| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <title>pyspark.mllib.fpm — PySpark 3.2.2 documentation</title> |
| |
| <link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css"> |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/open-sans_all/1.44.1/index.css"> |
| <link rel="stylesheet" |
| href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css"> |
| |
| |
| <link rel="stylesheet" href="../../../_static/basic.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js"> |
| |
| <script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/language_data.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="en" /> |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"> |
| <div class="container-xl"> |
| |
| <a class="navbar-brand" href="../../../index.html"> |
| |
| <img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" /> |
| |
| </a> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| <div id="navbar-menu" class="col-lg-9 collapse navbar-collapse"> |
| <ul id="navbar-main-elements" class="navbar-nav mr-auto"> |
| |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../getting_started/index.html">Getting Started</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../user_guide/index.html">User Guide</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../reference/index.html">API Reference</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../development/index.html">Development</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a> |
| </li> |
| |
| |
| </ul> |
| |
| |
| |
| |
| <ul class="navbar-nav"> |
| |
| |
| </ul> |
| </div> |
| </div> |
| </nav> |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| <div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form> |
| <nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| |
| <div class="bd-toc-item active"> |
| |
| |
| <ul class="nav bd-sidenav"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| </ul> |
| |
| </nav> |
| </div> |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| |
| <nav id="bd-toc-nav"> |
| <ul class="nav section-nav flex-column"> |
| |
| </ul> |
| </nav> |
| |
| |
| |
| </div> |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <h1>Source code for pyspark.mllib.fpm</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span> <span class="nn">sys</span> |
| |
| <span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">namedtuple</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">callMLlibFunc</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">JavaSaveable</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">,</span> <span class="n">inherit_doc</span> |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'FPGrowth'</span><span class="p">,</span> <span class="s1">'FPGrowthModel'</span><span class="p">,</span> <span class="s1">'PrefixSpan'</span><span class="p">,</span> <span class="s1">'PrefixSpanModel'</span><span class="p">]</span> |
| |
| |
| <div class="viewcode-block" id="FPGrowthModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.FPGrowthModel.html#pyspark.mllib.fpm.FPGrowthModel">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">FPGrowthModel</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">JavaSaveable</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> A FP-Growth model for mining frequent itemsets</span> |
| <span class="sd"> using the Parallel FP-Growth algorithm.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> data = [["a", "b", "c"], ["a", "b", "d", "e"], ["a", "c", "e"], ["a", "c", "f"]]</span> |
| <span class="sd"> >>> rdd = sc.parallelize(data, 2)</span> |
| <span class="sd"> >>> model = FPGrowth.train(rdd, 0.6, 2)</span> |
| <span class="sd"> >>> sorted(model.freqItemsets().collect())</span> |
| <span class="sd"> [FreqItemset(items=['a'], freq=4), FreqItemset(items=['c'], freq=3), ...</span> |
| <span class="sd"> >>> model_path = temp_path + "/fpm"</span> |
| <span class="sd"> >>> model.save(sc, model_path)</span> |
| <span class="sd"> >>> sameModel = FPGrowthModel.load(sc, model_path)</span> |
| <span class="sd"> >>> sorted(model.freqItemsets().collect()) == sorted(sameModel.freqItemsets().collect())</span> |
| <span class="sd"> True</span> |
| <span class="sd"> """</span> |
| |
| <div class="viewcode-block" id="FPGrowthModel.freqItemsets"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.FPGrowthModel.html#pyspark.mllib.fpm.FPGrowthModel.freqItemsets">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">freqItemsets</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Returns the frequent itemsets of this model.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"getFreqItemsets"</span><span class="p">)</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="n">FPGrowth</span><span class="o">.</span><span class="n">FreqItemset</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">])))</span></div> |
| |
| <div class="viewcode-block" id="FPGrowthModel.load"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.FPGrowthModel.html#pyspark.mllib.fpm.FPGrowthModel.load">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">load</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Load a model from the given path.</span> |
| <span class="sd"> """</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_load_java</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span> |
| <span class="n">wrapper</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">api</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">FPGrowthModelWrapper</span><span class="p">(</span><span class="n">model</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">FPGrowthModel</span><span class="p">(</span><span class="n">wrapper</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="FPGrowth"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.FPGrowth.html#pyspark.mllib.fpm.FPGrowth">[docs]</a><span class="k">class</span> <span class="nc">FPGrowth</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> A Parallel FP-growth algorithm to mine frequent itemsets.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| <span class="sd"> """</span> |
| |
| <div class="viewcode-block" id="FPGrowth.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.FPGrowth.html#pyspark.mllib.fpm.FPGrowth.train">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">minSupport</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span> <span class="n">numPartitions</span><span class="o">=-</span><span class="mi">1</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Computes an FP-Growth model that contains frequent itemsets.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> The input data set, each element contains a transaction.</span> |
| <span class="sd"> minSupport : float, optional</span> |
| <span class="sd"> The minimal support level.</span> |
| <span class="sd"> (default: 0.3)</span> |
| <span class="sd"> numPartitions : int, optional</span> |
| <span class="sd"> The number of partitions used by parallel FP-growth. A value</span> |
| <span class="sd"> of -1 will use the same number as input data.</span> |
| <span class="sd"> (default: -1)</span> |
| <span class="sd"> """</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">"trainFPGrowthModel"</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">minSupport</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span> |
| <span class="k">return</span> <span class="n">FPGrowthModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div> |
| |
| <span class="k">class</span> <span class="nc">FreqItemset</span><span class="p">(</span><span class="n">namedtuple</span><span class="p">(</span><span class="s2">"FreqItemset"</span><span class="p">,</span> <span class="p">[</span><span class="s2">"items"</span><span class="p">,</span> <span class="s2">"freq"</span><span class="p">])):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Represents an (items, freq) tuple.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| <span class="sd"> """</span></div> |
| |
| |
| <div class="viewcode-block" id="PrefixSpanModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.PrefixSpanModel.html#pyspark.mllib.fpm.PrefixSpanModel">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">PrefixSpanModel</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Model fitted by PrefixSpan</span> |
| |
| <span class="sd"> .. versionadded:: 1.6.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> data = [</span> |
| <span class="sd"> ... [["a", "b"], ["c"]],</span> |
| <span class="sd"> ... [["a"], ["c", "b"], ["a", "b"]],</span> |
| <span class="sd"> ... [["a", "b"], ["e"]],</span> |
| <span class="sd"> ... [["f"]]]</span> |
| <span class="sd"> >>> rdd = sc.parallelize(data, 2)</span> |
| <span class="sd"> >>> model = PrefixSpan.train(rdd)</span> |
| <span class="sd"> >>> sorted(model.freqSequences().collect())</span> |
| <span class="sd"> [FreqSequence(sequence=[['a']], freq=3), FreqSequence(sequence=[['a'], ['a']], freq=1), ...</span> |
| <span class="sd"> """</span> |
| |
| <div class="viewcode-block" id="PrefixSpanModel.freqSequences"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.PrefixSpanModel.html#pyspark.mllib.fpm.PrefixSpanModel.freqSequences">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.6.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">freqSequences</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> |
| <span class="sd">"""Gets frequent sequences"""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"getFreqSequences"</span><span class="p">)</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">PrefixSpan</span><span class="o">.</span><span class="n">FreqSequence</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span></div></div> |
| |
| |
| <div class="viewcode-block" id="PrefixSpan"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.PrefixSpan.html#pyspark.mllib.fpm.PrefixSpan">[docs]</a><span class="k">class</span> <span class="nc">PrefixSpan</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> A parallel PrefixSpan algorithm to mine frequent sequential patterns.</span> |
| <span class="sd"> The PrefixSpan algorithm is described in Jian Pei et al (2001) [1]_</span> |
| |
| <span class="sd"> .. versionadded:: 1.6.0</span> |
| |
| <span class="sd"> .. [1] Jian Pei et al.,</span> |
| <span class="sd"> "PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth,"</span> |
| <span class="sd"> Proceedings 17th International Conference on Data Engineering, Heidelberg,</span> |
| <span class="sd"> Germany, 2001, pp. 215-224,</span> |
| <span class="sd"> doi: https://doi.org/10.1109/ICDE.2001.914830</span> |
| <span class="sd"> """</span> |
| |
| <div class="viewcode-block" id="PrefixSpan.train"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.fpm.PrefixSpan.html#pyspark.mllib.fpm.PrefixSpan.train">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">minSupport</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">maxPatternLength</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">maxLocalProjDBSize</span><span class="o">=</span><span class="mi">32000000</span><span class="p">):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Finds the complete set of frequent sequential patterns in the</span> |
| <span class="sd"> input sequences of itemsets.</span> |
| |
| <span class="sd"> .. versionadded:: 1.6.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> The input data set, each element contains a sequence of</span> |
| <span class="sd"> itemsets.</span> |
| <span class="sd"> minSupport : float, optional</span> |
| <span class="sd"> The minimal support level of the sequential pattern, any</span> |
| <span class="sd"> pattern that appears more than (minSupport *</span> |
| <span class="sd"> size-of-the-dataset) times will be output.</span> |
| <span class="sd"> (default: 0.1)</span> |
| <span class="sd"> maxPatternLength : int, optional</span> |
| <span class="sd"> The maximal length of the sequential pattern, any pattern</span> |
| <span class="sd"> that appears less than maxPatternLength will be output.</span> |
| <span class="sd"> (default: 10)</span> |
| <span class="sd"> maxLocalProjDBSize : int, optional</span> |
| <span class="sd"> The maximum number of items (including delimiters used in the</span> |
| <span class="sd"> internal storage format) allowed in a projected database before</span> |
| <span class="sd"> local processing. If a projected database exceeds this size,</span> |
| <span class="sd"> another iteration of distributed prefix growth is run.</span> |
| <span class="sd"> (default: 32000000)</span> |
| <span class="sd"> """</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">"trainPrefixSpanModel"</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">,</span> <span class="n">minSupport</span><span class="p">,</span> <span class="n">maxPatternLength</span><span class="p">,</span> <span class="n">maxLocalProjDBSize</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">PrefixSpanModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div> |
| |
| <span class="k">class</span> <span class="nc">FreqSequence</span><span class="p">(</span><span class="n">namedtuple</span><span class="p">(</span><span class="s2">"FreqSequence"</span><span class="p">,</span> <span class="p">[</span><span class="s2">"sequence"</span><span class="p">,</span> <span class="s2">"freq"</span><span class="p">])):</span> |
| <span class="sd">"""</span> |
| <span class="sd"> Represents a (sequence, freq) tuple.</span> |
| |
| <span class="sd"> .. versionadded:: 1.6.0</span> |
| <span class="sd"> """</span></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">():</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span> <span class="nn">pyspark.mllib.fpm</span> |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">mllib</span><span class="o">.</span><span class="n">fpm</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span>\ |
| <span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span>\ |
| <span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"mllib.fpm tests"</span><span class="p">)</span>\ |
| <span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s1">'sc'</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span> |
| <span class="kn">import</span> <span class="nn">tempfile</span> |
| |
| <span class="n">temp_path</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s1">'temp_path'</span><span class="p">]</span> <span class="o">=</span> <span class="n">temp_path</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">finally</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">shutil</span> <span class="kn">import</span> <span class="n">rmtree</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">rmtree</span><span class="p">(</span><span class="n">temp_path</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">OSError</span><span class="p">:</span> |
| <span class="k">pass</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </div> |
| |
| |
| <div class='prev-next-bottom'> |
| |
| |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| |
| <script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script> |
| |
| |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| <p> |
| © Copyright .<br/> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/> |
| </p> |
| </div> |
| </footer> |
| </body> |
| </html> |