| <!DOCTYPE html> |
| <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> |
| <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> |
| <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> |
| <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> |
| <head> |
| <meta charset="utf-8"> |
| <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> |
| <title>Machine Learning Library (MLlib) - Spark 1.0.0 Documentation</title> |
| <meta name="description" content=""> |
| |
| |
| |
| <link rel="stylesheet" href="css/bootstrap.min.css"> |
| <style> |
| body { |
| padding-top: 60px; |
| padding-bottom: 40px; |
| } |
| </style> |
| <meta name="viewport" content="width=device-width"> |
| <link rel="stylesheet" href="css/bootstrap-responsive.min.css"> |
| <link rel="stylesheet" href="css/main.css"> |
| |
| <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> |
| |
| <link rel="stylesheet" href="css/pygments-default.css"> |
| |
| |
| <!-- Google analytics script --> |
| <script type="text/javascript"> |
| var _gaq = _gaq || []; |
| _gaq.push(['_setAccount', 'UA-32518208-1']); |
| _gaq.push(['_trackPageview']); |
| |
| (function() { |
| var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; |
| ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; |
| var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); |
| })(); |
| </script> |
| |
| |
| </head> |
| <body> |
| <!--[if lt IE 7]> |
| <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> |
| <![endif]--> |
| |
| <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> |
| |
| <div class="navbar navbar-fixed-top" id="topbar"> |
| <div class="navbar-inner"> |
| <div class="container"> |
| <div class="brand"><a href="index.html"> |
| <img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.0.0</span> |
| </div> |
| <ul class="nav"> |
| <!--TODO(andyk): Add class="active" attribute to li some how.--> |
| <li><a href="index.html">Overview</a></li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="quick-start.html">Quick Start</a></li> |
| <li><a href="programming-guide.html">Spark Programming Guide</a></li> |
| <li class="divider"></li> |
| <li><a href="streaming-programming-guide.html">Spark Streaming</a></li> |
| <li><a href="sql-programming-guide.html">Spark SQL</a></li> |
| <li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li> |
| <li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li> |
| <li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="api/scala/index.html#org.apache.spark.package">Scaladoc</a></li> |
| <li><a href="api/java/index.html">Javadoc</a></li> |
| <li><a href="api/python/index.html">Python API</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="cluster-overview.html">Overview</a></li> |
| <li><a href="submitting-applications.html">Submitting Applications</a></li> |
| <li class="divider"></li> |
| <li><a href="ec2-scripts.html">Amazon EC2</a></li> |
| <li><a href="spark-standalone.html">Standalone Mode</a></li> |
| <li><a href="running-on-mesos.html">Mesos</a></li> |
| <li><a href="running-on-yarn.html">YARN</a></li> |
| </ul> |
| </li> |
| |
| <li class="dropdown"> |
| <a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a> |
| <ul class="dropdown-menu"> |
| <li><a href="configuration.html">Configuration</a></li> |
| <li><a href="monitoring.html">Monitoring</a></li> |
| <li><a href="tuning.html">Tuning Guide</a></li> |
| <li><a href="job-scheduling.html">Job Scheduling</a></li> |
| <li><a href="security.html">Security</a></li> |
| <li><a href="hardware-provisioning.html">Hardware Provisioning</a></li> |
| <li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li> |
| <li class="divider"></li> |
| <li><a href="building-with-maven.html">Building Spark with Maven</a></li> |
| <li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li> |
| </ul> |
| </li> |
| </ul> |
| <!--<p class="navbar-text pull-right"><span class="version-text">v1.0.0</span></p>--> |
| </div> |
| </div> |
| </div> |
| |
| <div class="container" id="content"> |
| |
| <h1 class="title">Machine Learning Library (MLlib)</h1> |
| |
| |
| <p>MLlib is a Spark implementation of some common machine learning algorithms and utilities, |
| including classification, regression, clustering, collaborative |
| filtering, dimensionality reduction, as well as underlying optimization primitives:</p> |
| |
| <ul> |
| <li><a href="mllib-basics.html">Basics</a> |
| <ul> |
| <li>data types </li> |
| <li>summary statistics</li> |
| </ul> |
| </li> |
| <li>Classification and regression |
| <ul> |
| <li><a href="mllib-linear-methods.html#linear-support-vector-machine-svm">linear support vector machine (SVM)</a></li> |
| <li><a href="mllib-linear-methods.html#logistic-regression">logistic regression</a></li> |
| <li><a href="mllib-linear-methods.html#linear-least-squares-lasso-and-ridge-regression">linear least squares, Lasso, and ridge regression</a></li> |
| <li><a href="mllib-decision-tree.html">decision tree</a></li> |
| <li><a href="mllib-naive-bayes.html">naive Bayes</a></li> |
| </ul> |
| </li> |
| <li><a href="mllib-collaborative-filtering.html">Collaborative filtering</a> |
| <ul> |
| <li>alternating least squares (ALS)</li> |
| </ul> |
| </li> |
| <li><a href="mllib-clustering.html">Clustering</a> |
| <ul> |
| <li>k-means</li> |
| </ul> |
| </li> |
| <li><a href="mllib-dimensionality-reduction.html">Dimensionality reduction</a> |
| <ul> |
| <li>singular value decomposition (SVD)</li> |
| <li>principal component analysis (PCA)</li> |
| </ul> |
| </li> |
| <li><a href="mllib-optimization.html">Optimization</a> |
| <ul> |
| <li>stochastic gradient descent</li> |
| <li>limited-memory BFGS (L-BFGS)</li> |
| </ul> |
| </li> |
| </ul> |
| |
| <p>MLlib is a new component under active development. |
| The APIs marked <code>Experimental</code>/<code>DeveloperApi</code> may change in future releases, |
| and we will provide migration guide between releases.</p> |
| |
| <h1 id="dependencies">Dependencies</h1> |
| |
| <p>MLlib uses linear algebra packages <a href="http://www.scalanlp.org/">Breeze</a>, which depends on |
| <a href="https://github.com/fommil/netlib-java">netlib-java</a>, and |
| <a href="https://github.com/mikiobraun/jblas">jblas</a>. |
| <code>netlib-java</code> and <code>jblas</code> depend on native Fortran routines. |
| You need to install the |
| <a href="https://github.com/mikiobraun/jblas/wiki/Missing-Libraries">gfortran runtime library</a> if it is not |
| already present on your nodes. MLlib will throw a linking error if it cannot detect these libraries |
| automatically. Due to license issues, we do not include <code>netlib-java</code>’s native libraries in MLlib’s |
| dependency set. If no native library is available at runtime, you will see a warning message. To |
| use native libraries from <code>netlib-java</code>, please include artifact |
| <code>com.github.fommil.netlib:all:1.1.2</code> as a dependency of your project or build your own (see |
| <a href="https://github.com/fommil/netlib-java/blob/master/README.md#machine-optimised-system-libraries">instructions</a>).</p> |
| |
| <p>To use MLlib in Python, you will need <a href="http://www.numpy.org">NumPy</a> version 1.4 or newer.</p> |
| |
| <hr /> |
| |
| <h1 id="migration-guide">Migration Guide</h1> |
| |
| <h2 id="from-09-to-10">From 0.9 to 1.0</h2> |
| |
| <p>In MLlib v1.0, we support both dense and sparse input in a unified way, which introduces a few |
| breaking changes. If your data is sparse, please store it in a sparse format instead of dense to |
| take advantage of sparsity in both storage and computation.</p> |
| |
| <div class="codetabs"> |
| <div data-lang="scala"> |
| |
| <p>We used to represent a feature vector by <code>Array[Double]</code>, which is replaced by |
| <a href="api/scala/index.html#org.apache.spark.mllib.linalg.Vector"><code>Vector</code></a> in v1.0. Algorithms that used |
| to accept <code>RDD[Array[Double]]</code> now take |
| <code>RDD[Vector]</code>. <a href="api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint"><code>LabeledPoint</code></a> |
| is now a wrapper of <code>(Double, Vector)</code> instead of <code>(Double, Array[Double])</code>. Converting |
| <code>Array[Double]</code> to <code>Vector</code> is straightforward:</p> |
| |
| <div class="highlight"><pre><code class="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.</span><span class="o">{</span><span class="nc">Vector</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> |
| |
| <span class="k">val</span> <span class="n">array</span><span class="k">:</span> <span class="kt">Array</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// a double array</span> |
| <span class="k">val</span> <span class="n">vector</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="nc">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="o">(</span><span class="n">array</span><span class="o">)</span> <span class="c1">// a dense vector</span> |
| </code></pre></div> |
| |
| <p><a href="api/scala/index.html#org.apache.spark.mllib.linalg.Vectors$"><code>Vectors</code></a> provides factory methods to create sparse vectors.</p> |
| |
| <p><em>Note</em>. Scala imports <code>scala.collection.immutable.Vector</code> by default, so you have to import <code>org.apache.spark.mllib.linalg.Vector</code> explicitly to use MLlib’s <code>Vector</code>.</p> |
| |
| </div> |
| |
| <div data-lang="java"> |
| |
| <p>We used to represent a feature vector by <code>double[]</code>, which is replaced by |
| <a href="api/java/index.html?org/apache/spark/mllib/linalg/Vector.html"><code>Vector</code></a> in v1.0. Algorithms that used |
| to accept <code>RDD<double[]></code> now take |
| <code>RDD<Vector></code>. <a href="api/java/index.html?org/apache/spark/mllib/regression/LabeledPoint.html"><code>LabeledPoint</code></a> |
| is now a wrapper of <code>(double, Vector)</code> instead of <code>(double, double[])</code>. Converting <code>double[]</code> to |
| <code>Vector</code> is straightforward:</p> |
| |
| <div class="highlight"><pre><code class="java"><span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span> |
| <span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vectors</span><span class="o">;</span> |
| |
| <span class="kt">double</span><span class="o">[]</span> <span class="n">array</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a double array</span> |
| <span class="n">Vector</span> <span class="n">vector</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="n">array</span><span class="o">);</span> <span class="c1">// a dense vector</span> |
| </code></pre></div> |
| |
| <p><a href="api/scala/index.html#org.apache.spark.mllib.linalg.Vectors$"><code>Vectors</code></a> provides factory methods to |
| create sparse vectors.</p> |
| |
| </div> |
| |
| <div data-lang="python"> |
| |
| <p>We used to represent a labeled feature vector in a NumPy array, where the first entry corresponds to |
| the label and the rest are features. This representation is replaced by class |
| <a href="api/python/pyspark.mllib.regression.LabeledPoint-class.html"><code>LabeledPoint</code></a>, which takes both |
| dense and sparse feature vectors.</p> |
| |
| <div class="highlight"><pre><code class="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">SparseVector</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| |
| <span class="c"># Create a labeled point with a positive label and a dense feature vector.</span> |
| <span class="n">pos</span> <span class="o">=</span> <span class="n">LabeledPoint</span><span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">])</span> |
| |
| <span class="c"># Create a labeled point with a negative label and a sparse feature vector.</span> |
| <span class="n">neg</span> <span class="o">=</span> <span class="n">LabeledPoint</span><span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">SparseVector</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">]))</span> |
| </code></pre></div> |
| |
| </div> |
| </div> |
| |
| |
| </div> <!-- /container --> |
| |
| <script src="js/vendor/jquery-1.8.0.min.js"></script> |
| <script src="js/vendor/bootstrap.min.js"></script> |
| <script src="js/main.js"></script> |
| |
| <!-- MathJax Section --> |
| <script type="text/x-mathjax-config"> |
| MathJax.Hub.Config({ |
| TeX: { equationNumbers: { autoNumber: "AMS" } } |
| }); |
| </script> |
| <script type="text/javascript" |
| src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script> |
| MathJax.Hub.Config({ |
| tex2jax: { |
| inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], |
| displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], |
| processEscapes: true, |
| skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] |
| } |
| }); |
| </script> |
| </body> |
| </html> |