| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>Frequent Pattern Mining - Spark 2.4.7 Documentation</title> |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-2']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.4.7</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a></li> |
| <li><a href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a></li> |
| <li><a href="structured-streaming-programming-guide.html">Structured Streaming</a></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming (DStreams)</a></li> |
| <li><a href="ml-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="sparkr.html">SparkR (R on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li> |
| <li><a href="api/java/index.html">Java</a></li> |
| <li><a href="api/python/index.html">Python</a></li> |
| <li><a href="api/R/index.html">R</a></li> |
| <li><a href="api/sql/index.html">SQL, Built-in Functions</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="spark-standalone.html">Spark Standalone</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| <li><a href="running-on-kubernetes.html">Kubernetes</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li class="divider"></li> |
| <li><a href="building-spark.html">Building Spark</a></li> |
| <li><a href="https://spark.apache.org/contributing.html">Contributing to Spark</a></li> |
| <li><a href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v2.4.7</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container-wrapper"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="ml-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-datasource"> |
| |
| Data sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-pipeline.html"> |
| |
| Pipelines |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-features.html"> |
| |
| Extracting, transforming and selecting features |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-classification-regression.html"> |
| |
| Classification and Regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-frequent-pattern-mining.html"> |
| |
| <b>Frequent Pattern Mining</b> |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-tuning.html"> |
| |
| Model selection and tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-advanced.html"> |
| |
| Advanced topics |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-data-types.html"> |
| |
| Data types |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-classification-regression.html"> |
| |
| Classification and regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-dimensionality-reduction.html"> |
| |
| Dimensionality reduction |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-feature-extraction.html"> |
| |
| Feature extraction and transformation |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-frequent-pattern-mining.html"> |
| |
| Frequent pattern mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-evaluation-metrics.html"> |
| |
| Evaluation metrics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-pmml-model-export.html"> |
| |
| PMML model export |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-optimization.html"> |
| |
| Optimization (developer) |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar" id="content"> |
| |
| <h1 class="title">Frequent Pattern Mining</h1> |
| |
| |
| <p>Mining frequent items, itemsets, subsequences, or other substructures is usually among the |
| first steps to analyze a large-scale dataset, which has been an active research topic in |
| data mining for years. |
| We refer users to Wikipedia’s <a href="http://en.wikipedia.org/wiki/Association_rule_learning">association rule learning</a> |
| for more information.</p> |
| |
| <p><strong>Table of Contents</strong></p> |
| |
| <ul id="markdown-toc"> |
| <li><a href="#fp-growth" id="markdown-toc-fp-growth">FP-Growth</a></li> |
| <li><a href="#prefixspan" id="markdown-toc-prefixspan">PrefixSpan</a></li> |
| </ul> |
| |
| <h2 id="fp-growth">FP-Growth</h2> |
| |
| <p>The FP-growth algorithm is described in the paper |
| <a href="http://dx.doi.org/10.1145/335191.335372">Han et al., Mining frequent patterns without candidate generation</a>, |
| where “FP” stands for frequent pattern. |
| Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items. |
| Different from <a href="http://en.wikipedia.org/wiki/Apriori_algorithm">Apriori-like</a> algorithms designed for the same purpose, |
| the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets |
| explicitly, which are usually expensive to generate. |
| After the second step, the frequent itemsets can be extracted from the FP-tree. |
| In <code>spark.mllib</code>, we implemented a parallel version of FP-growth called PFP, |
| as described in <a href="http://dx.doi.org/10.1145/1454008.1454027">Li et al., PFP: Parallel FP-growth for query recommendation</a>. |
| PFP distributes the work of growing FP-trees based on the suffixes of transactions, |
| and hence is more scalable than a single-machine implementation. |
| We refer users to the papers for more details.</p> |
| |
| <p><code>spark.ml</code>’s FP-growth implementation takes the following (hyper-)parameters:</p> |
| |
| <ul> |
| <li><code>minSupport</code>: the minimum support for an itemset to be identified as frequent. |
| For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6.</li> |
| <li><code>minConfidence</code>: minimum confidence for generating Association Rule. Confidence is an indication of how often an |
| association rule has been found to be true. For example, if in the transactions itemset <code>X</code> appears 4 times, <code>X</code> |
| and <code>Y</code> co-occur only 2 times, the confidence for the rule <code>X => Y</code> is then 2/4 = 0.5. The parameter will not |
| affect the mining for frequent itemsets, but specify the minimum confidence for generating association rules |
| from frequent itemsets.</li> |
| <li><code>numPartitions</code>: the number of partitions used to distribute the work. By default the param is not set, and |
| number of partitions of the input dataset is used.</li> |
| </ul> |
| |
| <p>The <code>FPGrowthModel</code> provides:</p> |
| |
| <ul> |
| <li><code>freqItemsets</code>: frequent itemsets in the format of DataFrame(“items”[Array], “freq”[Long])</li> |
| <li><code>associationRules</code>: association rules generated with confidence above <code>minConfidence</code>, in the format of |
| DataFrame(“antecedent”[Array], “consequent”[Array], “confidence”[Double]).</li> |
| <li><code>transform</code>: For each transaction in <code>itemsCol</code>, the <code>transform</code> method will compare its items against the antecedents |
| of each association rule. If the record contains all the antecedents of a specific association rule, the rule |
| will be considered as applicable and its consequents will be added to the prediction result. The transform |
| method will summarize the consequents from all the applicable rules as prediction. The prediction column has |
| the same data type as <code>itemsCol</code> and does not contain existing items in the <code>itemsCol</code>.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.fpm.FPGrowth">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.fpm.FPGrowth</span> |
| |
| <span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">createDataset</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span> |
| <span class="s">"1 2 5"</span><span class="o">,</span> |
| <span class="s">"1 2 3 5"</span><span class="o">,</span> |
| <span class="s">"1 2"</span><span class="o">)</span> |
| <span class="o">).</span><span class="n">map</span><span class="o">(</span><span class="n">t</span> <span class="k">=></span> <span class="n">t</span><span class="o">.</span><span class="n">split</span><span class="o">(</span><span class="s">" "</span><span class="o">)).</span><span class="n">toDF</span><span class="o">(</span><span class="s">"items"</span><span class="o">)</span> |
| |
| <span class="k">val</span> <span class="n">fpgrowth</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">FPGrowth</span><span class="o">().</span><span class="n">setItemsCol</span><span class="o">(</span><span class="s">"items"</span><span class="o">).</span><span class="n">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">).</span><span class="n">setMinConfidence</span><span class="o">(</span><span class="mf">0.6</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">fpgrowth</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="c1">// Display frequent itemsets.</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">freqItemsets</span><span class="o">.</span><span class="n">show</span><span class="o">()</span> |
| |
| <span class="c1">// Display generated association rules.</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">associationRules</span><span class="o">.</span><span class="n">show</span><span class="o">()</span> |
| |
| <span class="c1">// transform examines the input items against all the association rules and summarize the</span> |
| <span class="c1">// consequents as prediction</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">).</span><span class="n">show</span><span class="o">()</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/FPGrowthExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/fpm/FPGrowth.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> |
| |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.fpm.FPGrowth</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.fpm.FPGrowthModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span> |
| |
| <span class="n">List</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"1 2 5"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">))),</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"1 2 3 5"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">))),</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="s">"1 2"</span><span class="o">.</span><span class="na">split</span><span class="o">(</span><span class="s">" "</span><span class="o">)))</span> |
| <span class="o">);</span> |
| <span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="n">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span> <span class="k">new</span> <span class="n">StructField</span><span class="o">(</span> |
| <span class="s">"items"</span><span class="o">,</span> <span class="k">new</span> <span class="n">ArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">StringType</span><span class="o">,</span> <span class="kc">true</span><span class="o">),</span> <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span> |
| <span class="o">});</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">itemsDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span> |
| |
| <span class="n">FPGrowthModel</span> <span class="n">model</span> <span class="o">=</span> <span class="k">new</span> <span class="n">FPGrowth</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setItemsCol</span><span class="o">(</span><span class="s">"items"</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">setMinConfidence</span><span class="o">(</span><span class="mf">0.6</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">itemsDF</span><span class="o">);</span> |
| |
| <span class="c1">// Display frequent itemsets.</span> |
| <span class="n">model</span><span class="o">.</span><span class="na">freqItemsets</span><span class="o">().</span><span class="na">show</span><span class="o">();</span> |
| |
| <span class="c1">// Display generated association rules.</span> |
| <span class="n">model</span><span class="o">.</span><span class="na">associationRules</span><span class="o">().</span><span class="na">show</span><span class="o">();</span> |
| |
| <span class="c1">// transform examines the input items against all the association rules and summarize the</span> |
| <span class="c1">// consequents as prediction</span> |
| <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">itemsDF</span><span class="o">).</span><span class="na">show</span><span class="o">();</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaFPGrowthExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.fpm.FPGrowth">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.fpm</span> <span class="kn">import</span> <span class="n">FPGrowth</span> |
| |
| <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">([</span> |
| <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">]),</span> |
| <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">]),</span> |
| <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span> |
| <span class="p">],</span> <span class="p">[</span><span class="s2">"id"</span><span class="p">,</span> <span class="s2">"items"</span><span class="p">])</span> |
| |
| <span class="n">fpGrowth</span> <span class="o">=</span> <span class="n">FPGrowth</span><span class="p">(</span><span class="n">itemsCol</span><span class="o">=</span><span class="s2">"items"</span><span class="p">,</span> <span class="n">minSupport</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">minConfidence</span><span class="o">=</span><span class="mf">0.6</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">fpGrowth</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| |
| <span class="c1"># Display frequent itemsets.</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">freqItemsets</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| |
| <span class="c1"># Display generated association rules.</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">associationRules</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| |
| <span class="c1"># transform examines the input items against all the association rules and summarize the</span> |
| <span class="c1"># consequents as prediction</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">df</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/fpgrowth_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| |
| <p>Refer to the <a href="api/R/spark.fpGrowth.html">R API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="c1"># Load training data</span> |
| |
| df <span class="o"><-</span> selectExpr<span class="p">(</span>createDataFrame<span class="p">(</span><span class="kt">data.frame</span><span class="p">(</span>rawItems <span class="o">=</span> <span class="kt">c</span><span class="p">(</span> |
| <span class="s">"1,2,5"</span><span class="p">,</span> <span class="s">"1,2,3,5"</span><span class="p">,</span> <span class="s">"1,2"</span> |
| <span class="p">))),</span> <span class="s">"split(rawItems, ',') AS items"</span><span class="p">)</span> |
| |
| fpm <span class="o"><-</span> spark.fpGrowth<span class="p">(</span>df<span class="p">,</span> itemsCol<span class="o">=</span><span class="s">"items"</span><span class="p">,</span> minSupport<span class="o">=</span><span class="m">0.5</span><span class="p">,</span> minConfidence<span class="o">=</span><span class="m">0.6</span><span class="p">)</span> |
| |
| <span class="c1"># Extracting frequent itemsets</span> |
| |
| spark.freqItemsets<span class="p">(</span>fpm<span class="p">)</span> |
| |
| <span class="c1"># Extracting association rules</span> |
| |
| spark.associationRules<span class="p">(</span>fpm<span class="p">)</span> |
| |
| <span class="c1"># Predict uses association rules to and combines possible consequents</span> |
| |
| predict<span class="p">(</span>fpm<span class="p">,</span> df<span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/r/ml/fpm.R" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="prefixspan">PrefixSpan</h2> |
| |
| <p>PrefixSpan is a sequential pattern mining algorithm described in |
| <a href="http://dx.doi.org/10.1109%2FTKDE.2004.77">Pei et al., Mining Sequential Patterns by Pattern-Growth: The |
| PrefixSpan Approach</a>. We refer |
| the reader to the referenced paper for formalizing the sequential |
| pattern mining problem.</p> |
| |
| <p><code>spark.ml</code>’s PrefixSpan implementation takes the following parameters:</p> |
| |
| <ul> |
| <li><code>minSupport</code>: the minimum support required to be considered a frequent |
| sequential pattern.</li> |
| <li><code>maxPatternLength</code>: the maximum length of a frequent sequential |
| pattern. Any frequent pattern exceeding this length will not be |
| included in the results.</li> |
| <li><code>maxLocalProjDBSize</code>: the maximum number of items allowed in a |
| prefix-projected database before local iterative processing of the |
| projected database begins. This parameter should be tuned with respect |
| to the size of your executors.</li> |
| <li><code>sequenceCol</code>: the name of the sequence column in dataset (default “sequence”), rows with |
| nulls in this column are ignored.</li> |
| </ul> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.fpm.PrefixSpan">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.fpm.PrefixSpan</span> |
| |
| <span class="k">val</span> <span class="n">smallTestData</span> <span class="k">=</span> <span class="nc">Seq</span><span class="o">(</span> |
| <span class="nc">Seq</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Seq</span><span class="o">(</span><span class="mi">3</span><span class="o">)),</span> |
| <span class="nc">Seq</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span><span class="mi">1</span><span class="o">),</span> <span class="nc">Seq</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Seq</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">)),</span> |
| <span class="nc">Seq</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="nc">Seq</span><span class="o">(</span><span class="mi">5</span><span class="o">)),</span> |
| <span class="nc">Seq</span><span class="o">(</span><span class="nc">Seq</span><span class="o">(</span><span class="mi">6</span><span class="o">)))</span> |
| |
| <span class="k">val</span> <span class="n">df</span> <span class="k">=</span> <span class="n">smallTestData</span><span class="o">.</span><span class="n">toDF</span><span class="o">(</span><span class="s">"sequence"</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">result</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">PrefixSpan</span><span class="o">()</span> |
| <span class="o">.</span><span class="n">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setMaxPatternLength</span><span class="o">(</span><span class="mi">5</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">setMaxLocalProjDBSize</span><span class="o">(</span><span class="mi">32000000</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">findFrequentSequentialPatterns</span><span class="o">(</span><span class="n">df</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">show</span><span class="o">()</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/PrefixSpanExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/fpm/PrefixSpan.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.fpm.PrefixSpan</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span> |
| |
| <span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> |
| |
| <span class="n">List</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">3</span><span class="o">))),</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span><span class="mi">2</span><span class="o">))),</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">1</span><span class="o">,</span> <span class="mi">2</span><span class="o">),</span> <span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">5</span><span class="o">))),</span> |
| <span class="n">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="n">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span><span class="mi">6</span><span class="o">)))</span> |
| <span class="o">);</span> |
| <span class="n">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="n">StructType</span><span class="o">(</span><span class="k">new</span> <span class="n">StructField</span><span class="o">[]{</span> <span class="k">new</span> <span class="n">StructField</span><span class="o">(</span> |
| <span class="s">"sequence"</span><span class="o">,</span> <span class="k">new</span> <span class="n">ArrayType</span><span class="o">(</span><span class="k">new</span> <span class="n">ArrayType</span><span class="o">(</span><span class="n">DataTypes</span><span class="o">.</span><span class="na">IntegerType</span><span class="o">,</span> <span class="kc">true</span><span class="o">),</span> <span class="kc">true</span><span class="o">),</span> |
| <span class="kc">false</span><span class="o">,</span> <span class="n">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span> |
| <span class="o">});</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">sequenceDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span> |
| |
| <span class="n">PrefixSpan</span> <span class="n">prefixSpan</span> <span class="o">=</span> <span class="k">new</span> <span class="n">PrefixSpan</span><span class="o">().</span><span class="na">setMinSupport</span><span class="o">(</span><span class="mf">0.5</span><span class="o">).</span><span class="na">setMaxPatternLength</span><span class="o">(</span><span class="mi">5</span><span class="o">);</span> |
| |
| <span class="c1">// Finding frequent sequential patterns</span> |
| <span class="n">prefixSpan</span><span class="o">.</span><span class="na">findFrequentSequentialPatterns</span><span class="o">(</span><span class="n">sequenceDF</span><span class="o">).</span><span class="na">show</span><span class="o">();</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaPrefixSpanExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.fpm.PrefixSpan">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.fpm</span> <span class="kn">import</span> <span class="n">PrefixSpan</span> |
| |
| <span class="n">df</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">([</span><span class="n">Row</span><span class="p">(</span><span class="n">sequence</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">]]),</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">sequence</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]]),</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">sequence</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">5</span><span class="p">]]),</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">sequence</span><span class="o">=</span><span class="p">[[</span><span class="mi">6</span><span class="p">]])])</span><span class="o">.</span><span class="n">toDF</span><span class="p">()</span> |
| |
| <span class="n">prefixSpan</span> <span class="o">=</span> <span class="n">PrefixSpan</span><span class="p">(</span><span class="n">minSupport</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">maxPatternLength</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> |
| <span class="n">maxLocalProjDBSize</span><span class="o">=</span><span class="mi">32000000</span><span class="p">)</span> |
| |
| <span class="c1"># Find frequent sequential patterns.</span> |
| <span class="n">prefixSpan</span><span class="o">.</span><span class="n">findFrequentSequentialPatterns</span><span class="p">(</span><span class="n">df</span><span class="p">)</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/prefixspan_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-1.12.4.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |