blob: be2c159321f24e52f9658a6da81167810e0ff389 [file] [log] [blame]
<!DOCTYPE html><html><head><title>R: Naive Bayes Models</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.15.3/dist/katex.min.css">
<script type="text/javascript">
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML() {
var l = document.getElementsByClassName('reqn');
for (let e of l) { katex.render(e.textContent, e, { throwOnError: false, macros }); }
return;
}</script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.15.3/dist/katex.min.js"
onload="processMathHTML();"></script>
<link rel="stylesheet" type="text/css" href="R.css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/8.3/styles/github.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/8.3/highlight.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/8.3/languages/r.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
</head><body><div class="container">
<table style="width: 100%;"><tr><td>spark.naiveBayes {SparkR}</td><td style="text-align: right;">R Documentation</td></tr></table>
<h2>Naive Bayes Models</h2>
<h3>Description</h3>
<p><code>spark.naiveBayes</code> fits a Bernoulli naive Bayes model against a SparkDataFrame.
Users can call <code>summary</code> to print a summary of the fitted model, <code>predict</code> to make
predictions on new data, and <code>write.ml</code>/<code>read.ml</code> to save/load fitted models.
Only categorical data is supported.
</p>
<h3>Usage</h3>
<pre><code class='language-R'>spark.naiveBayes(data, formula, ...)
## S4 method for signature 'SparkDataFrame,formula'
spark.naiveBayes(
data,
formula,
smoothing = 1,
handleInvalid = c("error", "keep", "skip")
)
## S4 method for signature 'NaiveBayesModel'
summary(object)
## S4 method for signature 'NaiveBayesModel'
predict(object, newData)
## S4 method for signature 'NaiveBayesModel,character'
write.ml(object, path, overwrite = FALSE)
</code></pre>
<h3>Arguments</h3>
<table>
<tr style="vertical-align: top;"><td><code>data</code></td>
<td>
<p>a <code>SparkDataFrame</code> of observations and labels for model fitting.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>formula</code></td>
<td>
<p>a symbolic description of the model to be fitted. Currently only a few formula
operators are supported, including '~', '.', ':', '+', and '-'.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>...</code></td>
<td>
<p>additional argument(s) passed to the method. Currently only <code>smoothing</code>.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>smoothing</code></td>
<td>
<p>smoothing parameter.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>handleInvalid</code></td>
<td>
<p>How to handle invalid data (unseen labels or NULL values) in features and
label column of string type.
Supported options: &quot;skip&quot; (filter out rows with invalid data),
&quot;error&quot; (throw an error), &quot;keep&quot; (put invalid data in
a special additional bucket, at index numLabels). Default
is &quot;error&quot;.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>object</code></td>
<td>
<p>a naive Bayes model fitted by <code>spark.naiveBayes</code>.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>newData</code></td>
<td>
<p>a SparkDataFrame for testing.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>path</code></td>
<td>
<p>the directory where the model is saved.</p>
</td></tr>
<tr style="vertical-align: top;"><td><code>overwrite</code></td>
<td>
<p>overwrites or not if the output path already exists. Default is FALSE
which means throw exception if the output path exists.</p>
</td></tr>
</table>
<h3>Value</h3>
<p><code>spark.naiveBayes</code> returns a fitted naive Bayes model.
</p>
<p><code>summary</code> returns summary information of the fitted model, which is a list.
The list includes <code>apriori</code> (the label distribution) and
<code>tables</code> (conditional probabilities given the target label).
</p>
<p><code>predict</code> returns a SparkDataFrame containing predicted labeled in a column named
&quot;prediction&quot;.
</p>
<h3>Note</h3>
<p>spark.naiveBayes since 2.0.0
</p>
<p>summary(NaiveBayesModel) since 2.0.0
</p>
<p>predict(NaiveBayesModel) since 2.0.0
</p>
<p>write.ml(NaiveBayesModel, character) since 2.0.0
</p>
<h3>See Also</h3>
<p>e1071: <a href="https://cran.r-project.org/package=e1071">https://cran.r-project.org/package=e1071</a>
</p>
<p><a href="../../SparkR/help/write.ml.html">write.ml</a>
</p>
<h3>Examples</h3>
<pre><code class="r">## Not run:
##D data &lt;- as.data.frame(UCBAdmissions)
##D df &lt;- createDataFrame(data)
##D
##D # fit a Bernoulli naive Bayes model
##D model &lt;- spark.naiveBayes(df, Admit ~ Gender + Dept, smoothing = 0)
##D
##D # get the summary of the model
##D summary(model)
##D
##D # make predictions
##D predictions &lt;- predict(model, df)
##D
##D # save and load the model
##D path &lt;- &quot;path/to/model&quot;
##D write.ml(model, path)
##D savedModel &lt;- read.ml(path)
##D summary(savedModel)
## End(Not run)
</code></pre>
<hr /><div style="text-align: center;">[Package <em>SparkR</em> version 3.2.2 <a href="00Index.html">Index</a>]</div>
</div>
</body></html>