blob: ebc096000f1472353fd0196df9f4f93a966940cd [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Clustering - Spark 2.4.4 Documentation</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<!-- Google analytics script -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-32518208-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.4.4</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a></li>
<li><a href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a></li>
<li><a href="structured-streaming-programming-guide.html">Structured Streaming</a></li>
<li><a href="streaming-programming-guide.html">Spark Streaming (DStreams)</a></li>
<li><a href="ml-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="sparkr.html">SparkR (R on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
<li><a href="api/R/index.html">R</a></li>
<li><a href="api/sql/index.html">SQL, Built-in Functions</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
<li><a href="running-on-kubernetes.html">Kubernetes</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://spark.apache.org/contributing.html">Contributing to Spark</a></li>
<li><a href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v2.4.4</span></p>-->
</div>
</div>
</div>
<div class="container-wrapper">
<div class="left-menu-wrapper">
<div class="left-menu">
<h3><a href="ml-guide.html">MLlib: Main Guide</a></h3>
<ul>
<li>
<a href="ml-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="ml-datasource">
Data sources
</a>
</li>
<li>
<a href="ml-pipeline.html">
Pipelines
</a>
</li>
<li>
<a href="ml-features.html">
Extracting, transforming and selecting features
</a>
</li>
<li>
<a href="ml-classification-regression.html">
Classification and Regression
</a>
</li>
<li>
<a href="ml-clustering.html">
<b>Clustering</b>
</a>
</li>
<li>
<a href="ml-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="ml-frequent-pattern-mining.html">
Frequent Pattern Mining
</a>
</li>
<li>
<a href="ml-tuning.html">
Model selection and tuning
</a>
</li>
<li>
<a href="ml-advanced.html">
Advanced topics
</a>
</li>
</ul>
<h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3>
<ul>
<li>
<a href="mllib-data-types.html">
Data types
</a>
</li>
<li>
<a href="mllib-statistics.html">
Basic statistics
</a>
</li>
<li>
<a href="mllib-classification-regression.html">
Classification and regression
</a>
</li>
<li>
<a href="mllib-collaborative-filtering.html">
Collaborative filtering
</a>
</li>
<li>
<a href="mllib-clustering.html">
Clustering
</a>
</li>
<li>
<a href="mllib-dimensionality-reduction.html">
Dimensionality reduction
</a>
</li>
<li>
<a href="mllib-feature-extraction.html">
Feature extraction and transformation
</a>
</li>
<li>
<a href="mllib-frequent-pattern-mining.html">
Frequent pattern mining
</a>
</li>
<li>
<a href="mllib-evaluation-metrics.html">
Evaluation metrics
</a>
</li>
<li>
<a href="mllib-pmml-model-export.html">
PMML model export
</a>
</li>
<li>
<a href="mllib-optimization.html">
Optimization (developer)
</a>
</li>
</ul>
</div>
</div>
<input id="nav-trigger" class="nav-trigger" checked type="checkbox">
<label for="nav-trigger"></label>
<div class="content-with-sidebar" id="content">
<h1 class="title">Clustering</h1>
<p>This page describes clustering algorithms in MLlib.
The <a href="mllib-clustering.html">guide for clustering in the RDD-based API</a> also has relevant information
about these algorithms.</p>
<p><strong>Table of Contents</strong></p>
<ul id="markdown-toc">
<li><a href="#k-means" id="markdown-toc-k-means">K-means</a> <ul>
<li><a href="#input-columns" id="markdown-toc-input-columns">Input Columns</a></li>
<li><a href="#output-columns" id="markdown-toc-output-columns">Output Columns</a></li>
</ul>
</li>
<li><a href="#latent-dirichlet-allocation-lda" id="markdown-toc-latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</a></li>
<li><a href="#bisecting-k-means" id="markdown-toc-bisecting-k-means">Bisecting k-means</a></li>
<li><a href="#gaussian-mixture-model-gmm" id="markdown-toc-gaussian-mixture-model-gmm">Gaussian Mixture Model (GMM)</a> <ul>
<li><a href="#input-columns-1" id="markdown-toc-input-columns-1">Input Columns</a></li>
<li><a href="#output-columns-1" id="markdown-toc-output-columns-1">Output Columns</a></li>
</ul>
</li>
</ul>
<h2 id="k-means">K-means</h2>
<p><a href="http://en.wikipedia.org/wiki/K-means_clustering">k-means</a> is one of the
most commonly used clustering algorithms that clusters the data points into a
predefined number of clusters. The MLlib implementation includes a parallelized
variant of the <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">k-means++</a> method
called <a href="http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf">kmeans||</a>.</p>
<p><code>KMeans</code> is implemented as an <code>Estimator</code> and generates a <code>KMeansModel</code> as the base model.</p>
<h3 id="input-columns">Input Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>featuresCol</td>
<td>Vector</td>
<td>"features"</td>
<td>Feature vector</td>
</tr>
</tbody>
</table>
<h3 id="output-columns">Output Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictionCol</td>
<td>Int</td>
<td>"prediction"</td>
<td>Predicted cluster center</td>
</tr>
</tbody>
</table>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.KMeans">Scala API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeans</span>
<span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.ClusteringEvaluator</span>
<span class="c1">// Loads data.</span>
<span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">)</span>
<span class="c1">// Trains a k-means model.</span>
<span class="k">val</span> <span class="n">kmeans</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">KMeans</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">setSeed</span><span class="o">(</span><span class="mi">1L</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="c1">// Make predictions</span>
<span class="k">val</span> <span class="n">predictions</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="c1">// Evaluate clustering by computing Silhouette score</span>
<span class="k">val</span> <span class="n">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">ClusteringEvaluator</span><span class="o">()</span>
<span class="k">val</span> <span class="n">silhouette</span> <span class="k">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">s&quot;Silhouette with squared euclidean distance = </span><span class="si">$silhouette</span><span class="s">&quot;</span><span class="o">)</span>
<span class="c1">// Shows the result.</span>
<span class="n">println</span><span class="o">(</span><span class="s">&quot;Cluster Centers: &quot;</span><span class="o">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="o">.</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/KMeansExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/KMeans.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeansModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeans</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.ClusteringEvaluator</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// Loads data.</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">);</span>
<span class="c1">// Trains a k-means model.</span>
<span class="n">KMeans</span> <span class="n">kmeans</span> <span class="o">=</span> <span class="k">new</span> <span class="n">KMeans</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">setSeed</span><span class="o">(</span><span class="mi">1L</span><span class="o">);</span>
<span class="n">KMeansModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="c1">// Make predictions</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="c1">// Evaluate clustering by computing Silhouette score</span>
<span class="n">ClusteringEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="n">ClusteringEvaluator</span><span class="o">();</span>
<span class="kt">double</span> <span class="n">silhouette</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Silhouette with squared euclidean distance = &quot;</span> <span class="o">+</span> <span class="n">silhouette</span><span class="o">);</span>
<span class="c1">// Shows the result.</span>
<span class="n">Vector</span><span class="o">[]</span> <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">();</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Cluster Centers: &quot;</span><span class="o">);</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Vector</span> <span class="n">center</span><span class="o">:</span> <span class="n">centers</span><span class="o">)</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">center</span><span class="o">);</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaKMeansExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.KMeans">Python API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">KMeans</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">ClusteringEvaluator</span>
<span class="c1"># Loads data.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">&quot;libsvm&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="p">)</span>
<span class="c1"># Trains a k-means model.</span>
<span class="n">kmeans</span> <span class="o">=</span> <span class="n">KMeans</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="c1"># Make predictions</span>
<span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="c1"># Evaluate clustering by computing Silhouette score</span>
<span class="n">evaluator</span> <span class="o">=</span> <span class="n">ClusteringEvaluator</span><span class="p">()</span>
<span class="n">silhouette</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Silhouette with squared euclidean distance = &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">silhouette</span><span class="p">))</span>
<span class="c1"># Shows the result.</span>
<span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Cluster Centers: &quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">center</span> <span class="ow">in</span> <span class="n">centers</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">center</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/kmeans_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.kmeans.html">R API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="c1"># Fit a k-means model with spark.kmeans</span>
t <span class="o">&lt;-</span> <span class="kp">as.data.frame</span><span class="p">(</span>Titanic<span class="p">)</span>
training <span class="o">&lt;-</span> createDataFrame<span class="p">(</span><span class="kp">t</span><span class="p">)</span>
df_list <span class="o">&lt;-</span> randomSplit<span class="p">(</span>training<span class="p">,</span> <span class="kt">c</span><span class="p">(</span><span class="m">7</span><span class="p">,</span><span class="m">3</span><span class="p">),</span> <span class="m">2</span><span class="p">)</span>
kmeansDF <span class="o">&lt;-</span> df_list<span class="p">[[</span><span class="m">1</span><span class="p">]]</span>
kmeansTestDF <span class="o">&lt;-</span> df_list<span class="p">[[</span><span class="m">2</span><span class="p">]]</span>
kmeansModel <span class="o">&lt;-</span> spark.kmeans<span class="p">(</span>kmeansDF<span class="p">,</span> <span class="o">~</span> Class <span class="o">+</span> Sex <span class="o">+</span> Age <span class="o">+</span> Freq<span class="p">,</span>
k <span class="o">=</span> <span class="m">3</span><span class="p">)</span>
<span class="c1"># Model summary</span>
<span class="kp">summary</span><span class="p">(</span>kmeansModel<span class="p">)</span>
<span class="c1"># Get fitted result from the k-means model</span>
<span class="kp">head</span><span class="p">(</span>fitted<span class="p">(</span>kmeansModel<span class="p">))</span>
<span class="c1"># Prediction</span>
kmeansPredictions <span class="o">&lt;-</span> predict<span class="p">(</span>kmeansModel<span class="p">,</span> kmeansTestDF<span class="p">)</span>
<span class="kp">head</span><span class="p">(</span>kmeansPredictions<span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/kmeans.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</h2>
<p><code>LDA</code> is implemented as an <code>Estimator</code> that supports both <code>EMLDAOptimizer</code> and <code>OnlineLDAOptimizer</code>,
and generates a <code>LDAModel</code> as the base model. Expert users may cast a <code>LDAModel</code> generated by
<code>EMLDAOptimizer</code> to a <code>DistributedLDAModel</code> if needed.</p>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.LDA">Scala API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.LDA</span>
<span class="c1">// Loads data.</span>
<span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">)</span>
<span class="o">.</span><span class="n">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_lda_libsvm_data.txt&quot;</span><span class="o">)</span>
<span class="c1">// Trains a LDA model.</span>
<span class="k">val</span> <span class="n">lda</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LDA</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">10</span><span class="o">).</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">lda</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="k">val</span> <span class="n">ll</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logLikelihood</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="k">val</span> <span class="n">lp</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logPerplexity</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">s&quot;The lower bound on the log likelihood of the entire corpus: </span><span class="si">$ll</span><span class="s">&quot;</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">s&quot;The upper bound on perplexity: </span><span class="si">$lp</span><span class="s">&quot;</span><span class="o">)</span>
<span class="c1">// Describe topics.</span>
<span class="k">val</span> <span class="n">topics</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">&quot;The topics described by their top-weighted terms:&quot;</span><span class="o">)</span>
<span class="n">topics</span><span class="o">.</span><span class="n">show</span><span class="o">(</span><span class="kc">false</span><span class="o">)</span>
<span class="c1">// Shows the result.</span>
<span class="k">val</span> <span class="n">transformed</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="n">transformed</span><span class="o">.</span><span class="n">show</span><span class="o">(</span><span class="kc">false</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LDAExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/LDA.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.LDA</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.LDAModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span>
<span class="c1">// Loads data.</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">)</span>
<span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_lda_libsvm_data.txt&quot;</span><span class="o">);</span>
<span class="c1">// Trains a LDA model.</span>
<span class="n">LDA</span> <span class="n">lda</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LDA</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">10</span><span class="o">).</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span>
<span class="n">LDAModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">lda</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">ll</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">logLikelihood</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="kt">double</span> <span class="n">lp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">logPerplexity</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;The lower bound on the log likelihood of the entire corpus: &quot;</span> <span class="o">+</span> <span class="n">ll</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;The upper bound on perplexity: &quot;</span> <span class="o">+</span> <span class="n">lp</span><span class="o">);</span>
<span class="c1">// Describe topics.</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">topics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">describeTopics</span><span class="o">(</span><span class="mi">3</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;The topics described by their top-weighted terms:&quot;</span><span class="o">);</span>
<span class="n">topics</span><span class="o">.</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span>
<span class="c1">// Shows the result.</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">transformed</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="n">transformed</span><span class="o">.</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLDAExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.LDA">Python API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">LDA</span>
<span class="c1"># Loads data.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">&quot;libsvm&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;data/mllib/sample_lda_libsvm_data.txt&quot;</span><span class="p">)</span>
<span class="c1"># Trains a LDA model.</span>
<span class="n">lda</span> <span class="o">=</span> <span class="n">LDA</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">lda</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="n">ll</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logLikelihood</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="n">lp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logPerplexity</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;The lower bound on the log likelihood of the entire corpus: &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">ll</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;The upper bound on perplexity: &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lp</span><span class="p">))</span>
<span class="c1"># Describe topics.</span>
<span class="n">topics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;The topics described by their top-weighted terms:&quot;</span><span class="p">)</span>
<span class="n">topics</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="c1"># Shows the result</span>
<span class="n">transformed</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="n">transformed</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/lda_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.lda.html">R API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="c1"># Load training data</span>
df <span class="o">&lt;-</span> read.df<span class="p">(</span><span class="s">&quot;data/mllib/sample_lda_libsvm_data.txt&quot;</span><span class="p">,</span> <span class="kn">source</span> <span class="o">=</span> <span class="s">&quot;libsvm&quot;</span><span class="p">)</span>
training <span class="o">&lt;-</span> df
test <span class="o">&lt;-</span> df
<span class="c1"># Fit a latent dirichlet allocation model with spark.lda</span>
model <span class="o">&lt;-</span> spark.lda<span class="p">(</span>training<span class="p">,</span> k <span class="o">=</span> <span class="m">10</span><span class="p">,</span> maxIter <span class="o">=</span> <span class="m">10</span><span class="p">)</span>
<span class="c1"># Model summary</span>
<span class="kp">summary</span><span class="p">(</span>model<span class="p">)</span>
<span class="c1"># Posterior probabilities</span>
posterior <span class="o">&lt;-</span> spark.posterior<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span>
<span class="kp">head</span><span class="p">(</span>posterior<span class="p">)</span>
<span class="c1"># The log perplexity of the LDA model</span>
logPerplexity <span class="o">&lt;-</span> spark.perplexity<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span>
<span class="kp">print</span><span class="p">(</span><span class="kp">paste0</span><span class="p">(</span><span class="s">&quot;The upper bound bound on perplexity: &quot;</span><span class="p">,</span> logPerplexity<span class="p">))</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/lda.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="bisecting-k-means">Bisecting k-means</h2>
<p>Bisecting k-means is a kind of <a href="https://en.wikipedia.org/wiki/Hierarchical_clustering">hierarchical clustering</a> using a
divisive (or &#8220;top-down&#8221;) approach: all observations start in one cluster, and splits are performed recursively as one
moves down the hierarchy.</p>
<p>Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.</p>
<p><code>BisectingKMeans</code> is implemented as an <code>Estimator</code> and generates a <code>BisectingKMeansModel</code> as the base model.</p>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.BisectingKMeans">Scala API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeans</span>
<span class="c1">// Loads data.</span>
<span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">)</span>
<span class="c1">// Trains a bisecting k-means model.</span>
<span class="k">val</span> <span class="n">bkm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">BisectingKMeans</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">setSeed</span><span class="o">(</span><span class="mi">1</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">bkm</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="c1">// Evaluate clustering.</span>
<span class="k">val</span> <span class="n">cost</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">computeCost</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="s">s&quot;Within Set Sum of Squared Errors = </span><span class="si">$cost</span><span class="s">&quot;</span><span class="o">)</span>
<span class="c1">// Shows the result.</span>
<span class="n">println</span><span class="o">(</span><span class="s">&quot;Cluster Centers: &quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">centers</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span>
<span class="n">centers</span><span class="o">.</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/BisectingKMeansExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/BisectingKMeans.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeans</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeansModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// Loads data.</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">);</span>
<span class="c1">// Trains a bisecting k-means model.</span>
<span class="n">BisectingKMeans</span> <span class="n">bkm</span> <span class="o">=</span> <span class="k">new</span> <span class="n">BisectingKMeans</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">setSeed</span><span class="o">(</span><span class="mi">1</span><span class="o">);</span>
<span class="n">BisectingKMeansModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">bkm</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="c1">// Evaluate clustering.</span>
<span class="kt">double</span> <span class="n">cost</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Within Set Sum of Squared Errors = &quot;</span> <span class="o">+</span> <span class="n">cost</span><span class="o">);</span>
<span class="c1">// Shows the result.</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Cluster Centers: &quot;</span><span class="o">);</span>
<span class="n">Vector</span><span class="o">[]</span> <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">();</span>
<span class="k">for</span> <span class="o">(</span><span class="n">Vector</span> <span class="n">center</span> <span class="o">:</span> <span class="n">centers</span><span class="o">)</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">center</span><span class="o">);</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaBisectingKMeansExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.BisectingKMeans">Python API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">BisectingKMeans</span>
<span class="c1"># Loads data.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">&quot;libsvm&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="p">)</span>
<span class="c1"># Trains a bisecting k-means model.</span>
<span class="n">bkm</span> <span class="o">=</span> <span class="n">BisectingKMeans</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">bkm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="c1"># Evaluate clustering.</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">computeCost</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Within Set Sum of Squared Errors = &quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">cost</span><span class="p">))</span>
<span class="c1"># Shows the result.</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Cluster Centers: &quot;</span><span class="p">)</span>
<span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="p">()</span>
<span class="k">for</span> <span class="n">center</span> <span class="ow">in</span> <span class="n">centers</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="n">center</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/bisecting_k_means_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.bisectingKmeans.html">R API docs</a> for more details.</p>
<div class="highlight"><pre><span></span>t <span class="o">&lt;-</span> <span class="kp">as.data.frame</span><span class="p">(</span>Titanic<span class="p">)</span>
training <span class="o">&lt;-</span> createDataFrame<span class="p">(</span><span class="kp">t</span><span class="p">)</span>
<span class="c1"># Fit bisecting k-means model with four centers</span>
model <span class="o">&lt;-</span> spark.bisectingKmeans<span class="p">(</span>training<span class="p">,</span> Class <span class="o">~</span> Survived<span class="p">,</span> k <span class="o">=</span> <span class="m">4</span><span class="p">)</span>
<span class="c1"># get fitted result from a bisecting k-means model</span>
fitted.model <span class="o">&lt;-</span> fitted<span class="p">(</span>model<span class="p">,</span> <span class="s">&quot;centers&quot;</span><span class="p">)</span>
<span class="c1"># Model summary</span>
<span class="kp">head</span><span class="p">(</span><span class="kp">summary</span><span class="p">(</span>fitted.model<span class="p">))</span>
<span class="c1"># fitted values on training data</span>
fitted <span class="o">&lt;-</span> predict<span class="p">(</span>model<span class="p">,</span> training<span class="p">)</span>
<span class="kp">head</span><span class="p">(</span>select<span class="p">(</span>fitted<span class="p">,</span> <span class="s">&quot;Class&quot;</span><span class="p">,</span> <span class="s">&quot;prediction&quot;</span><span class="p">))</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/bisectingKmeans.R" in the Spark repo.</small></div>
</div>
</div>
<h2 id="gaussian-mixture-model-gmm">Gaussian Mixture Model (GMM)</h2>
<p>A <a href="http://en.wikipedia.org/wiki/Mixture_model#Multivariate_Gaussian_mixture_model">Gaussian Mixture Model</a>
represents a composite distribution whereby points are drawn from one of <em>k</em> Gaussian sub-distributions,
each with its own probability. The <code>spark.ml</code> implementation uses the
<a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a>
algorithm to induce the maximum-likelihood model given a set of samples.</p>
<p><code>GaussianMixture</code> is implemented as an <code>Estimator</code> and generates a <code>GaussianMixtureModel</code> as the base
model.</p>
<h3 id="input-columns-1">Input Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>featuresCol</td>
<td>Vector</td>
<td>"features"</td>
<td>Feature vector</td>
</tr>
</tbody>
</table>
<h3 id="output-columns-1">Output Columns</h3>
<table class="table">
<thead>
<tr>
<th align="left">Param name</th>
<th align="left">Type(s)</th>
<th align="left">Default</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictionCol</td>
<td>Int</td>
<td>"prediction"</td>
<td>Predicted cluster center</td>
</tr>
<tr>
<td>probabilityCol</td>
<td>Vector</td>
<td>"probability"</td>
<td>Probability of each cluster</td>
</tr>
</tbody>
</table>
<p><strong>Examples</strong></p>
<div class="codetabs">
<div data-lang="scala">
<p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.GaussianMixture">Scala API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixture</span>
<span class="c1">// Loads data</span>
<span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">)</span>
<span class="c1">// Trains Gaussian Mixture Model</span>
<span class="k">val</span> <span class="n">gmm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GaussianMixture</span><span class="o">()</span>
<span class="o">.</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span>
<span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">gmm</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span>
<span class="c1">// output parameters of mixture model model</span>
<span class="k">for</span> <span class="o">(</span><span class="n">i</span> <span class="k">&lt;-</span> <span class="mi">0</span> <span class="n">until</span> <span class="n">model</span><span class="o">.</span><span class="n">getK</span><span class="o">)</span> <span class="o">{</span>
<span class="n">println</span><span class="o">(</span><span class="s">s&quot;Gaussian </span><span class="si">$i</span><span class="s">:\nweight=</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">weights</span><span class="o">(</span><span class="n">i</span><span class="o">)</span><span class="si">}</span><span class="s">\n&quot;</span> <span class="o">+</span>
<span class="s">s&quot;mu=</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">mean</span><span class="si">}</span><span class="s">\nsigma=\n</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">cov</span><span class="si">}</span><span class="s">\n&quot;</span><span class="o">)</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala" in the Spark repo.</small></div>
</div>
<div data-lang="java">
<p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/GaussianMixture.html">Java API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixture</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixtureModel</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span>
<span class="c1">// Loads data</span>
<span class="n">Dataset</span><span class="o">&lt;</span><span class="n">Row</span><span class="o">&gt;</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">&quot;libsvm&quot;</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="o">);</span>
<span class="c1">// Trains a GaussianMixture model</span>
<span class="n">GaussianMixture</span> <span class="n">gmm</span> <span class="o">=</span> <span class="k">new</span> <span class="n">GaussianMixture</span><span class="o">()</span>
<span class="o">.</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">);</span>
<span class="n">GaussianMixtureModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">gmm</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span>
<span class="c1">// Output the parameters of the mixture model</span>
<span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="n">model</span><span class="o">.</span><span class="na">getK</span><span class="o">();</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">printf</span><span class="o">(</span><span class="s">&quot;Gaussian %d:\nweight=%f\nmu=%s\nsigma=\n%s\n\n&quot;</span><span class="o">,</span>
<span class="n">i</span><span class="o">,</span> <span class="n">model</span><span class="o">.</span><span class="na">weights</span><span class="o">()[</span><span class="n">i</span><span class="o">],</span> <span class="n">model</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">i</span><span class="o">].</span><span class="na">mean</span><span class="o">(),</span> <span class="n">model</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">i</span><span class="o">].</span><span class="na">cov</span><span class="o">());</span>
<span class="o">}</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaGaussianMixtureExample.java" in the Spark repo.</small></div>
</div>
<div data-lang="python">
<p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.GaussianMixture">Python API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">GaussianMixture</span>
<span class="c1"># loads data</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">&quot;libsvm&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="p">)</span>
<span class="n">gmm</span> <span class="o">=</span> <span class="n">GaussianMixture</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">538009335</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">gmm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;Gaussians shown as a DataFrame: &quot;</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">gaussiansDF</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/python/ml/gaussian_mixture_example.py" in the Spark repo.</small></div>
</div>
<div data-lang="r">
<p>Refer to the <a href="api/R/spark.gaussianMixture.html">R API docs</a> for more details.</p>
<div class="highlight"><pre><span></span><span class="c1"># Load training data</span>
df <span class="o">&lt;-</span> read.df<span class="p">(</span><span class="s">&quot;data/mllib/sample_kmeans_data.txt&quot;</span><span class="p">,</span> <span class="kn">source</span> <span class="o">=</span> <span class="s">&quot;libsvm&quot;</span><span class="p">)</span>
training <span class="o">&lt;-</span> df
test <span class="o">&lt;-</span> df
<span class="c1"># Fit a gaussian mixture clustering model with spark.gaussianMixture</span>
model <span class="o">&lt;-</span> spark.gaussianMixture<span class="p">(</span>training<span class="p">,</span> <span class="o">~</span> features<span class="p">,</span> k <span class="o">=</span> <span class="m">2</span><span class="p">)</span>
<span class="c1"># Model summary</span>
<span class="kp">summary</span><span class="p">(</span>model<span class="p">)</span>
<span class="c1"># Prediction</span>
predictions <span class="o">&lt;-</span> predict<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span>
<span class="kp">head</span><span class="p">(</span>predictions<span class="p">)</span>
</pre></div>
<div><small>Find full example code at "examples/src/main/r/ml/gaussianMixture.R" in the Spark repo.</small></div>
</div>
</div>
</div>
<!-- /container -->
</div>
<script src="js/vendor/jquery-1.12.4.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/vendor/anchor.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' +
'?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>