| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>MLlib - Spark 1.3.1 Documentation</title> |
| |
| <meta name="description" content="MLlib machine learning library overview for Spark 1.3.1"> |
| |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-2']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.3.1</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="programming-guide.html">Spark Programming Guide</a></li> |
| <li class="divider"></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming</a></li> |
| <li><a href="sql-programming-guide.html">DataFrames and SQL</a></li> |
| <li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li> |
| <li><a href="api/java/index.html">Java</a></li> |
| <li><a href="api/python/index.html">Python</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="spark-standalone.html">Spark Standalone</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| <li class="divider"></li> |
| <li><a href="ec2-scripts.html">Amazon EC2</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li> |
| <li class="divider"></li> |
| <li><a href="building-spark.html">Building Spark</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v1.3.1</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container" id="content"> |
| |
| <h1 class="title">Machine Learning Library (MLlib) Guide</h1> |
| |
| |
| <p>MLlib is Spark’s scalable machine learning library consisting of common learning algorithms and utilities, |
| including classification, regression, clustering, collaborative |
| filtering, dimensionality reduction, as well as underlying optimization primitives, as outlined below:</p> |
| |
| <ul> |
| <li><a href="mllib-data-types.html">Data types</a></li> |
| <li><a href="mllib-statistics.html">Basic statistics</a> |
| <ul> |
| <li>summary statistics</li> |
| <li>correlations</li> |
| <li>stratified sampling</li> |
| <li>hypothesis testing</li> |
| <li>random data generation </li> |
| </ul> |
| </li> |
| <li><a href="mllib-classification-regression.html">Classification and regression</a> |
| <ul> |
| <li><a href="mllib-linear-methods.html">linear models (SVMs, logistic regression, linear regression)</a></li> |
| <li><a href="mllib-naive-bayes.html">naive Bayes</a></li> |
| <li><a href="mllib-decision-tree.html">decision trees</a></li> |
| <li><a href="mllib-ensembles.html">ensembles of trees</a> (Random Forests and Gradient-Boosted Trees)</li> |
| <li><a href="mllib-isotonic-regression.html">isotonic regression</a></li> |
| </ul> |
| </li> |
| <li><a href="mllib-collaborative-filtering.html">Collaborative filtering</a> |
| <ul> |
| <li>alternating least squares (ALS)</li> |
| </ul> |
| </li> |
| <li><a href="mllib-clustering.html">Clustering</a> |
| <ul> |
| <li><a href="mllib-clustering.html#k-means">k-means</a></li> |
| <li><a href="mllib-clustering.html#gaussian-mixture">Gaussian mixture</a></li> |
| <li><a href="mllib-clustering.html#power-iteration-clustering-pic">power iteration clustering (PIC)</a></li> |
| <li><a href="mllib-clustering.html#latent-dirichlet-allocation-lda">latent Dirichlet allocation (LDA)</a></li> |
| <li><a href="mllib-clustering.html#streaming-k-means">streaming k-means</a></li> |
| </ul> |
| </li> |
| <li><a href="mllib-dimensionality-reduction.html">Dimensionality reduction</a> |
| <ul> |
| <li>singular value decomposition (SVD)</li> |
| <li>principal component analysis (PCA)</li> |
| </ul> |
| </li> |
| <li><a href="mllib-feature-extraction.html">Feature extraction and transformation</a></li> |
| <li><a href="mllib-frequent-pattern-mining.html">Frequent pattern mining</a> |
| <ul> |
| <li>FP-growth</li> |
| </ul> |
| </li> |
| <li><a href="mllib-optimization.html">Optimization (developer)</a> |
| <ul> |
| <li>stochastic gradient descent</li> |
| <li>limited-memory BFGS (L-BFGS)</li> |
| </ul> |
| </li> |
| </ul> |
| |
| <p>MLlib is under active development. |
| The APIs marked <code>Experimental</code>/<code>DeveloperApi</code> may change in future releases, |
| and the migration guide below will explain all changes between releases.</p> |
| |
| <h1 id="sparkml-high-level-apis-for-ml-pipelines">spark.ml: high-level APIs for ML pipelines</h1> |
| |
| <p>Spark 1.2 introduced a new package called <code>spark.ml</code>, which aims to provide a uniform set of |
| high-level APIs that help users create and tune practical machine learning pipelines. |
| It is currently an alpha component, and we would like to hear back from the community about |
| how it fits real-world use cases and how it could be improved.</p> |
| |
| <p>Note that we will keep supporting and adding features to <code>spark.mllib</code> along with the |
| development of <code>spark.ml</code>. |
| Users should be comfortable using <code>spark.mllib</code> features and expect more features coming. |
| Developers should contribute new algorithms to <code>spark.mllib</code> and can optionally contribute |
| to <code>spark.ml</code>.</p> |
| |
| <p>See the <strong><a href="ml-guide.html">spark.ml programming guide</a></strong> for more information on this package.</p> |
| |
| <h1 id="dependencies">Dependencies</h1> |
| |
| <p>MLlib uses the linear algebra package |
| <a href="http://www.scalanlp.org/">Breeze</a>, which depends on |
| <a href="https://github.com/fommil/netlib-java">netlib-java</a> for optimised |
| numerical processing. If natives are not available at runtime, you |
| will see a warning message and a pure JVM implementation will be used |
| instead.</p> |
| |
| <p>To learn more about the benefits and background of system optimised |
| natives, you may wish to watch Sam Halliday’s ScalaX talk on |
| <a href="http://fommil.github.io/scalax14/#/">High Performance Linear Algebra in Scala</a>).</p> |
| |
| <p>Due to licensing issues with runtime proprietary binaries, we do not |
| include <code>netlib-java</code>’s native proxies by default. To configure |
| <code>netlib-java</code> / Breeze to use system optimised binaries, include |
| <code>com.github.fommil.netlib:all:1.1.2</code> (or build Spark with |
| <code>-Pnetlib-lgpl</code>) as a dependency of your project and read the |
| <a href="https://github.com/fommil/netlib-java">netlib-java</a> documentation for |
| your platform’s additional installation instructions.</p> |
| |
| <p>MLlib also uses <a href="https://github.com/mikiobraun/jblas">jblas</a> which |
| will require you to install the |
| <a href="https://github.com/mikiobraun/jblas/wiki/Missing-Libraries">gfortran runtime library</a> |
| if it is not already present on your nodes.</p> |
| |
| <p>To use MLlib in Python, you will need <a href="http://www.numpy.org">NumPy</a> |
| version 1.4 or newer.</p> |
| |
| <hr /> |
| |
| <h1 id="migration-guide">Migration Guide</h1> |
| |
| <p>For the <code>spark.ml</code> package, please see the <a href="ml-guide.html#migration-guide">spark.ml Migration Guide</a>.</p> |
| |
| <h2 id="from-12-to-13">From 1.2 to 1.3</h2> |
| |
| <p>In the <code>spark.mllib</code> package, there were several breaking changes. The first change (in <code>ALS</code>) is the only one in a component not marked as Alpha or Experimental.</p> |
| |
| <ul> |
| <li><em>(Breaking change)</em> In <a href="api/scala/index.html#org.apache.spark.mllib.recommendation.ALS"><code>ALS</code></a>, the extraneous method <code>solveLeastSquares</code> has been removed. The <code>DeveloperApi</code> method <code>analyzeBlocks</code> was also removed.</li> |
| <li><em>(Breaking change)</em> <a href="api/scala/index.html#org.apache.spark.mllib.feature.StandardScalerModel"><code>StandardScalerModel</code></a> remains an Alpha component. In it, the <code>variance</code> method has been replaced with the <code>std</code> method. To compute the column variance values returned by the original <code>variance</code> method, simply square the standard deviation values returned by <code>std</code>.</li> |
| <li><em>(Breaking change)</em> <a href="api/scala/index.html#org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD"><code>StreamingLinearRegressionWithSGD</code></a> remains an Experimental component. In it, there were two changes: |
| <ul> |
| <li>The constructor taking arguments was removed in favor of a builder patten using the default constructor plus parameter setter methods.</li> |
| <li>Variable <code>model</code> is no longer public.</li> |
| </ul> |
| </li> |
| <li><em>(Breaking change)</em> <a href="api/scala/index.html#org.apache.spark.mllib.tree.DecisionTree"><code>DecisionTree</code></a> remains an Experimental component. In it and its associated classes, there were several changes: |
| <ul> |
| <li>In <code>DecisionTree</code>, the deprecated class method <code>train</code> has been removed. (The object/static <code>train</code> methods remain.)</li> |
| <li>In <code>Strategy</code>, the <code>checkpointDir</code> parameter has been removed. Checkpointing is still supported, but the checkpoint directory must be set before calling tree and tree ensemble training.</li> |
| </ul> |
| </li> |
| <li><code>PythonMLlibAPI</code> (the interface between Scala/Java and Python for MLlib) was a public API but is now private, declared <code>private[python]</code>. This was never meant for external use.</li> |
| <li>In linear regression (including Lasso and ridge regression), the squared loss is now divided by 2. |
| So in order to produce the same result as in 1.2, the regularization parameter needs to be divided by 2 and the step size needs to be multiplied by 2.</li> |
| </ul> |
| |
| <h2 id="previous-spark-versions">Previous Spark Versions</h2> |
| |
| <p>Earlier migration guides are archived <a href="mllib-migration-guides.html">on this page</a>.</p> |
| |
| |
| </div> <!-- /container --> |
| |
| <script src="js/vendor/jquery-1.8.0.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script> |
| // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. |
| // We could use "//cdn.mathjax...", but that won't support "file://". |
| (function(d, script) { |
| script = d.createElement('script'); |
| script.type = 'text/javascript'; |
| script.async = true; |
| script.onload = function(){ |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| }; |
| script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + |
| 'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'; |
| d.getElementsByTagName('head')[0].appendChild(script); |
| }(document)); |
| </script> |
| </body> |
| </html> |