blob: 9a5ad71233e166a026b45a0a64c5ae385abf07d8 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.pandas.DataFrame.transpose &#8212; PySpark 3.2.2 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="pyspark.pandas.DataFrame.reindex" href="pyspark.pandas.DataFrame.reindex.html" />
<link rel="prev" title="pyspark.pandas.DataFrame.T" href="pyspark.pandas.DataFrame.T.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="../../index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="">
<a href="../../pyspark.sql.html">Spark SQL</a>
</li>
<li class="active">
<a href="../index.html">Pandas API on Spark</a>
<ul>
<li class="">
<a href="../io.html">Input/Output</a>
</li>
<li class="">
<a href="../general_functions.html">General functions</a>
</li>
<li class="">
<a href="../series.html">Series</a>
</li>
<li class="active">
<a href="../frame.html">DataFrame</a>
</li>
<li class="">
<a href="../indexing.html">Index objects</a>
</li>
<li class="">
<a href="../window.html">Window</a>
</li>
<li class="">
<a href="../groupby.html">GroupBy</a>
</li>
<li class="">
<a href="../ml.html">Machine Learning utilities</a>
</li>
<li class="">
<a href="../extensions.html">Extensions</a>
</li>
</ul>
</li>
<li class="">
<a href="../../pyspark.ss.html">Structured Streaming</a>
</li>
<li class="">
<a href="../../pyspark.ml.html">MLlib (DataFrame-based)</a>
</li>
<li class="">
<a href="../../pyspark.streaming.html">Spark Streaming</a>
</li>
<li class="">
<a href="../../pyspark.mllib.html">MLlib (RDD-based)</a>
</li>
<li class="">
<a href="../../pyspark.html">Spark Core</a>
</li>
<li class="">
<a href="../../pyspark.resource.html">Resource Management</a>
</li>
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<div class="section" id="pyspark-pandas-dataframe-transpose">
<h1>pyspark.pandas.DataFrame.transpose<a class="headerlink" href="#pyspark-pandas-dataframe-transpose" title="Permalink to this headline">¶</a></h1>
<dl class="py method">
<dt id="pyspark.pandas.DataFrame.transpose">
<code class="sig-prename descclassname">DataFrame.</code><code class="sig-name descname">transpose</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; pyspark.pandas.frame.DataFrame<a class="reference internal" href="../../../_modules/pyspark/pandas/frame.html#DataFrame.transpose"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.pandas.DataFrame.transpose" title="Permalink to this definition">¶</a></dt>
<dd><p>Transpose index and columns.</p>
<p>Reflect the DataFrame over its main diagonal by writing rows as columns
and vice-versa. The property <a class="reference internal" href="pyspark.pandas.DataFrame.T.html#pyspark.pandas.DataFrame.T" title="pyspark.pandas.DataFrame.T"><code class="xref py py-attr docutils literal notranslate"><span class="pre">T</span></code></a> is an accessor to the method
<a class="reference internal" href="#pyspark.pandas.DataFrame.transpose" title="pyspark.pandas.DataFrame.transpose"><code class="xref py py-meth docutils literal notranslate"><span class="pre">transpose()</span></code></a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This method is based on an expensive operation due to the nature
of big data. Internally it needs to generate each row for each value, and
then group twice - it is a huge operation. To prevent misusage, this method
has the ‘compute.max_rows’ default limit of input length, and raises a ValueError.</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">pyspark.pandas.config</span> <span class="kn">import</span> <span class="n">option_context</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">with</span> <span class="n">option_context</span><span class="p">(</span><span class="s1">&#39;compute.max_rows&#39;</span><span class="p">,</span> <span class="mi">1000</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">ps</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;a&#39;</span><span class="p">:</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1001</span><span class="p">)})</span><span class="o">.</span><span class="n">transpose</span><span class="p">()</span>
<span class="gt">Traceback (most recent call last):</span>
<span class="c">...</span>
<span class="gr">ValueError</span>: <span class="n">Current DataFrame has more then the given limit 1000 rows.</span>
<span class="go">Please set &#39;compute.max_rows&#39; by using &#39;pyspark.pandas.config.set_option&#39;</span>
<span class="go">to retrieve to retrieve more than 1000 rows. Note that, before changing the</span>
<span class="go">&#39;compute.max_rows&#39;, this operation is considerably expensive.</span>
</pre></div>
</div>
</div>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><dl class="simple">
<dt>DataFrame</dt><dd><p>The transposed DataFrame.</p>
</dd>
</dl>
</dd>
</dl>
<p class="rubric">Notes</p>
<p>Transposing a DataFrame with mixed dtypes will result in a homogeneous
DataFrame with the coerced dtype. For instance, if int and float have
to be placed in same column, it becomes float. If type coercion is not
possible, it fails.</p>
<p>Also, note that the values in index should be unique because they become
unique column names.</p>
<p>In addition, if Spark 2.3 is used, the types should always be exactly same.</p>
<p class="rubric">Examples</p>
<p><strong>Square DataFrame with homogeneous dtype</strong></p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">d1</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;col1&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="s1">&#39;col2&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]}</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df1</span> <span class="o">=</span> <span class="n">ps</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">d1</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;col1&#39;</span><span class="p">,</span> <span class="s1">&#39;col2&#39;</span><span class="p">])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df1</span>
<span class="go"> col1 col2</span>
<span class="go">0 1 3</span>
<span class="go">1 2 4</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df1_transposed</span> <span class="o">=</span> <span class="n">df1</span><span class="o">.</span><span class="n">T</span><span class="o">.</span><span class="n">sort_index</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df1_transposed</span>
<span class="go"> 0 1</span>
<span class="go">col1 1 2</span>
<span class="go">col2 3 4</span>
</pre></div>
</div>
<p>When the dtype is homogeneous in the original DataFrame, we get a
transposed DataFrame with the same dtype:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df1</span><span class="o">.</span><span class="n">dtypes</span>
<span class="go">col1 int64</span>
<span class="go">col2 int64</span>
<span class="go">dtype: object</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df1_transposed</span><span class="o">.</span><span class="n">dtypes</span>
<span class="go">0 int64</span>
<span class="go">1 int64</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><strong>Non-square DataFrame with mixed dtypes</strong></p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">d2</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;score&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">9.5</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span>
<span class="gp">... </span> <span class="s1">&#39;kids&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="gp">... </span> <span class="s1">&#39;age&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">12</span><span class="p">,</span> <span class="mi">22</span><span class="p">]}</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df2</span> <span class="o">=</span> <span class="n">ps</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">d2</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;score&#39;</span><span class="p">,</span> <span class="s1">&#39;kids&#39;</span><span class="p">,</span> <span class="s1">&#39;age&#39;</span><span class="p">])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df2</span>
<span class="go"> score kids age</span>
<span class="go">0 9.5 0 12</span>
<span class="go">1 8.0 0 22</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df2_transposed</span> <span class="o">=</span> <span class="n">df2</span><span class="o">.</span><span class="n">T</span><span class="o">.</span><span class="n">sort_index</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df2_transposed</span>
<span class="go"> 0 1</span>
<span class="go">age 12.0 22.0</span>
<span class="go">kids 0.0 0.0</span>
<span class="go">score 9.5 8.0</span>
</pre></div>
</div>
<p>When the DataFrame has mixed dtypes, we get a transposed DataFrame with
the coerced dtype:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df2</span><span class="o">.</span><span class="n">dtypes</span>
<span class="go">score float64</span>
<span class="go">kids int64</span>
<span class="go">age int64</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df2_transposed</span><span class="o">.</span><span class="n">dtypes</span>
<span class="go">0 float64</span>
<span class="go">1 float64</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
</dd></dl>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="pyspark.pandas.DataFrame.T.html" title="previous page">pyspark.pandas.DataFrame.T</a>
<a class='right-next' id="next-link" href="pyspark.pandas.DataFrame.reindex.html" title="next page">pyspark.pandas.DataFrame.reindex</a>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>