| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>JSON Files - Spark 3.0.0-preview2 Documentation</title> |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-2']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">3.0.0-preview2</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a></li> |
| <li><a href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a></li> |
| <li><a href="structured-streaming-programming-guide.html">Structured Streaming</a></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming (DStreams)</a></li> |
| <li><a href="ml-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="sparkr.html">SparkR (R on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li> |
| <li><a href="api/java/index.html">Java</a></li> |
| <li><a href="api/python/index.html">Python</a></li> |
| <li><a href="api/R/index.html">R</a></li> |
| <li><a href="api/sql/index.html">SQL, Built-in Functions</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="spark-standalone.html">Spark Standalone</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| <li><a href="running-on-kubernetes.html">Kubernetes</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li><a href="migration-guide.html">Migration Guide</a></li> |
| <li class="divider"></li> |
| <li><a href="building-spark.html">Building Spark</a></li> |
| <li><a href="https://spark.apache.org/contributing.html">Contributing to Spark</a></li> |
| <li><a href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v3.0.0-preview2</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container-wrapper"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="sql-programming-guide.html">Spark SQL Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="sql-getting-started.html"> |
| |
| Getting Started |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources.html"> |
| |
| Data Sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <ul> |
| |
| <li> |
| <a href="sql-data-sources-load-save-functions.html"> |
| |
| Generic Load/Save Functions |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-parquet.html"> |
| |
| Parquet Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-orc.html"> |
| |
| ORC Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-json.html"> |
| |
| <b>JSON Files</b> |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-hive-tables.html"> |
| |
| Hive Tables |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-jdbc.html"> |
| |
| JDBC To Other Databases |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-avro.html"> |
| |
| Avro Files |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-data-sources-troubleshooting.html"> |
| |
| Troubleshooting |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| |
| |
| <li> |
| <a href="sql-performance-tuning.html"> |
| |
| Performance Tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-distributed-sql-engine.html"> |
| |
| Distributed SQL Engine |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-pyspark-pandas-with-arrow.html"> |
| |
| PySpark Usage Guide for Pandas with Apache Arrow |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-migration-old.html"> |
| |
| Migration Guide |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="sql-ref.html"> |
| |
| SQL Reference |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar" id="content"> |
| |
| <h1 class="title">JSON Files</h1> |
| |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a <code class="highlighter-rouge">Dataset[Row]</code>. |
| This conversion can be done using <code class="highlighter-rouge">SparkSession.read.json()</code> on either a <code class="highlighter-rouge">Dataset[String]</code>, |
| or a JSON file.</p> |
| |
| <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each |
| line must contain a separate, self-contained valid JSON object. For more information, please see |
| <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> |
| |
| <p>For a regular multi-line JSON file, set the <code class="highlighter-rouge">multiLine</code> option to <code class="highlighter-rouge">true</code>.</p> |
| |
| <p><span class="c1">// Primitive types (Int, String, etc) and Product types (case classes) encoders are</span> |
| <span class="c1">// supported by importing this when creating a Dataset.</span> |
| <span class="k">import</span> <span class="nn">spark.implicits._</span></p> |
| |
| <p><span class="c1">// A JSON dataset is pointed to by path.</span> |
| <span class="c1">// The path can be either a single text file or a directory storing text files</span> |
| <span class="k">val</span> <span class="nv">path</span> <span class="k">=</span> <span class="s">“examples/src/main/resources/people.json”</span> |
| <span class="k">val</span> <span class="nv">peopleDF</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">json</span><span class="o">(</span><span class="n">path</span><span class="o">)</span></p> |
| |
| <p><span class="c1">// The inferred schema can be visualized using the printSchema() method</span> |
| <span class="nv">peopleDF</span><span class="o">.</span><span class="py">printSchema</span><span class="o">()</span> |
| <span class="c1">// root</span> |
| <span class="c1">// |– age: long (nullable = true)</span> |
| <span class="c1">// |– name: string (nullable = true)</span></p> |
| |
| <p><span class="c1">// Creates a temporary view using the DataFrame</span> |
| <span class="nv">peopleDF</span><span class="o">.</span><span class="py">createOrReplaceTempView</span><span class="o">(</span><span class="s">“people”</span><span class="o">)</span></p> |
| |
| <p><span class="c1">// SQL statements can be run by using the sql methods provided by spark</span> |
| <span class="k">val</span> <span class="nv">teenagerNamesDF</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">sql</span><span class="o">(</span><span class="s">“SELECT name FROM people WHERE age BETWEEN 13 AND 19”</span><span class="o">)</span> |
| <span class="nv">teenagerNamesDF</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> |
| <span class="c1">// +——+</span> |
| <span class="c1">// | name|</span> |
| <span class="c1">// +——+</span> |
| <span class="c1">// |Justin|</span> |
| <span class="c1">// +——+</span></p> |
| |
| <p><span class="c1">// Alternatively, a DataFrame can be created for a JSON dataset represented by</span> |
| <span class="c1">// a Dataset[String] storing one JSON object per string</span> |
| <span class="k">val</span> <span class="nv">otherPeopleDataset</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">createDataset</span><span class="o">(</span> |
| <span class="s">”””{“name”:”Yin”,”address”:{“city”:”Columbus”,”state”:”Ohio”}}”””</span> <span class="o">::</span> <span class="nc">Nil</span><span class="o">)</span> |
| <span class="k">val</span> <span class="nv">otherPeople</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">json</span><span class="o">(</span><span class="n">otherPeopleDataset</span><span class="o">)</span> |
| <span class="nv">otherPeople</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> |
| <span class="c1">// +—————+—-+</span> |
| <span class="c1">// | address|name|</span> |
| <span class="c1">// +—————+—-+</span> |
| <span class="c1">// |[Columbus,Ohio]| Yin|</span> |
| <span class="c1">// +—————+—-+</span></p> |
| |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a <code class="highlighter-rouge">Dataset<Row></code>. |
| This conversion can be done using <code class="highlighter-rouge">SparkSession.read().json()</code> on either a <code class="highlighter-rouge">Dataset<String></code>, |
| or a JSON file.</p> |
| |
| <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each |
| line must contain a separate, self-contained valid JSON object. For more information, please see |
| <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> |
| |
| <p>For a regular multi-line JSON file, set the <code class="highlighter-rouge">multiLine</code> option to <code class="highlighter-rouge">true</code>.</p> |
| |
| <p><span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span></p> |
| |
| <p><span class="c1">// A JSON dataset is pointed to by path.</span> |
| <span class="c1">// The path can be either a single text file or a directory storing text files</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">people</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">json</span><span class="o">(</span><span class="s">“examples/src/main/resources/people.json”</span><span class="o">);</span></p> |
| |
| <p><span class="c1">// The inferred schema can be visualized using the printSchema() method</span> |
| <span class="n">people</span><span class="o">.</span><span class="na">printSchema</span><span class="o">();</span> |
| <span class="c1">// root</span> |
| <span class="c1">// |– age: long (nullable = true)</span> |
| <span class="c1">// |– name: string (nullable = true)</span></p> |
| |
| <p><span class="c1">// Creates a temporary view using the DataFrame</span> |
| <span class="n">people</span><span class="o">.</span><span class="na">createOrReplaceTempView</span><span class="o">(</span><span class="s">“people”</span><span class="o">);</span></p> |
| |
| <p><span class="c1">// SQL statements can be run by using the sql methods provided by spark</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">namesDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">sql</span><span class="o">(</span><span class="s">“SELECT name FROM people WHERE age BETWEEN 13 AND 19”</span><span class="o">);</span> |
| <span class="n">namesDF</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="c1">// +——+</span> |
| <span class="c1">// | name|</span> |
| <span class="c1">// +——+</span> |
| <span class="c1">// |Justin|</span> |
| <span class="c1">// +——+</span></p> |
| |
| <p><span class="c1">// Alternatively, a DataFrame can be created for a JSON dataset represented by</span> |
| <span class="c1">// a Dataset<String> storing one JSON object per string.</span> |
| <span class="nc">List</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">jsonData</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> |
| <span class="s">”{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}”</span><span class="o">);</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">anotherPeopleDataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataset</span><span class="o">(</span><span class="n">jsonData</span><span class="o">,</span> <span class="nc">Encoders</span><span class="o">.</span><span class="na">STRING</span><span class="o">());</span> |
| <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">anotherPeople</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">json</span><span class="o">(</span><span class="n">anotherPeopleDataset</span><span class="o">);</span> |
| <span class="n">anotherPeople</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> |
| <span class="c1">// +—————+—-+</span> |
| <span class="c1">// | address|name|</span> |
| <span class="c1">// +—————+—-+</span> |
| <span class="c1">// |[Columbus,Ohio]| Yin|</span> |
| <span class="c1">// +—————+—-+</span></p> |
| |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. |
| This conversion can be done using <code class="highlighter-rouge">SparkSession.read.json</code> on a JSON file.</p> |
| |
| <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each |
| line must contain a separate, self-contained valid JSON object. For more information, please see |
| <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> |
| |
| <p>For a regular multi-line JSON file, set the <code class="highlighter-rouge">multiLine</code> parameter to <code class="highlighter-rouge">True</code>.</p> |
| |
| <p><span class="c1"># spark is from the previous example. |
| </span><span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span></p> |
| |
| <p><span class="c1"># A JSON dataset is pointed to by path.</span></p> |
| <h1 id="the-path-can-be-either-a-single-text-file-or-a-directory-storing-text-files">The path can be either a single text file or a directory storing text files</h1> |
| <p></span><span class="n">path</span> <span class="o">=</span> <span class="s">“examples/src/main/resources/people.json”</span> |
| <span class="n">peopleDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">json</span><span class="p">(</span><span class="n">path</span><span class="p">)</span></p> |
| |
| <p><span class="c1"># The inferred schema can be visualized using the printSchema() method |
| </span><span class="n">peopleDF</span><span class="o">.</span><span class="n">printSchema</span><span class="p">()</span> |
| <span class="c1"># root</span></p> |
| <h1 id="age-long-nullable--true">|– age: long (nullable = true)</h1> |
| <h1 id="name-string-nullable--true">|– name: string (nullable = true)</h1> |
| <p></span> |
| <span class="c1"># Creates a temporary view using the DataFrame |
| </span><span class="n">peopleDF</span><span class="o">.</span><span class="n">createOrReplaceTempView</span><span class="p">(</span><span class="s">“people”</span><span class="p">)</span></p> |
| |
| <p><span class="c1"># SQL statements can be run by using the sql methods provided by spark |
| </span><span class="n">teenagerNamesDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="s">“SELECT name FROM people WHERE age BETWEEN 13 AND 19”</span><span class="p">)</span> |
| <span class="n">teenagerNamesDF</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +——+</span></p> |
| <h1 id="name">| name|</h1> |
| <h1 id="section">+——+</h1> |
| <h1 id="justin">|Justin|</h1> |
| <h1 id="section-1">+——+</h1> |
| <p></span> |
| <span class="c1"># Alternatively, a DataFrame can be created for a JSON dataset represented by</span></p> |
| <h1 id="an-rddstring-storing-one-json-object-per-string">an RDD[String] storing one JSON object per string</h1> |
| <p></span><span class="n">jsonStrings</span> <span class="o">=</span> <span class="p">[</span><span class="s">’{“name”:”Yin”,”address”:{“city”:”Columbus”,”state”:”Ohio”}}’</span><span class="p">]</span> |
| <span class="n">otherPeopleRDD</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">jsonStrings</span><span class="p">)</span> |
| <span class="n">otherPeople</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">json</span><span class="p">(</span><span class="n">otherPeopleRDD</span><span class="p">)</span> |
| <span class="n">otherPeople</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| <span class="c1"># +—————+—-+</span></p> |
| <h1 id="addressname">| address|name|</h1> |
| <h1 id="section-2">+—————+—-+</h1> |
| <h1 id="columbusohio-yin">|[Columbus,Ohio]| Yin|</h1> |
| <h1 id="section-3">+—————+—-+</h1> |
| <p></span></p> |
| <div><small>Find full example code at "examples/src/main/python/sql/datasource.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. using |
| the <code class="highlighter-rouge">read.json()</code> function, which loads data from a directory of JSON files where each line of the |
| files is a JSON object.</p> |
| |
| <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each |
| line must contain a separate, self-contained valid JSON object. For more information, please see |
| <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> |
| |
| <p>For a regular multi-line JSON file, set a named parameter <code class="highlighter-rouge">multiLine</code> to <code class="highlighter-rouge">TRUE</code>.</p> |
| |
| <p><span class="c1"># A JSON dataset is pointed to by path.</span><span class="w"> |
| </span><span class="c1"># The path can be either a single text file or a directory storing text files.</span><span class="w"> |
| </span><span class="n">path</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="s2">“examples/src/main/resources/people.json”</span><span class="w"> |
| </span><span class="c1"># Create a DataFrame from the file(s) pointed to by path</span><span class="w"> |
| </span><span class="n">people</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">read.json</span><span class="p">(</span><span class="n">path</span><span class="p">)</span><span class="w"></span></p> |
| |
| <p></span><span class="c1"># The inferred schema can be visualized using the printSchema() method.</span><span class="w"> |
| </span><span class="n">printSchema</span><span class="p">(</span><span class="n">people</span><span class="p">)</span><span class="w"> |
| </span><span class="c1">## root</span><span class="w"> |
| </span><span class="c1">## |– age: long (nullable = true)</span><span class="w"> |
| </span><span class="c1">## |– name: string (nullable = true)</span><span class="w"></span></p> |
| |
| <p></span><span class="c1"># Register this DataFrame as a table.</span><span class="w"> |
| </span><span class="n">createOrReplaceTempView</span><span class="p">(</span><span class="n">people</span><span class="p">,</span><span class="w"> </span><span class="s2">“people”</span><span class="p">)</span><span class="w"></span></p> |
| |
| <p></span><span class="c1"># SQL statements can be run by using the sql methods.</span><span class="w"> |
| </span><span class="n">teenagers</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">sql</span><span class="p">(</span><span class="s2">“SELECT name FROM people WHERE age >= 13 AND age <= 19”</span><span class="p">)</span><span class="w"> |
| </span><span class="n">head</span><span class="p">(</span><span class="n">teenagers</span><span class="p">)</span><span class="w"> |
| </span><span class="c1">## name</span><span class="w"> |
| </span><span class="c1">## 1 Justin</span><span class="w"></span></p> |
| |
| <p></span><div><small>Find full example code at “examples/src/main/r/RSparkSQLExample.R” in the Spark repo.</small></div></p> |
| |
| </div> |
| |
| <div data-lang="sql"> |
| |
| <figure class="highlight"><pre><code class="language-sql" data-lang="sql"><span class="k">CREATE</span> <span class="k">TEMPORARY</span> <span class="k">VIEW</span> <span class="n">jsonTable</span> |
| <span class="k">USING</span> <span class="n">org</span><span class="p">.</span><span class="n">apache</span><span class="p">.</span><span class="n">spark</span><span class="p">.</span><span class="k">sql</span><span class="p">.</span><span class="n">json</span> |
| <span class="k">OPTIONS</span> <span class="p">(</span> |
| <span class="n">path</span> <span class="nv">"examples/src/main/resources/people.json"</span> |
| <span class="p">)</span> |
| |
| <span class="k">SELECT</span> <span class="o">*</span> <span class="k">FROM</span> <span class="n">jsonTable</span></code></pre></figure> |
| |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-3.4.1.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |