blob: ea5c8e0606cb1abdd293ccf750ffa65f6266b960 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>LDAModel &#8212; PySpark 3.2.2 documentation</title>
<link rel="stylesheet" href="../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script src="../../_static/language_data.js"></script>
<script src="../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="BinaryClassificationMetrics" href="pyspark.mllib.evaluation.BinaryClassificationMetrics.html" />
<link rel="prev" title="LDA" href="pyspark.mllib.clustering.LDA.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../index.html">
<img src="../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="../index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="">
<a href="../pyspark.sql.html">Spark SQL</a>
</li>
<li class="">
<a href="../pyspark.pandas/index.html">Pandas API on Spark</a>
</li>
<li class="">
<a href="../pyspark.ss.html">Structured Streaming</a>
</li>
<li class="">
<a href="../pyspark.ml.html">MLlib (DataFrame-based)</a>
</li>
<li class="">
<a href="../pyspark.streaming.html">Spark Streaming</a>
</li>
<li class="active">
<a href="../pyspark.mllib.html">MLlib (RDD-based)</a>
</li>
<li class="">
<a href="../pyspark.html">Spark Core</a>
</li>
<li class="">
<a href="../pyspark.resource.html">Resource Management</a>
</li>
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<div class="section" id="ldamodel">
<h1>LDAModel<a class="headerlink" href="#ldamodel" title="Permalink to this headline"></a></h1>
<dl class="py class">
<dt id="pyspark.mllib.clustering.LDAModel">
<em class="property">class </em><code class="sig-prename descclassname">pyspark.mllib.clustering.</code><code class="sig-name descname">LDAModel</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">java_model</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/clustering.html#LDAModel"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel" title="Permalink to this definition"></a></dt>
<dd><p>A clustering model derived from the LDA method.</p>
<p>Latent Dirichlet Allocation (LDA), a topic model designed for text documents.
Terminology</p>
<ul class="simple">
<li><p>“word” = “term”: an element of the vocabulary</p></li>
<li><p>“token”: instance of a term appearing in a document</p></li>
<li><p>“topic”: multinomial distribution over words representing some concept</p></li>
</ul>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.5.0.</span></p>
</div>
<p class="rubric">Notes</p>
<p>See the original LDA paper (journal version) <a class="reference internal" href="#r870f3a018ef8-1" id="id1">[1]</a></p>
<dl class="citation">
<dt class="label" id="r870f3a018ef8-1"><span class="brackets"><a class="fn-backref" href="#id1">1</a></span></dt>
<dd><p>Blei, D. et al. “Latent Dirichlet Allocation.”
J. Mach. Learn. Res. 3 (2003): 993-1022.
<a class="reference external" href="https://www.jmlr.org/papers/v3/blei03a">https://www.jmlr.org/papers/v3/blei03a</a></p>
</dd>
</dl>
<p class="rubric">Examples</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">numpy.testing</span> <span class="kn">import</span> <span class="n">assert_almost_equal</span><span class="p">,</span> <span class="n">assert_equal</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span class="o">=</span> <span class="p">[</span>
<span class="gp">... </span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="n">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])],</span>
<span class="gp">... </span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="n">SparseVector</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="p">{</span><span class="mi">0</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">})],</span>
<span class="gp">... </span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdd</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span class="o">=</span> <span class="n">LDA</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">rdd</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span class="o">.</span><span class="n">vocabSize</span><span class="p">()</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="p">()</span>
<span class="go">[([1, 0], [0.5..., 0.49...]), ([0, 1], [0.5..., 0.49...])]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">[([1], [0.5...]), ([0], [0.5...])]</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">topics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">topicsMatrix</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">topics_expect</span> <span class="o">=</span> <span class="n">array</span><span class="p">([[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">]])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">topics</span><span class="p">,</span> <span class="n">topics_expect</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">os</span><span class="o">,</span> <span class="nn">tempfile</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">shutil</span> <span class="kn">import</span> <span class="n">rmtree</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">path</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sameModel</span> <span class="o">=</span> <span class="n">LDAModel</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">assert_equal</span><span class="p">(</span><span class="n">sameModel</span><span class="o">.</span><span class="n">topicsMatrix</span><span class="p">(),</span> <span class="n">model</span><span class="o">.</span><span class="n">topicsMatrix</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sameModel</span><span class="o">.</span><span class="n">vocabSize</span><span class="p">()</span> <span class="o">==</span> <span class="n">model</span><span class="o">.</span><span class="n">vocabSize</span><span class="p">()</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">try</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">rmtree</span><span class="p">(</span><span class="n">path</span><span class="p">)</span>
<span class="gp">... </span><span class="k">except</span> <span class="ne">OSError</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">pass</span>
</pre></div>
</div>
<p class="rubric">Methods</p>
<table class="longtable table autosummary">
<colgroup>
<col style="width: 10%" />
<col style="width: 90%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.call" title="pyspark.mllib.clustering.LDAModel.call"><code class="xref py py-obj docutils literal notranslate"><span class="pre">call</span></code></a>(name, *a)</p></td>
<td><p>Call method of java_model</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.describeTopics" title="pyspark.mllib.clustering.LDAModel.describeTopics"><code class="xref py py-obj docutils literal notranslate"><span class="pre">describeTopics</span></code></a>([maxTermsPerTopic])</p></td>
<td><p>Return the topics described by weighted terms.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.load" title="pyspark.mllib.clustering.LDAModel.load"><code class="xref py py-obj docutils literal notranslate"><span class="pre">load</span></code></a>(sc, path)</p></td>
<td><p>Load the LDAModel from disk.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.save" title="pyspark.mllib.clustering.LDAModel.save"><code class="xref py py-obj docutils literal notranslate"><span class="pre">save</span></code></a>(sc, path)</p></td>
<td><p>Save this model to the given path.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.topicsMatrix" title="pyspark.mllib.clustering.LDAModel.topicsMatrix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">topicsMatrix</span></code></a>()</p></td>
<td><p>Inferred topics, where each topic is represented by a distribution over terms.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#pyspark.mllib.clustering.LDAModel.vocabSize" title="pyspark.mllib.clustering.LDAModel.vocabSize"><code class="xref py py-obj docutils literal notranslate"><span class="pre">vocabSize</span></code></a>()</p></td>
<td><p>Vocabulary size (number of terms or terms in the vocabulary)</p></td>
</tr>
</tbody>
</table>
<p class="rubric">Methods Documentation</p>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.call">
<code class="sig-name descname">call</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">*</span><span class="n">a</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.call" title="Permalink to this definition"></a></dt>
<dd><p>Call method of java_model</p>
</dd></dl>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.describeTopics">
<code class="sig-name descname">describeTopics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">maxTermsPerTopic</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/clustering.html#LDAModel.describeTopics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.describeTopics" title="Permalink to this definition"></a></dt>
<dd><p>Return the topics described by weighted terms.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.6.0.</span></p>
</div>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>If vocabSize and k are large, this can return a large object!</p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>maxTermsPerTopic</strong><span class="classifier">int, optional</span></dt><dd><p>Maximum number of terms to collect for each topic.
(default: vocabulary size)</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><dl class="simple">
<dt>list</dt><dd><p>Array over topics. Each topic is represented as a pair of
matching arrays: (term indices, term weights in topic).
Each topic’s terms are sorted in order of decreasing weight.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.load">
<em class="property">classmethod </em><code class="sig-name descname">load</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">sc</span></em>, <em class="sig-param"><span class="n">path</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/clustering.html#LDAModel.load"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.load" title="Permalink to this definition"></a></dt>
<dd><p>Load the LDAModel from disk.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.5.0.</span></p>
</div>
<dl class="field-list">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><dl>
<dt><strong>sc</strong><span class="classifier"><a class="reference internal" href="pyspark.SparkContext.html#pyspark.SparkContext" title="pyspark.SparkContext"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyspark.SparkContext</span></code></a></span></dt><dd></dd>
<dt><strong>path</strong><span class="classifier">str</span></dt><dd><p>Path to where the model is stored.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.save">
<code class="sig-name descname">save</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">sc</span></em>, <em class="sig-param"><span class="n">path</span></em><span class="sig-paren">)</span><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.save" title="Permalink to this definition"></a></dt>
<dd><p>Save this model to the given path.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.topicsMatrix">
<code class="sig-name descname">topicsMatrix</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/clustering.html#LDAModel.topicsMatrix"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.topicsMatrix" title="Permalink to this definition"></a></dt>
<dd><p>Inferred topics, where each topic is represented by a distribution over terms.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.5.0.</span></p>
</div>
</dd></dl>
<dl class="py method">
<dt id="pyspark.mllib.clustering.LDAModel.vocabSize">
<code class="sig-name descname">vocabSize</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pyspark/mllib/clustering.html#LDAModel.vocabSize"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyspark.mllib.clustering.LDAModel.vocabSize" title="Permalink to this definition"></a></dt>
<dd><p>Vocabulary size (number of terms or terms in the vocabulary)</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.5.0.</span></p>
</div>
</dd></dl>
</dd></dl>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="pyspark.mllib.clustering.LDA.html" title="previous page">LDA</a>
<a class='right-next' id="next-link" href="pyspark.mllib.evaluation.BinaryClassificationMetrics.html" title="next page">BinaryClassificationMetrics</a>
</div>
</main>
</div>
</div>
<script src="../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>