| |
| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>Clustering - Spark 2.4.4 Documentation</title> |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-2']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">2.4.4</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a></li> |
| <li><a href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a></li> |
| <li><a href="structured-streaming-programming-guide.html">Structured Streaming</a></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming (DStreams)</a></li> |
| <li><a href="ml-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="sparkr.html">SparkR (R on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li> |
| <li><a href="api/java/index.html">Java</a></li> |
| <li><a href="api/python/index.html">Python</a></li> |
| <li><a href="api/R/index.html">R</a></li> |
| <li><a href="api/sql/index.html">SQL, Built-in Functions</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="spark-standalone.html">Spark Standalone</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| <li><a href="running-on-kubernetes.html">Kubernetes</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li class="divider"></li> |
| <li><a href="building-spark.html">Building Spark</a></li> |
| <li><a href="https://spark.apache.org/contributing.html">Contributing to Spark</a></li> |
| <li><a href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v2.4.4</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container-wrapper"> |
| |
| |
| |
| <div class="left-menu-wrapper"> |
| <div class="left-menu"> |
| <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="ml-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-datasource"> |
| |
| Data sources |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-pipeline.html"> |
| |
| Pipelines |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-features.html"> |
| |
| Extracting, transforming and selecting features |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-classification-regression.html"> |
| |
| Classification and Regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-clustering.html"> |
| |
| <b>Clustering</b> |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-frequent-pattern-mining.html"> |
| |
| Frequent Pattern Mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-tuning.html"> |
| |
| Model selection and tuning |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="ml-advanced.html"> |
| |
| Advanced topics |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> |
| |
| <ul> |
| |
| <li> |
| <a href="mllib-data-types.html"> |
| |
| Data types |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-statistics.html"> |
| |
| Basic statistics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-classification-regression.html"> |
| |
| Classification and regression |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-collaborative-filtering.html"> |
| |
| Collaborative filtering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-clustering.html"> |
| |
| Clustering |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-dimensionality-reduction.html"> |
| |
| Dimensionality reduction |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-feature-extraction.html"> |
| |
| Feature extraction and transformation |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-frequent-pattern-mining.html"> |
| |
| Frequent pattern mining |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-evaluation-metrics.html"> |
| |
| Evaluation metrics |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-pmml-model-export.html"> |
| |
| PMML model export |
| |
| </a> |
| </li> |
| |
| |
| |
| <li> |
| <a href="mllib-optimization.html"> |
| |
| Optimization (developer) |
| |
| </a> |
| </li> |
| |
| |
| |
| </ul> |
| |
| </div> |
| </div> |
| |
| <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> |
| <label for="nav-trigger"></label> |
| <div class="content-with-sidebar" id="content"> |
| |
| <h1 class="title">Clustering</h1> |
| |
| |
| <p>This page describes clustering algorithms in MLlib. |
| The <a href="mllib-clustering.html">guide for clustering in the RDD-based API</a> also has relevant information |
| about these algorithms.</p> |
| |
| <p><strong>Table of Contents</strong></p> |
| |
| <ul id="markdown-toc"> |
| <li><a href="#k-means" id="markdown-toc-k-means">K-means</a> <ul> |
| <li><a href="#input-columns" id="markdown-toc-input-columns">Input Columns</a></li> |
| <li><a href="#output-columns" id="markdown-toc-output-columns">Output Columns</a></li> |
| </ul> |
| </li> |
| <li><a href="#latent-dirichlet-allocation-lda" id="markdown-toc-latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</a></li> |
| <li><a href="#bisecting-k-means" id="markdown-toc-bisecting-k-means">Bisecting k-means</a></li> |
| <li><a href="#gaussian-mixture-model-gmm" id="markdown-toc-gaussian-mixture-model-gmm">Gaussian Mixture Model (GMM)</a> <ul> |
| <li><a href="#input-columns-1" id="markdown-toc-input-columns-1">Input Columns</a></li> |
| <li><a href="#output-columns-1" id="markdown-toc-output-columns-1">Output Columns</a></li> |
| </ul> |
| </li> |
| </ul> |
| |
| <h2 id="k-means">K-means</h2> |
| |
| <p><a href="http://en.wikipedia.org/wiki/K-means_clustering">k-means</a> is one of the |
| most commonly used clustering algorithms that clusters the data points into a |
| predefined number of clusters. The MLlib implementation includes a parallelized |
| variant of the <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">k-means++</a> method |
| called <a href="http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf">kmeans||</a>.</p> |
| |
| <p><code>KMeans</code> is implemented as an <code>Estimator</code> and generates a <code>KMeansModel</code> as the base model.</p> |
| |
| <h3 id="input-columns">Input Columns</h3> |
| |
| <table class="table"> |
| <thead> |
| <tr> |
| <th align="left">Param name</th> |
| <th align="left">Type(s)</th> |
| <th align="left">Default</th> |
| <th align="left">Description</th> |
| </tr> |
| </thead> |
| <tbody> |
| <tr> |
| <td>featuresCol</td> |
| <td>Vector</td> |
| <td>"features"</td> |
| <td>Feature vector</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <h3 id="output-columns">Output Columns</h3> |
| |
| <table class="table"> |
| <thead> |
| <tr> |
| <th align="left">Param name</th> |
| <th align="left">Type(s)</th> |
| <th align="left">Default</th> |
| <th align="left">Description</th> |
| </tr> |
| </thead> |
| <tbody> |
| <tr> |
| <td>predictionCol</td> |
| <td>Int</td> |
| <td>"prediction"</td> |
| <td>Predicted cluster center</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.KMeans">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeans</span> |
| <span class="k">import</span> <span class="nn">org.apache.spark.ml.evaluation.ClusteringEvaluator</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">)</span> |
| |
| <span class="c1">// Trains a k-means model.</span> |
| <span class="k">val</span> <span class="n">kmeans</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">KMeans</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">setSeed</span><span class="o">(</span><span class="mi">1L</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="c1">// Make predictions</span> |
| <span class="k">val</span> <span class="n">predictions</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="c1">// Evaluate clustering by computing Silhouette score</span> |
| <span class="k">val</span> <span class="n">evaluator</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">ClusteringEvaluator</span><span class="o">()</span> |
| |
| <span class="k">val</span> <span class="n">silhouette</span> <span class="k">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">s"Silhouette with squared euclidean distance = </span><span class="si">$silhouette</span><span class="s">"</span><span class="o">)</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">"Cluster Centers: "</span><span class="o">)</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="o">.</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/KMeansExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/KMeans.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeansModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.KMeans</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.evaluation.ClusteringEvaluator</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">);</span> |
| |
| <span class="c1">// Trains a k-means model.</span> |
| <span class="n">KMeans</span> <span class="n">kmeans</span> <span class="o">=</span> <span class="k">new</span> <span class="n">KMeans</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">setSeed</span><span class="o">(</span><span class="mi">1L</span><span class="o">);</span> |
| <span class="n">KMeansModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| |
| <span class="c1">// Make predictions</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| |
| <span class="c1">// Evaluate clustering by computing Silhouette score</span> |
| <span class="n">ClusteringEvaluator</span> <span class="n">evaluator</span> <span class="o">=</span> <span class="k">new</span> <span class="n">ClusteringEvaluator</span><span class="o">();</span> |
| |
| <span class="kt">double</span> <span class="n">silhouette</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="na">evaluate</span><span class="o">(</span><span class="n">predictions</span><span class="o">);</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Silhouette with squared euclidean distance = "</span> <span class="o">+</span> <span class="n">silhouette</span><span class="o">);</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="n">Vector</span><span class="o">[]</span> <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">();</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Cluster Centers: "</span><span class="o">);</span> |
| <span class="k">for</span> <span class="o">(</span><span class="n">Vector</span> <span class="n">center</span><span class="o">:</span> <span class="n">centers</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">center</span><span class="o">);</span> |
| <span class="o">}</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaKMeansExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.KMeans">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">KMeans</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.evaluation</span> <span class="kn">import</span> <span class="n">ClusteringEvaluator</span> |
| |
| <span class="c1"># Loads data.</span> |
| <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">"libsvm"</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"data/mllib/sample_kmeans_data.txt"</span><span class="p">)</span> |
| |
| <span class="c1"># Trains a k-means model.</span> |
| <span class="n">kmeans</span> <span class="o">=</span> <span class="n">KMeans</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| |
| <span class="c1"># Make predictions</span> |
| <span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| |
| <span class="c1"># Evaluate clustering by computing Silhouette score</span> |
| <span class="n">evaluator</span> <span class="o">=</span> <span class="n">ClusteringEvaluator</span><span class="p">()</span> |
| |
| <span class="n">silhouette</span> <span class="o">=</span> <span class="n">evaluator</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"Silhouette with squared euclidean distance = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">silhouette</span><span class="p">))</span> |
| |
| <span class="c1"># Shows the result.</span> |
| <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="p">()</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"Cluster Centers: "</span><span class="p">)</span> |
| <span class="k">for</span> <span class="n">center</span> <span class="ow">in</span> <span class="n">centers</span><span class="p">:</span> |
| <span class="k">print</span><span class="p">(</span><span class="n">center</span><span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/kmeans_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| |
| <p>Refer to the <a href="api/R/spark.kmeans.html">R API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="c1"># Fit a k-means model with spark.kmeans</span> |
| t <span class="o"><-</span> <span class="kp">as.data.frame</span><span class="p">(</span>Titanic<span class="p">)</span> |
| training <span class="o"><-</span> createDataFrame<span class="p">(</span><span class="kp">t</span><span class="p">)</span> |
| df_list <span class="o"><-</span> randomSplit<span class="p">(</span>training<span class="p">,</span> <span class="kt">c</span><span class="p">(</span><span class="m">7</span><span class="p">,</span><span class="m">3</span><span class="p">),</span> <span class="m">2</span><span class="p">)</span> |
| kmeansDF <span class="o"><-</span> df_list<span class="p">[[</span><span class="m">1</span><span class="p">]]</span> |
| kmeansTestDF <span class="o"><-</span> df_list<span class="p">[[</span><span class="m">2</span><span class="p">]]</span> |
| kmeansModel <span class="o"><-</span> spark.kmeans<span class="p">(</span>kmeansDF<span class="p">,</span> <span class="o">~</span> Class <span class="o">+</span> Sex <span class="o">+</span> Age <span class="o">+</span> Freq<span class="p">,</span> |
| k <span class="o">=</span> <span class="m">3</span><span class="p">)</span> |
| |
| <span class="c1"># Model summary</span> |
| <span class="kp">summary</span><span class="p">(</span>kmeansModel<span class="p">)</span> |
| |
| <span class="c1"># Get fitted result from the k-means model</span> |
| <span class="kp">head</span><span class="p">(</span>fitted<span class="p">(</span>kmeansModel<span class="p">))</span> |
| |
| <span class="c1"># Prediction</span> |
| kmeansPredictions <span class="o"><-</span> predict<span class="p">(</span>kmeansModel<span class="p">,</span> kmeansTestDF<span class="p">)</span> |
| <span class="kp">head</span><span class="p">(</span>kmeansPredictions<span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/r/ml/kmeans.R" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="latent-dirichlet-allocation-lda">Latent Dirichlet allocation (LDA)</h2> |
| |
| <p><code>LDA</code> is implemented as an <code>Estimator</code> that supports both <code>EMLDAOptimizer</code> and <code>OnlineLDAOptimizer</code>, |
| and generates a <code>LDAModel</code> as the base model. Expert users may cast a <code>LDAModel</code> generated by |
| <code>EMLDAOptimizer</code> to a <code>DistributedLDAModel</code> if needed.</p> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.LDA">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.LDA</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span> |
| <span class="o">.</span><span class="n">load</span><span class="o">(</span><span class="s">"data/mllib/sample_lda_libsvm_data.txt"</span><span class="o">)</span> |
| |
| <span class="c1">// Trains a LDA model.</span> |
| <span class="k">val</span> <span class="n">lda</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">LDA</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">10</span><span class="o">).</span><span class="n">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">lda</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="k">val</span> <span class="n">ll</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logLikelihood</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">lp</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logPerplexity</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">s"The lower bound on the log likelihood of the entire corpus: </span><span class="si">$ll</span><span class="s">"</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">s"The upper bound on perplexity: </span><span class="si">$lp</span><span class="s">"</span><span class="o">)</span> |
| |
| <span class="c1">// Describe topics.</span> |
| <span class="k">val</span> <span class="n">topics</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="o">(</span><span class="mi">3</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">"The topics described by their top-weighted terms:"</span><span class="o">)</span> |
| <span class="n">topics</span><span class="o">.</span><span class="n">show</span><span class="o">(</span><span class="kc">false</span><span class="o">)</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="k">val</span> <span class="n">transformed</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| <span class="n">transformed</span><span class="o">.</span><span class="n">show</span><span class="o">(</span><span class="kc">false</span><span class="o">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/LDAExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/LDA.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.LDA</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.LDAModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.SparkSession</span><span class="o">;</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">)</span> |
| <span class="o">.</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_lda_libsvm_data.txt"</span><span class="o">);</span> |
| |
| <span class="c1">// Trains a LDA model.</span> |
| <span class="n">LDA</span> <span class="n">lda</span> <span class="o">=</span> <span class="k">new</span> <span class="n">LDA</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">10</span><span class="o">).</span><span class="na">setMaxIter</span><span class="o">(</span><span class="mi">10</span><span class="o">);</span> |
| <span class="n">LDAModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">lda</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| |
| <span class="kt">double</span> <span class="n">ll</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">logLikelihood</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| <span class="kt">double</span> <span class="n">lp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">logPerplexity</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"The lower bound on the log likelihood of the entire corpus: "</span> <span class="o">+</span> <span class="n">ll</span><span class="o">);</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"The upper bound on perplexity: "</span> <span class="o">+</span> <span class="n">lp</span><span class="o">);</span> |
| |
| <span class="c1">// Describe topics.</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">topics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">describeTopics</span><span class="o">(</span><span class="mi">3</span><span class="o">);</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"The topics described by their top-weighted terms:"</span><span class="o">);</span> |
| <span class="n">topics</span><span class="o">.</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">transformed</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">transform</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| <span class="n">transformed</span><span class="o">.</span><span class="na">show</span><span class="o">(</span><span class="kc">false</span><span class="o">);</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaLDAExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.LDA">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">LDA</span> |
| |
| <span class="c1"># Loads data.</span> |
| <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">"libsvm"</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"data/mllib/sample_lda_libsvm_data.txt"</span><span class="p">)</span> |
| |
| <span class="c1"># Trains a LDA model.</span> |
| <span class="n">lda</span> <span class="o">=</span> <span class="n">LDA</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">maxIter</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">lda</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| |
| <span class="n">ll</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logLikelihood</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="n">lp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">logPerplexity</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"The lower bound on the log likelihood of the entire corpus: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">ll</span><span class="p">))</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"The upper bound on perplexity: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lp</span><span class="p">))</span> |
| |
| <span class="c1"># Describe topics.</span> |
| <span class="n">topics</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">describeTopics</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"The topics described by their top-weighted terms:"</span><span class="p">)</span> |
| <span class="n">topics</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> |
| |
| <span class="c1"># Shows the result</span> |
| <span class="n">transformed</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="n">transformed</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/lda_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| |
| <p>Refer to the <a href="api/R/spark.lda.html">R API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="c1"># Load training data</span> |
| df <span class="o"><-</span> read.df<span class="p">(</span><span class="s">"data/mllib/sample_lda_libsvm_data.txt"</span><span class="p">,</span> <span class="kn">source</span> <span class="o">=</span> <span class="s">"libsvm"</span><span class="p">)</span> |
| training <span class="o"><-</span> df |
| test <span class="o"><-</span> df |
| |
| <span class="c1"># Fit a latent dirichlet allocation model with spark.lda</span> |
| model <span class="o"><-</span> spark.lda<span class="p">(</span>training<span class="p">,</span> k <span class="o">=</span> <span class="m">10</span><span class="p">,</span> maxIter <span class="o">=</span> <span class="m">10</span><span class="p">)</span> |
| |
| <span class="c1"># Model summary</span> |
| <span class="kp">summary</span><span class="p">(</span>model<span class="p">)</span> |
| |
| <span class="c1"># Posterior probabilities</span> |
| posterior <span class="o"><-</span> spark.posterior<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span> |
| <span class="kp">head</span><span class="p">(</span>posterior<span class="p">)</span> |
| |
| <span class="c1"># The log perplexity of the LDA model</span> |
| logPerplexity <span class="o"><-</span> spark.perplexity<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span> |
| <span class="kp">print</span><span class="p">(</span><span class="kp">paste0</span><span class="p">(</span><span class="s">"The upper bound bound on perplexity: "</span><span class="p">,</span> logPerplexity<span class="p">))</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/r/ml/lda.R" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| <h2 id="bisecting-k-means">Bisecting k-means</h2> |
| |
| <p>Bisecting k-means is a kind of <a href="https://en.wikipedia.org/wiki/Hierarchical_clustering">hierarchical clustering</a> using a |
| divisive (or “top-down”) approach: all observations start in one cluster, and splits are performed recursively as one |
| moves down the hierarchy.</p> |
| |
| <p>Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.</p> |
| |
| <p><code>BisectingKMeans</code> is implemented as an <code>Estimator</code> and generates a <code>BisectingKMeansModel</code> as the base model.</p> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.BisectingKMeans">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeans</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">)</span> |
| |
| <span class="c1">// Trains a bisecting k-means model.</span> |
| <span class="k">val</span> <span class="n">bkm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">BisectingKMeans</span><span class="o">().</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="n">setSeed</span><span class="o">(</span><span class="mi">1</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">bkm</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="c1">// Evaluate clustering.</span> |
| <span class="k">val</span> <span class="n">cost</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">computeCost</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">s"Within Set Sum of Squared Errors = </span><span class="si">$cost</span><span class="s">"</span><span class="o">)</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">"Cluster Centers: "</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">centers</span> <span class="k">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span> |
| <span class="n">centers</span><span class="o">.</span><span class="n">foreach</span><span class="o">(</span><span class="n">println</span><span class="o">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/BisectingKMeansExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/BisectingKMeans.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeans</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.BisectingKMeansModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| |
| <span class="c1">// Loads data.</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">);</span> |
| |
| <span class="c1">// Trains a bisecting k-means model.</span> |
| <span class="n">BisectingKMeans</span> <span class="n">bkm</span> <span class="o">=</span> <span class="k">new</span> <span class="n">BisectingKMeans</span><span class="o">().</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">setSeed</span><span class="o">(</span><span class="mi">1</span><span class="o">);</span> |
| <span class="n">BisectingKMeansModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">bkm</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| |
| <span class="c1">// Evaluate clustering.</span> |
| <span class="kt">double</span> <span class="n">cost</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">computeCost</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Within Set Sum of Squared Errors = "</span> <span class="o">+</span> <span class="n">cost</span><span class="o">);</span> |
| |
| <span class="c1">// Shows the result.</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Cluster Centers: "</span><span class="o">);</span> |
| <span class="n">Vector</span><span class="o">[]</span> <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="na">clusterCenters</span><span class="o">();</span> |
| <span class="k">for</span> <span class="o">(</span><span class="n">Vector</span> <span class="n">center</span> <span class="o">:</span> <span class="n">centers</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">center</span><span class="o">);</span> |
| <span class="o">}</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaBisectingKMeansExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.BisectingKMeans">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">BisectingKMeans</span> |
| |
| <span class="c1"># Loads data.</span> |
| <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">"libsvm"</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"data/mllib/sample_kmeans_data.txt"</span><span class="p">)</span> |
| |
| <span class="c1"># Trains a bisecting k-means model.</span> |
| <span class="n">bkm</span> <span class="o">=</span> <span class="n">BisectingKMeans</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">bkm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| |
| <span class="c1"># Evaluate clustering.</span> |
| <span class="n">cost</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">computeCost</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"Within Set Sum of Squared Errors = "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">cost</span><span class="p">))</span> |
| |
| <span class="c1"># Shows the result.</span> |
| <span class="k">print</span><span class="p">(</span><span class="s2">"Cluster Centers: "</span><span class="p">)</span> |
| <span class="n">centers</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">clusterCenters</span><span class="p">()</span> |
| <span class="k">for</span> <span class="n">center</span> <span class="ow">in</span> <span class="n">centers</span><span class="p">:</span> |
| <span class="k">print</span><span class="p">(</span><span class="n">center</span><span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/bisecting_k_means_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| |
| <p>Refer to the <a href="api/R/spark.bisectingKmeans.html">R API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span>t <span class="o"><-</span> <span class="kp">as.data.frame</span><span class="p">(</span>Titanic<span class="p">)</span> |
| training <span class="o"><-</span> createDataFrame<span class="p">(</span><span class="kp">t</span><span class="p">)</span> |
| |
| <span class="c1"># Fit bisecting k-means model with four centers</span> |
| model <span class="o"><-</span> spark.bisectingKmeans<span class="p">(</span>training<span class="p">,</span> Class <span class="o">~</span> Survived<span class="p">,</span> k <span class="o">=</span> <span class="m">4</span><span class="p">)</span> |
| |
| <span class="c1"># get fitted result from a bisecting k-means model</span> |
| fitted.model <span class="o"><-</span> fitted<span class="p">(</span>model<span class="p">,</span> <span class="s">"centers"</span><span class="p">)</span> |
| |
| <span class="c1"># Model summary</span> |
| <span class="kp">head</span><span class="p">(</span><span class="kp">summary</span><span class="p">(</span>fitted.model<span class="p">))</span> |
| |
| <span class="c1"># fitted values on training data</span> |
| fitted <span class="o"><-</span> predict<span class="p">(</span>model<span class="p">,</span> training<span class="p">)</span> |
| <span class="kp">head</span><span class="p">(</span>select<span class="p">(</span>fitted<span class="p">,</span> <span class="s">"Class"</span><span class="p">,</span> <span class="s">"prediction"</span><span class="p">))</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/r/ml/bisectingKmeans.R" in the Spark repo.</small></div> |
| </div> |
| </div> |
| |
| <h2 id="gaussian-mixture-model-gmm">Gaussian Mixture Model (GMM)</h2> |
| |
| <p>A <a href="http://en.wikipedia.org/wiki/Mixture_model#Multivariate_Gaussian_mixture_model">Gaussian Mixture Model</a> |
| represents a composite distribution whereby points are drawn from one of <em>k</em> Gaussian sub-distributions, |
| each with its own probability. The <code>spark.ml</code> implementation uses the |
| <a href="http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">expectation-maximization</a> |
| algorithm to induce the maximum-likelihood model given a set of samples.</p> |
| |
| <p><code>GaussianMixture</code> is implemented as an <code>Estimator</code> and generates a <code>GaussianMixtureModel</code> as the base |
| model.</p> |
| |
| <h3 id="input-columns-1">Input Columns</h3> |
| |
| <table class="table"> |
| <thead> |
| <tr> |
| <th align="left">Param name</th> |
| <th align="left">Type(s)</th> |
| <th align="left">Default</th> |
| <th align="left">Description</th> |
| </tr> |
| </thead> |
| <tbody> |
| <tr> |
| <td>featuresCol</td> |
| <td>Vector</td> |
| <td>"features"</td> |
| <td>Feature vector</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <h3 id="output-columns-1">Output Columns</h3> |
| |
| <table class="table"> |
| <thead> |
| <tr> |
| <th align="left">Param name</th> |
| <th align="left">Type(s)</th> |
| <th align="left">Default</th> |
| <th align="left">Description</th> |
| </tr> |
| </thead> |
| <tbody> |
| <tr> |
| <td>predictionCol</td> |
| <td>Int</td> |
| <td>"prediction"</td> |
| <td>Predicted cluster center</td> |
| </tr> |
| <tr> |
| <td>probabilityCol</td> |
| <td>Vector</td> |
| <td>"probability"</td> |
| <td>Probability of each cluster</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <p><strong>Examples</strong></p> |
| |
| <div class="codetabs"> |
| |
| <div data-lang="scala"> |
| <p>Refer to the <a href="api/scala/index.html#org.apache.spark.ml.clustering.GaussianMixture">Scala API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="k">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixture</span> |
| |
| <span class="c1">// Loads data</span> |
| <span class="k">val</span> <span class="n">dataset</span> <span class="k">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="n">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">)</span> |
| |
| <span class="c1">// Trains Gaussian Mixture Model</span> |
| <span class="k">val</span> <span class="n">gmm</span> <span class="k">=</span> <span class="k">new</span> <span class="nc">GaussianMixture</span><span class="o">()</span> |
| <span class="o">.</span><span class="n">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">)</span> |
| <span class="k">val</span> <span class="n">model</span> <span class="k">=</span> <span class="n">gmm</span><span class="o">.</span><span class="n">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">)</span> |
| |
| <span class="c1">// output parameters of mixture model model</span> |
| <span class="k">for</span> <span class="o">(</span><span class="n">i</span> <span class="k"><-</span> <span class="mi">0</span> <span class="n">until</span> <span class="n">model</span><span class="o">.</span><span class="n">getK</span><span class="o">)</span> <span class="o">{</span> |
| <span class="n">println</span><span class="o">(</span><span class="s">s"Gaussian </span><span class="si">$i</span><span class="s">:\nweight=</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">weights</span><span class="o">(</span><span class="n">i</span><span class="o">)</span><span class="si">}</span><span class="s">\n"</span> <span class="o">+</span> |
| <span class="s">s"mu=</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">mean</span><span class="si">}</span><span class="s">\nsigma=\n</span><span class="si">${</span><span class="n">model</span><span class="o">.</span><span class="n">gaussians</span><span class="o">(</span><span class="n">i</span><span class="o">).</span><span class="n">cov</span><span class="si">}</span><span class="s">\n"</span><span class="o">)</span> |
| <span class="o">}</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="java"> |
| <p>Refer to the <a href="api/java/org/apache/spark/ml/clustering/GaussianMixture.html">Java API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixture</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.ml.clustering.GaussianMixtureModel</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> |
| |
| <span class="c1">// Loads data</span> |
| <span class="n">Dataset</span><span class="o"><</span><span class="n">Row</span><span class="o">></span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">format</span><span class="o">(</span><span class="s">"libsvm"</span><span class="o">).</span><span class="na">load</span><span class="o">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="o">);</span> |
| |
| <span class="c1">// Trains a GaussianMixture model</span> |
| <span class="n">GaussianMixture</span> <span class="n">gmm</span> <span class="o">=</span> <span class="k">new</span> <span class="n">GaussianMixture</span><span class="o">()</span> |
| <span class="o">.</span><span class="na">setK</span><span class="o">(</span><span class="mi">2</span><span class="o">);</span> |
| <span class="n">GaussianMixtureModel</span> <span class="n">model</span> <span class="o">=</span> <span class="n">gmm</span><span class="o">.</span><span class="na">fit</span><span class="o">(</span><span class="n">dataset</span><span class="o">);</span> |
| |
| <span class="c1">// Output the parameters of the mixture model</span> |
| <span class="k">for</span> <span class="o">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="o">;</span> <span class="n">i</span> <span class="o"><</span> <span class="n">model</span><span class="o">.</span><span class="na">getK</span><span class="o">();</span> <span class="n">i</span><span class="o">++)</span> <span class="o">{</span> |
| <span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">printf</span><span class="o">(</span><span class="s">"Gaussian %d:\nweight=%f\nmu=%s\nsigma=\n%s\n\n"</span><span class="o">,</span> |
| <span class="n">i</span><span class="o">,</span> <span class="n">model</span><span class="o">.</span><span class="na">weights</span><span class="o">()[</span><span class="n">i</span><span class="o">],</span> <span class="n">model</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">i</span><span class="o">].</span><span class="na">mean</span><span class="o">(),</span> <span class="n">model</span><span class="o">.</span><span class="na">gaussians</span><span class="o">()[</span><span class="n">i</span><span class="o">].</span><span class="na">cov</span><span class="o">());</span> |
| <span class="o">}</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaGaussianMixtureExample.java" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="python"> |
| <p>Refer to the <a href="api/python/pyspark.ml.html#pyspark.ml.clustering.GaussianMixture">Python API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">pyspark.ml.clustering</span> <span class="kn">import</span> <span class="n">GaussianMixture</span> |
| |
| <span class="c1"># loads data</span> |
| <span class="n">dataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">read</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="s2">"libsvm"</span><span class="p">)</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"data/mllib/sample_kmeans_data.txt"</span><span class="p">)</span> |
| |
| <span class="n">gmm</span> <span class="o">=</span> <span class="n">GaussianMixture</span><span class="p">()</span><span class="o">.</span><span class="n">setK</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">setSeed</span><span class="p">(</span><span class="mi">538009335</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">gmm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| |
| <span class="k">print</span><span class="p">(</span><span class="s2">"Gaussians shown as a DataFrame: "</span><span class="p">)</span> |
| <span class="n">model</span><span class="o">.</span><span class="n">gaussiansDF</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/python/ml/gaussian_mixture_example.py" in the Spark repo.</small></div> |
| </div> |
| |
| <div data-lang="r"> |
| |
| <p>Refer to the <a href="api/R/spark.gaussianMixture.html">R API docs</a> for more details.</p> |
| |
| <div class="highlight"><pre><span></span><span class="c1"># Load training data</span> |
| df <span class="o"><-</span> read.df<span class="p">(</span><span class="s">"data/mllib/sample_kmeans_data.txt"</span><span class="p">,</span> <span class="kn">source</span> <span class="o">=</span> <span class="s">"libsvm"</span><span class="p">)</span> |
| training <span class="o"><-</span> df |
| test <span class="o"><-</span> df |
| |
| <span class="c1"># Fit a gaussian mixture clustering model with spark.gaussianMixture</span> |
| model <span class="o"><-</span> spark.gaussianMixture<span class="p">(</span>training<span class="p">,</span> <span class="o">~</span> features<span class="p">,</span> k <span class="o">=</span> <span class="m">2</span><span class="p">)</span> |
| |
| <span class="c1"># Model summary</span> |
| <span class="kp">summary</span><span class="p">(</span>model<span class="p">)</span> |
| |
| <span class="c1"># Prediction</span> |
| predictions <span class="o"><-</span> predict<span class="p">(</span>model<span class="p">,</span> test<span class="p">)</span> |
| <span class="kp">head</span><span class="p">(</span>predictions<span class="p">)</span> |
| </pre></div> |
| <div><small>Find full example code at "examples/src/main/r/ml/gaussianMixture.R" in the Spark repo.</small></div> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| |
| <!-- /container --> |
| </div> |
| |
| <script src="js/vendor/jquery-1.12.4.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/vendor/anchor.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + |
| '?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |