.regression.FMRegressor">Python API docs</a> for more details.</p>
<div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.regression</span> <span class="kn">import</span> <span class="n">FMRegressor</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.feature</span> <span class="kn">import</span> <span class="n">MinMaxScaler</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">RegressionEvaluator</span>
<span class="c1"># Load and parse the data file, converting it to a DataFrame.
</span><span class="n">data</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="nb">format</span><span class="p">(</span><span class="s">"libsvm"</span><span class="p">).</span><span class="n">load</span><span class="p">(</span><span class="s">"data/mllib/sample_libsvm_data.txt"</span><span class="p">)</span>
<span class="c1"># Scale features.
</span><span class="n">featureScaler</span> <span class="o">=</span> <span class="n">MinMaxScaler</span><span class="p">(</span><span class="n">inputCol</span><span class="o">=</span><span class="s">"features"</span><span class="p">,</span> <span class="n">outputCol</span><span class="o">=</span><span class="s">"scaledFeatures"</span><span class="p">).</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="c1"># Split the data into training and test sets (30% held out for testing)
</span><span class="p">(</span><span class="n">trainingData</span><span class="p">,</span> <span class="n">testData</span><span class="p">)</span> <span class="o">=</span> <span class="n">data</span><span class="p">.</span><span class="n">randomSplit</span><span class="p">([</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="c1"># Train a FM model.
</span><span class="n">fm</span> <span class="o">=</span> <span class="n">FMRegressor</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="s">"scaledFeatures"</span><span class="p">,</span> <span class="n">stepSize</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="c1"># Create a Pipeline.
</span><span class="n">pipeline</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">stages</span><span class="o">=</span><span class="p">[</span><span class="n">featureScaler</span><span class="p">,</span> <span class="n">fm</span><span class="p">])</span>
<span class="c1"># Train model.
</span><span class="n">model</span> <span class="o">=</span> <span class="n">pipeline</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">trainingData</span><span class="p">)</span>
<span class="c1"># Make predictions.
</span><span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">transform</span><span class="p">(</span><span class="n">testData</span><span class="p">)</span>
<span class="c1"># Select example rows to display.
</span><span class="n">predictions</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="s">"prediction"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">show</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># Select (prediction, true label) and compute test error
</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">RegressionEvaluator</span><span class="p">(</span>
<span class="n">labelCol</span><span class="o">=</span><span class="s">"label"</span><span class="p">,</span> <span class="n">predictionCol</span><span class="o">=</span><span class="s">"prediction"</span><span class="p">,</span> <span class="n">metricName</span><span class="o">=</span><span class="s">"rmse"</span><span class="p">)</span>
<span class="n">rmse</span> <span class="o">=</span> <span class="n">evaluator</span><span class="p">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Root Mean Squared Error (RMSE) on test data = %g"</span> <span class="o">%</span> <span class="n">rmse</span><span class="p">)</span>
<span class="n">fmModel</span> <span class="o">=</span> <span class="n">model</span><span class="p">.</span><span class="n">stages</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">print</span><span class="p">(</span><span class="s">"Factors: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">factors</span><span class="p">))</span> <span class="c1"># type: ignore
</span><span class="k">print</span><span class="p">(</span><span class="s">"Linear: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">linear</span><span class="p">))</span> <span class="c1"># type: ignore
</span><span class="k">print</span><span class="p">(</span><span class="s">"Intercept: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">fmModel</span><span class="p">.</span><span class="n">intercept</span><span class="p">))</span> <span class="c1"># type: ignore</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/fm_regressor_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.fmRegressor.html">R API documentation</a> for more details.</p>
<p>Note: At the moment SparkR doesn&#8217;t support feature scaling.</p>
<div class="highlight"><pre class="codehilite"><code><span class="c1"># Load training data</span><span class="w">
</span><span class="n">df</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">read.df</span><span class="p">(</span><span class="s2">"data/mllib/sample_linear_regression_data.txt"</span><span class="p">,</span><span class="w"> </span><span class="n">source</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s2">"libsvm"</span><span class="p">)</span><span class="w">
</span><span class="n">training_test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">randomSplit</span><span class="p">(</span><span class="n">df</span><span class="p">,</span><span class="w"> </span><span class="nf">c</span><span class="p">(</span><span class="m">0.7</span><span class="p">,</span><span class="w"> </span><span class="m">0.3</span><span class="p">))</span><span class="w">
</span><span class="n">training</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">training_test</span><span class="p">[[</span><span class="m">1</span><span class="p">]]</span><span class="w">
</span><span class="n">test</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">training_test</span><span class="p">[[</span><span class="m">2</span><span class="p">]]</span><span class="w">
</span><span class="c1"># Fit a FM regression model</span><span class="w">
</span><span class="n">model</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">spark.fmRegressor</span><span class="p">(</span><span class="n">training</span><span class="p">,</span><span class="w"> </span><span class="n">label</span><span class="w"> </span><span class="o">~</span><span class="w"> </span><span class="n">features</span><span class="p">)</span><span class="w">
</span><span class="c1"># Model summary</span><span class="w">
</span><span class="n">summary</span><span class="p">(</span><span class="n">model</span><span class="p">)</span><span class="w">
</span><span class="c1"># Prediction</span><span class="w">
</span><span class="n">predictions</span><span class="w"> </span><span class="o">&lt;-</span><span class="w"> </span><span class="n">predict</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="w"> </span><span class="n">test</span><span class="p">)</span><span class="w">
</span><span class="n">head</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span></code></pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/fmRegressor.R" in the Spark repo.</small></div>
</div>
</div>
<h1 id="linear-methods">Linear methods</h1>
<p>We implement popular linear methods such as logistic
regression and linear least squares with $L_1$ or $L_2$ regularization.
Refer to <a href="mllib-linear-methods.html">the linear methods guide for the RDD-based API</a> for
details about implementation and tuning; this information is still relevant.</p>
<p>We also include a DataFrame API for <a href="http://en.wikipedia.org/wiki/Elastic_net_regularization">Elastic
net</a>, a hybrid
of $L_1$ and $L_2$ regularization proposed in <a href="http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf">Zou et al, Regularization
and variable selection via the elastic
net</a>.
Mathematically, it is defined as a convex combination of the $L_1$ and
the $L_2$ regularization terms:
<code class="language-plaintext highlighter-rouge">\[
\alpha \left( \lambda \|\wv\|_1 \right) + (1-\alpha) \left( \frac{\lambda}{2}\|\wv\|_2^2 \right) , \alpha \in [0, 1], \lambda \geq 0
\]</code>
By setting $\alpha$ properly, elastic net contains both $L_1$ and $L_2$
regularization as special cases. For example, if a <a href="https://en.wikipedia.org/wiki/Linear_regression">linear
regression</a> model is
trained with the elastic net parameter $\alpha$ set to $1$, it is
equivalent to a
<a href="http://en.wikipedia.org/wiki/Least_squares#Lasso_method">Lasso</a> model.
On the other hand, if $\alpha$ is set to $0$, the trained model reduces
to a <a href="http://en.wikipedia.org/wiki/Tikhonov_regularization">ridge
regression</a> model.
We implement Pipelines API for both linear regression and logistic
regression with elastic net regularization.</p>
<h1 id="factorization-machines">Factorization Machines</h1>
<p><a href="https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf">Factorization Machines</a> are able to estimate interactions
between features even in problems with huge sparsity (like advertising and recommendation system).
The <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation supports factorization machines for binary classification and for regression.</p>
<p>Factorization machines formula is:</p>
\[\hat{y} = w_0 + \sum\limits^n_{i-1} w_i x_i +
\sum\limits^n_{i=1} \sum\limits^n_{j=i+1} \langle v_i, v_j \rangle x_i x_j\]
<p>The first two terms denote intercept and linear term (same as in linear regression),
and the last term denotes pairwise interactions term. \(v_i\) describes the i-th variable
with k factors.</p>
<p>FM can be used for regression and optimization criterion is mean square error. FM also can be used for
binary classification through sigmoid function. The optimization criterion is logistic loss.</p>
<p>The pairwise interactions can be reformulated:</p>
\[\sum\limits^n_{i=1} \sum\limits^n_{j=i+1} \langle v_i, v_j \rangle x_i x_j
= \frac{1}{2}\sum\limits^k_{f=1}
\left(\left( \sum\limits^n_{i=1}v_{i,f}x_i \right)^2 -
\sum\limits^n_{i=1}v_{i,f}^2x_i^2 \right)\]
<p>This equation has only linear complexity in both k and n - i.e. its computation is in \(O(kn)\).</p>
<p>In general, in order to prevent the exploding gradient problem, it is best to scale continuous features to be between 0 and 1,
or bin the continuous features and one-hot encode them.</p>
<h1 id="decision-trees">Decision trees</h1>
<p><a href="http://en.wikipedia.org/wiki/Decision_tree_learning">Decision trees</a>
and their ensembles are popular methods for the machine learning tasks of
classification and regression. Decision trees are widely used since they are easy to interpret,
handle categorical features, extend to the multiclass classification setting, do not require
feature scaling, and are able to capture non-linearities and feature interactions. Tree ensemble
algorithms such as random forests and boosting are among the top performers for classification and
regression tasks.</p>
<p>The <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation supports decision trees for binary and multiclass classification and for regression,
using both continuous and categorical features. The implementation partitions data by rows,
allowing distributed training with millions or even billions of instances.</p>
<p>Users can find more information about the decision tree algorithm in the <a href="mllib-decision-tree.html">MLlib Decision Tree guide</a>.
The main differences between this API and the <a href="mllib-decision-tree.html">original MLlib Decision Tree API</a> are:</p>
<ul>
<li>support for ML Pipelines</li>
<li>separation of Decision Trees for classification vs. regression</li>
<li>use of DataFrame metadata to distinguish continuous and categorical features</li>
</ul>
<p>The Pipelines API for Decision Trees offers a bit more functionality than the original API.<br />
In particular, for classification, users can get the predicted probability of each class (a.k.a. class conditional probabilities);
for regression, users can get the biased sample variance of prediction.</p>
<p>Ensembles of trees (Random Forests and Gradient-Boosted Trees) are described below in the <a href="#tree-ensembles">Tree ensembles section</a>.</p>
<h2 id="inputs-and-outputs">Inputs and Outputs</h2>
<p>We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.</p>
<h3 id="input-columns">Input Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labelCol</td>
<td>Double</td>
<td>"label"</td>
<td>Label to predict</td>
</tr>
<tr>
<td>featuresCol</td>
<td>Vector</td>
<td>"features"</td>
<td>Feature vector</td>
</tr>
</tbody>
</table>
<h3 id="output-columns">Output Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
<th align="left">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictionCol</td>
<td>Double</td>
<td>"prediction"</td>
<td>Predicted label</td>
<td></td>
</tr>
<tr>
<td>rawPredictionCol</td>
<td>Vector</td>
<td>"rawPrediction"</td>
<td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
<td>Classification only</td>
</tr>
<tr>
<td>probabilityCol</td>
<td>Vector</td>
<td>"probability"</td>
<td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
<td>Classification only</td>
</tr>
<tr>
<td>varianceCol</td>
<td>Double</td>
<td></td>
<td>The biased sample variance of prediction</td>
<td>Regression only</td>
</tr>
</tbody>
</table>
<h1 id="tree-ensembles">Tree Ensembles</h1>
<p>The DataFrame API supports two major tree ensemble algorithms: <a href="http://en.wikipedia.org/wiki/Random_forest">Random Forests</a> and <a href="http://en.wikipedia.org/wiki/Gradient_boosting">Gradient-Boosted Trees (GBTs)</a>.
Both use <a href="ml-classification-regression.html#decision-trees"><code class="language-plaintext highlighter-rouge">spark.ml</code> decision trees</a> as their base models.</p>
<p>Users can find more information about ensemble algorithms in the <a href="mllib-ensembles.html">MLlib Ensemble guide</a>.<br />
In this section, we demonstrate the DataFrame API for ensembles.</p>
<p>The main differences between this API and the <a href="mllib-ensembles.html">original MLlib ensembles API</a> are:</p>
<ul>
<li>support for DataFrames and ML Pipelines</li>
<li>separation of classification vs. regression</li>
<li>use of DataFrame metadata to distinguish continuous and categorical features</li>
<li>more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.</li>
</ul>
<h2 id="random-forests">Random Forests</h2>
<p><a href="http://en.wikipedia.org/wiki/Random_forest">Random forests</a>
are ensembles of <a href="ml-classification-regression.html#decision-trees">decision trees</a>.
Random forests combine many decision trees in order to reduce the risk of overfitting.
The <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation supports random forests for binary and multiclass classification and for regression,
using both continuous and categorical features.</p>
<p>For more information on the algorithm itself, please see the <a href="mllib-ensembles.html#random-forests"><code class="language-plaintext highlighter-rouge">spark.mllib</code> documentation on random forests</a>.</p>
<h3 id="inputs-and-outputs-1">Inputs and Outputs</h3>
<p>We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.</p>
<h4 id="input-columns-1">Input Columns</h4>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labelCol</td>
<td>Double</td>
<td>"label"</td>
<td>Label to predict</td>
</tr>
<tr>
<td>featuresCol</td>
<td>Vector</td>
<td>"features"</td>
<td>Feature vector</td>
</tr>
</tbody>
</table>
<h4 id="output-columns-predictions">Output Columns (Predictions)</h4>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
<th align="left">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictionCol</td>
<td>Double</td>
<td>"prediction"</td>
<td>Predicted label</td>
<td></td>
</tr>
<tr>
<td>rawPredictionCol</td>
<td>Vector</td>
<td>"rawPrediction"</td>
<td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
<td>Classification only</td>
</tr>
<tr>
<td>probabilityCol</td>
<td>Vector</td>
<td>"probability"</td>
<td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
<td>Classification only</td>
</tr>
</tbody>
</table>
<h2 id="gradient-boosted-trees-gbts">Gradient-Boosted Trees (GBTs)</h2>
<p><a href="http://en.wikipedia.org/wiki/Gradient_boosting">Gradient-Boosted Trees (GBTs)</a>
are ensembles of <a href="ml-classification-regression.html#decision-trees">decision trees</a>.
GBTs iteratively train decision trees in order to minimize a loss function.
The <code class="language-plaintext highlighter-rouge">spark.ml</code> implementation supports GBTs for binary classification and for regression,
using both continuous and categorical features.</p>
<p>For more information on the algorithm itself, please see the <a href="mllib-ensembles.html#gradient-boosted-trees-gbts"><code class="language-plaintext highlighter-rouge">spark.mllib</code> documentation on GBTs</a>.</p>
<h3 id="inputs-and-outputs-2">Inputs and Outputs</h3>
<p>We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.</p>
<h4 id="input-columns-2">Input Columns</h4>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labelCol</td>
<td>Double</td>
<td>"label"</td>
<td>Label to predict</td>
</tr>
<tr>
<td>featuresCol</td>
<td>Vector</td>
<td>"features"</td>
<td>Feature vector</td>
</tr>
</tbody>
</table>
<p>Note that <code class="language-plaintext highlighter-rouge">GBTClassifier</code> currently only supports binary labels.</p>
<h4 id="output-columns-predictions-1">Output Columns (Predictions)</h4>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
<th align="left">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictionCol</td>
<td>Double</td>
<td>"prediction"</td>
<td>Predicted label</td>
<td></td>
</tr>
</tbody>
</table>
<p>In the future, <code class="language-plaintext highlighter-rouge">GBTClassifier</code> will also output columns for <code class="language-plaintext highlighter-rouge">rawPrediction</code> and <code class="language-plaintext highlighter-rouge">probability</code>, just as <code class="language-plaintext highlighter-rouge">RandomForestClassifier</code> does.</p>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-3.5.1.min.js"></script>
<script src="js/vendor/bootstrap.bundle.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script>
<script type="text/javascript">
// DocSearch is entirely free and automated. DocSearch is built in two parts:
// 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link
// in your website and extract content from every page it traverses. It then pushes this
// content to an Algolia index.
// 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index
// to your search input and display its results in a dropdown UI. If you want to find more
// details on how works DocSearch, check the docs of DocSearch.
docsearch({
apiKey: 'd62f962a82bc9abb53471cb7b89da35e',
appId: 'RAI69RXRSK',
indexName: 'apache_spark',
inputSelector: '#docsearch-input',
enhancedSearchInput: true,
algoliaOptions: {
'facetFilters': ["version:3.3.0"]
},
debug: false // Set debug to true if you want to inspect the dropdown
});
</script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>