| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <title>pyspark.sql.session — PySpark 3.3.4 documentation</title> |
| |
| <link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css"> |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/open-sans_all/1.44.1/index.css"> |
| <link rel="stylesheet" |
| href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css"> |
| |
| |
| <link rel="stylesheet" href="../../../_static/basic.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js"> |
| |
| <script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/language_data.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/session.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="en" /> |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"> |
| <div class="container-xl"> |
| |
| <a class="navbar-brand" href="../../../index.html"> |
| |
| <img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" /> |
| |
| </a> |
| <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| <div id="navbar-menu" class="col-lg-9 collapse navbar-collapse"> |
| <ul id="navbar-main-elements" class="navbar-nav mr-auto"> |
| |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../getting_started/index.html">Getting Started</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../user_guide/index.html">User Guide</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../reference/index.html">API Reference</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../development/index.html">Development</a> |
| </li> |
| |
| <li class="nav-item "> |
| <a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a> |
| </li> |
| |
| |
| </ul> |
| |
| |
| |
| |
| <ul class="navbar-nav"> |
| |
| |
| </ul> |
| </div> |
| </div> |
| </nav> |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| <div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form> |
| <nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| |
| <div class="bd-toc-item active"> |
| |
| |
| <ul class="nav bd-sidenav"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| </ul> |
| |
| </nav> |
| </div> |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| |
| <nav id="bd-toc-nav"> |
| <ul class="nav section-nav flex-column"> |
| |
| </ul> |
| </nav> |
| |
| |
| |
| </div> |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <h1>Source code for pyspark.sql.session</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span> <span class="nn">sys</span> |
| <span class="kn">import</span> <span class="nn">warnings</span> |
| <span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">reduce</span> |
| <span class="kn">from</span> <span class="nn">threading</span> <span class="kn">import</span> <span class="n">RLock</span> |
| <span class="kn">from</span> <span class="nn">types</span> <span class="kn">import</span> <span class="n">TracebackType</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">Any</span><span class="p">,</span> |
| <span class="n">ClassVar</span><span class="p">,</span> |
| <span class="n">Dict</span><span class="p">,</span> |
| <span class="n">Iterable</span><span class="p">,</span> |
| <span class="n">List</span><span class="p">,</span> |
| <span class="n">Optional</span><span class="p">,</span> |
| <span class="n">Tuple</span><span class="p">,</span> |
| <span class="n">Type</span><span class="p">,</span> |
| <span class="n">Union</span><span class="p">,</span> |
| <span class="n">cast</span><span class="p">,</span> |
| <span class="n">no_type_check</span><span class="p">,</span> |
| <span class="n">overload</span><span class="p">,</span> |
| <span class="n">TYPE_CHECKING</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkConf</span><span class="p">,</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">since</span> |
| <span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">RDD</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.conf</span> <span class="kn">import</span> <span class="n">RuntimeConfig</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas.conversion</span> <span class="kn">import</span> <span class="n">SparkConversionMixin</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.readwriter</span> <span class="kn">import</span> <span class="n">DataFrameReader</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.sql_formatter</span> <span class="kn">import</span> <span class="n">SQLStringFormatter</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">DataStreamReader</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">AtomicType</span><span class="p">,</span> |
| <span class="n">DataType</span><span class="p">,</span> |
| <span class="n">StructType</span><span class="p">,</span> |
| <span class="n">_make_type_verifier</span><span class="p">,</span> |
| <span class="n">_infer_schema</span><span class="p">,</span> |
| <span class="n">_has_nulltype</span><span class="p">,</span> |
| <span class="n">_merge_type</span><span class="p">,</span> |
| <span class="n">_create_converter</span><span class="p">,</span> |
| <span class="n">_parse_datatype_string</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.utils</span> <span class="kn">import</span> <span class="n">install_exception_handler</span><span class="p">,</span> <span class="n">is_timestamp_ntz_preferred</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">AtomicValue</span><span class="p">,</span> <span class="n">RowLike</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.catalog</span> <span class="kn">import</span> <span class="n">Catalog</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas._typing</span> <span class="kn">import</span> <span class="n">DataFrameLike</span> <span class="k">as</span> <span class="n">PandasDataFrameLike</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">StreamingQueryManager</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.udf</span> <span class="kn">import</span> <span class="n">UDFRegistration</span> |
| |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"SparkSession"</span><span class="p">]</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_monkey_patch_RDD</span><span class="p">(</span><span class="n">sparkSession</span><span class="p">:</span> <span class="s2">"SparkSession"</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="nd">@no_type_check</span> |
| <span class="k">def</span> <span class="nf">toDF</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">schema</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">sampleRatio</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Converts current :class:`RDD` into a :class:`DataFrame`</span> |
| |
| <span class="sd"> This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)``</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> schema : :class:`pyspark.sql.types.DataType`, str or list, optional</span> |
| <span class="sd"> a :class:`pyspark.sql.types.DataType` or a datatype string or a list of</span> |
| <span class="sd"> column names, default is None. The data type string format equals to</span> |
| <span class="sd"> :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can</span> |
| <span class="sd"> omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use</span> |
| <span class="sd"> ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`.</span> |
| <span class="sd"> We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`.</span> |
| <span class="sd"> sampleRatio : float, optional</span> |
| <span class="sd"> the sample ratio of rows used for inferring</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrame`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> rdd.toDF().collect()</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="n">sparkSession</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">sampleRatio</span><span class="p">)</span> |
| |
| <span class="n">RDD</span><span class="o">.</span><span class="n">toDF</span> <span class="o">=</span> <span class="n">toDF</span> <span class="c1"># type: ignore[assignment]</span> |
| |
| |
| <div class="viewcode-block" id="SparkSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.html#pyspark.sql.SparkSession">[docs]</a><span class="k">class</span> <span class="nc">SparkSession</span><span class="p">(</span><span class="n">SparkConversionMixin</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""The entry point to programming Spark with the Dataset and DataFrame API.</span> |
| |
| <span class="sd"> A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as</span> |
| <span class="sd"> tables, execute SQL over tables, cache tables, and read parquet files.</span> |
| <span class="sd"> To create a :class:`SparkSession`, use the following builder pattern:</span> |
| |
| <span class="sd"> .. autoattribute:: builder</span> |
| <span class="sd"> :annotation:</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> spark = SparkSession.builder \\</span> |
| <span class="sd"> ... .master("local") \\</span> |
| <span class="sd"> ... .appName("Word Count") \\</span> |
| <span class="sd"> ... .config("spark.some.config.option", "some-value") \\</span> |
| <span class="sd"> ... .getOrCreate()</span> |
| |
| <span class="sd"> >>> from datetime import datetime</span> |
| <span class="sd"> >>> from pyspark.sql import Row</span> |
| <span class="sd"> >>> spark = SparkSession(sc)</span> |
| <span class="sd"> >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1,</span> |
| <span class="sd"> ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1),</span> |
| <span class="sd"> ... time=datetime(2014, 8, 1, 14, 1, 5))])</span> |
| <span class="sd"> >>> df = allTypes.toDF()</span> |
| <span class="sd"> >>> df.createOrReplaceTempView("allTypes")</span> |
| <span class="sd"> >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a '</span> |
| <span class="sd"> ... 'from allTypes where b and i > 0').collect()</span> |
| <span class="sd"> [Row((i + 1)=2, (d + 1)=2.0, (NOT b)=False, list[1]=2, \</span> |
| <span class="sd"> dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)]</span> |
| <span class="sd"> >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect()</span> |
| <span class="sd"> [(1, 'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])]</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">class</span> <span class="nc">Builder</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Builder for :class:`SparkSession`."""</span> |
| |
| <span class="n">_lock</span> <span class="o">=</span> <span class="n">RLock</span><span class="p">()</span> |
| <span class="n">_options</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="p">{}</span> |
| <span class="n">_sc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkContext</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="n">conf</span><span class="p">:</span> <span class="n">SparkConf</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span> <span class="nf">config</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">key</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">value</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">conf</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SparkConf</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Sets a config option. Options set using this method are automatically propagated to</span> |
| <span class="sd"> both :class:`SparkConf` and :class:`SparkSession`'s own configuration.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> key : str, optional</span> |
| <span class="sd"> a key name string for configuration property</span> |
| <span class="sd"> value : str, optional</span> |
| <span class="sd"> a value for configuration property</span> |
| <span class="sd"> conf : :class:`SparkConf`, optional</span> |
| <span class="sd"> an instance of :class:`SparkConf`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> For an existing SparkConf, use `conf` parameter.</span> |
| |
| <span class="sd"> >>> from pyspark.conf import SparkConf</span> |
| <span class="sd"> >>> SparkSession.builder.config(conf=SparkConf())</span> |
| <span class="sd"> <pyspark.sql.session...</span> |
| |
| <span class="sd"> For a (key, value) pair, you can omit parameter names.</span> |
| |
| <span class="sd"> >>> SparkSession.builder.config("spark.some.config.option", "some-value")</span> |
| <span class="sd"> <pyspark.sql.session...</span> |
| |
| <span class="sd"> """</span> |
| <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span> |
| <span class="k">if</span> <span class="n">conf</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">[</span><span class="n">cast</span><span class="p">(</span><span class="nb">str</span><span class="p">,</span> <span class="n">key</span><span class="p">)]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">value</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">for</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">conf</span><span class="o">.</span><span class="n">getAll</span><span class="p">():</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span> |
| <span class="k">return</span> <span class="bp">self</span> |
| |
| <span class="k">def</span> <span class="nf">master</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">master</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]"</span> |
| <span class="sd"> to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone</span> |
| <span class="sd"> cluster.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> master : str</span> |
| <span class="sd"> a url for spark master</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">"spark.master"</span><span class="p">,</span> <span class="n">master</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">appName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Sets a name for the application, which will be shown in the Spark web UI.</span> |
| |
| <span class="sd"> If no application name is set, a randomly generated name will be used.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> an application name</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">"spark.app.name"</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">enableHiveSupport</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession.Builder"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Enables Hive support, including connectivity to a persistent Hive metastore, support</span> |
| <span class="sd"> for Hive SerDes, and Hive user-defined functions.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="s2">"spark.sql.catalogImplementation"</span><span class="p">,</span> <span class="s2">"hive"</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">getOrCreate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Gets an existing :class:`SparkSession` or, if there is no existing one, creates a</span> |
| <span class="sd"> new one based on the options set in this builder.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> This method first checks whether there is a valid global default SparkSession, and if</span> |
| <span class="sd"> yes, return that one. If no valid global default SparkSession exists, the method</span> |
| <span class="sd"> creates a new SparkSession and assigns the newly created SparkSession as the global</span> |
| <span class="sd"> default.</span> |
| |
| <span class="sd"> >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate()</span> |
| <span class="sd"> >>> s1.conf.get("k1") == "v1"</span> |
| <span class="sd"> True</span> |
| |
| <span class="sd"> In case an existing SparkSession is returned, the config options specified</span> |
| <span class="sd"> in this builder will be applied to the existing SparkSession.</span> |
| |
| <span class="sd"> >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate()</span> |
| <span class="sd"> >>> s1.conf.get("k1") == s2.conf.get("k1")</span> |
| <span class="sd"> True</span> |
| <span class="sd"> >>> s1.conf.get("k2") == s2.conf.get("k2")</span> |
| <span class="sd"> True</span> |
| <span class="sd"> """</span> |
| <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| <span class="kn">from</span> <span class="nn">pyspark.conf</span> <span class="kn">import</span> <span class="n">SparkConf</span> |
| |
| <span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> |
| <span class="k">if</span> <span class="n">session</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">sparkConf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span> |
| <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> |
| <span class="n">sparkConf</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span> |
| <span class="c1"># This SparkContext may be an existing one.</span> |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">(</span><span class="n">sparkConf</span><span class="p">)</span> |
| <span class="c1"># Do not update `SparkConf` for existing `SparkContext`, as it's shared</span> |
| <span class="c1"># by all sessions.</span> |
| <span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="nb">getattr</span><span class="p">(</span> |
| <span class="nb">getattr</span><span class="p">(</span><span class="n">session</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">"SparkSession$"</span><span class="p">),</span> <span class="s2">"MODULE$"</span> |
| <span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span><span class="n">session</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_options</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">session</span> |
| |
| <span class="n">builder</span> <span class="o">=</span> <span class="n">Builder</span><span class="p">()</span> |
| <span class="w"> </span><span class="sd">"""A class attribute having a :class:`Builder` to construct :class:`SparkSession` instances."""</span> |
| |
| <span class="n">_instantiatedSession</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="s2">"SparkSession"</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="n">_activeSession</span><span class="p">:</span> <span class="n">ClassVar</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="s2">"SparkSession"</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span> |
| |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">sparkContext</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> |
| <span class="n">jsparkSession</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaObject</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">options</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> <span class="o">=</span> <span class="p">{},</span> |
| <span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="n">sparkContext</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> |
| |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| |
| <span class="k">if</span> <span class="n">jsparkSession</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">if</span> <span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">isDefined</span><span class="p">()</span> |
| <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span><span class="o">.</span><span class="n">sparkContext</span><span class="p">()</span><span class="o">.</span><span class="n">isStopped</span><span class="p">()</span> |
| <span class="p">):</span> |
| <span class="n">jsparkSession</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getDefaultSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">()</span> |
| <span class="nb">getattr</span><span class="p">(</span><span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">"SparkSession$"</span><span class="p">),</span> <span class="s2">"MODULE$"</span><span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span> |
| <span class="n">jsparkSession</span><span class="p">,</span> <span class="n">options</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">jsparkSession</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span class="p">(),</span> <span class="n">options</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="nb">getattr</span><span class="p">(</span><span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="p">,</span> <span class="s2">"SparkSession$"</span><span class="p">),</span> <span class="s2">"MODULE$"</span><span class="p">)</span><span class="o">.</span><span class="n">applyModifiableSettings</span><span class="p">(</span> |
| <span class="n">jsparkSession</span><span class="p">,</span> <span class="n">options</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span> <span class="o">=</span> <span class="n">jsparkSession</span> |
| <span class="n">_monkey_patch_RDD</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| <span class="n">install_exception_handler</span><span class="p">()</span> |
| <span class="c1"># If we had an instantiated SparkSession attached with a SparkContext</span> |
| <span class="c1"># which is stopped now, we need to renew the instantiated SparkSession.</span> |
| <span class="c1"># Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate.</span> |
| <span class="k">if</span> <span class="p">(</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="ow">is</span> <span class="kc">None</span> |
| <span class="ow">or</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jsc</span> <span class="ow">is</span> <span class="kc">None</span> |
| <span class="p">):</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="o">=</span> <span class="bp">self</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="bp">self</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setDefaultSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setActiveSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">_repr_html_</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"""</span> |
| <span class="s2"> <div></span> |
| <span class="s2"> <p><b>SparkSession - </span><span class="si">{catalogImplementation}</span><span class="s2"></b></p></span> |
| <span class="s2"> </span><span class="si">{sc_HTML}</span> |
| <span class="s2"> </div></span> |
| <span class="s2"> """</span><span class="o">.</span><span class="n">format</span><span class="p">(</span> |
| <span class="n">catalogImplementation</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.sql.catalogImplementation"</span><span class="p">),</span> |
| <span class="n">sc_HTML</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sparkContext</span><span class="o">.</span><span class="n">_repr_html_</span><span class="p">(),</span> |
| <span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">_jconf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"JavaObject"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Accessor for the JVM SQL-specific configurations"""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">sessionState</span><span class="p">()</span><span class="o">.</span><span class="n">conf</span><span class="p">()</span> |
| |
| <div class="viewcode-block" id="SparkSession.newSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.newSession.html#pyspark.sql.SparkSession.newSession">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">newSession</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns a new :class:`SparkSession` as new session, that has separate SQLConf,</span> |
| <span class="sd"> registered temporary views and UDFs, but shared :class:`SparkContext` and</span> |
| <span class="sd"> table cache.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">newSession</span><span class="p">())</span></div> |
| |
| <div class="viewcode-block" id="SparkSession.getActiveSession"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.getActiveSession.html#pyspark.sql.SparkSession.getActiveSession">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">getActiveSession</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-></span> <span class="n">Optional</span><span class="p">[</span><span class="s2">"SparkSession"</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns the active :class:`SparkSession` for the current thread, returned by the builder</span> |
| |
| <span class="sd"> .. versionadded:: 3.0.0</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`SparkSession`</span> |
| <span class="sd"> Spark session if an active session exists for the current thread</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> s = SparkSession.getActiveSession()</span> |
| <span class="sd"> >>> l = [('Alice', 1)]</span> |
| <span class="sd"> >>> rdd = s.sparkContext.parallelize(l)</span> |
| <span class="sd"> >>> df = s.createDataFrame(rdd, ['name', 'age'])</span> |
| <span class="sd"> >>> df.select("age").collect()</span> |
| <span class="sd"> [Row(age=1)]</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> |
| <span class="k">if</span> <span class="n">sc</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="kc">None</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">if</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span><span class="o">.</span><span class="n">isDefined</span><span class="p">():</span> |
| <span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span><span class="o">.</span><span class="n">get</span><span class="p">())</span> |
| <span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="kc">None</span></div> |
| |
| <span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">sparkContext</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">SparkContext</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Returns the underlying :class:`SparkContext`."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> |
| |
| <span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">version</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""The version of Spark on which this application is running."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">version</span><span class="p">()</span> |
| |
| <span class="nd">@property</span> <span class="c1"># type: ignore[misc]</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">conf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">RuntimeConfig</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Runtime configuration interface for Spark.</span> |
| |
| <span class="sd"> This is the interface through which the user can get and set all Spark and Hadoop</span> |
| <span class="sd"> configurations that are relevant to Spark SQL. When getting the value of a config,</span> |
| <span class="sd"> this defaults to the value set in the underlying :class:`SparkContext`, if any.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`pyspark.sql.conf.RuntimeConfig`</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">"_conf"</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> <span class="o">=</span> <span class="n">RuntimeConfig</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">conf</span><span class="p">())</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_conf</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">catalog</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"Catalog"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Interface through which the user may create, drop, alter or query underlying</span> |
| <span class="sd"> databases, tables, functions, etc.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`Catalog`</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.catalog</span> <span class="kn">import</span> <span class="n">Catalog</span> |
| |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">"_catalog"</span><span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_catalog</span> <span class="o">=</span> <span class="n">Catalog</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_catalog</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">udf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"UDFRegistration"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Returns a :class:`UDFRegistration` for UDF registration.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`UDFRegistration`</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.udf</span> <span class="kn">import</span> <span class="n">UDFRegistration</span> |
| |
| <span class="k">return</span> <span class="n">UDFRegistration</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="SparkSession.range"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.range.html#pyspark.sql.SparkSession.range">[docs]</a> <span class="k">def</span> <span class="nf">range</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">start</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">end</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">step</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named</span> |
| <span class="sd"> ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with</span> |
| <span class="sd"> step value ``step``.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> start : int</span> |
| <span class="sd"> the start value</span> |
| <span class="sd"> end : int, optional</span> |
| <span class="sd"> the end value (exclusive)</span> |
| <span class="sd"> step : int, optional</span> |
| <span class="sd"> the incremental step (default: 1)</span> |
| <span class="sd"> numPartitions : int, optional</span> |
| <span class="sd"> the number of partitions of the DataFrame</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrame`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> spark.range(1, 7, 2).collect()</span> |
| <span class="sd"> [Row(id=1), Row(id=3), Row(id=5)]</span> |
| |
| <span class="sd"> If only one argument is specified, it will be used as the end value.</span> |
| |
| <span class="sd"> >>> spark.range(3).collect()</span> |
| <span class="sd"> [Row(id=0), Row(id=1), Row(id=2)]</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| |
| <span class="k">if</span> <span class="n">end</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">step</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">end</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">step</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span> |
| |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span></div> |
| |
| <span class="k">def</span> <span class="nf">_inferSchemaFromList</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">names</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">StructType</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Infer schema from list of Row, dict, or tuple.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : iterable</span> |
| <span class="sd"> list of Row, dict, or tuple</span> |
| <span class="sd"> names : list, optional</span> |
| <span class="sd"> list of column names</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`pyspark.sql.types.StructType`</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">data</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"can not infer schema from empty dataset"</span><span class="p">)</span> |
| <span class="n">infer_dict_as_struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">inferDictAsStruct</span><span class="p">()</span> |
| <span class="n">prefer_timestamp_ntz</span> <span class="o">=</span> <span class="n">is_timestamp_ntz_preferred</span><span class="p">()</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">reduce</span><span class="p">(</span> |
| <span class="n">_merge_type</span><span class="p">,</span> |
| <span class="p">(</span><span class="n">_infer_schema</span><span class="p">(</span><span class="n">row</span><span class="p">,</span> <span class="n">names</span><span class="p">,</span> <span class="n">infer_dict_as_struct</span><span class="p">,</span> <span class="n">prefer_timestamp_ntz</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">data</span><span class="p">),</span> |
| <span class="p">)</span> |
| <span class="k">if</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Some of types cannot be determined after inferring"</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">schema</span> |
| |
| <span class="k">def</span> <span class="nf">_inferSchema</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">names</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">StructType</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Infer schema from an RDD of Row, dict, or tuple.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> rdd : :class:`RDD`</span> |
| <span class="sd"> an RDD of Row, dict, or tuple</span> |
| <span class="sd"> samplingRatio : float, optional</span> |
| <span class="sd"> sampling ratio, or no sampling (default)</span> |
| <span class="sd"> names : list, optional</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`pyspark.sql.types.StructType`</span> |
| <span class="sd"> """</span> |
| <span class="n">first</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">first</span><span class="p">()</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">first</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"The first row in RDD is empty, "</span> <span class="s2">"can not infer schema"</span><span class="p">)</span> |
| |
| <span class="n">infer_dict_as_struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jconf</span><span class="o">.</span><span class="n">inferDictAsStruct</span><span class="p">()</span> |
| <span class="n">prefer_timestamp_ntz</span> <span class="o">=</span> <span class="n">is_timestamp_ntz_preferred</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">samplingRatio</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">_infer_schema</span><span class="p">(</span> |
| <span class="n">first</span><span class="p">,</span> |
| <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">,</span> |
| <span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span> |
| <span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">if</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span> |
| <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">rdd</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">1</span><span class="p">:]:</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">_merge_type</span><span class="p">(</span> |
| <span class="n">schema</span><span class="p">,</span> |
| <span class="n">_infer_schema</span><span class="p">(</span> |
| <span class="n">row</span><span class="p">,</span> |
| <span class="n">names</span><span class="o">=</span><span class="n">names</span><span class="p">,</span> |
| <span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span> |
| <span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span> |
| <span class="p">),</span> |
| <span class="p">)</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">_has_nulltype</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span> |
| <span class="k">break</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Some of types cannot be determined by the "</span> |
| <span class="s2">"first 100 rows, please try again with sampling"</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">if</span> <span class="n">samplingRatio</span> <span class="o"><</span> <span class="mf">0.99</span><span class="p">:</span> |
| <span class="n">rdd</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="kc">False</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">samplingRatio</span><span class="p">))</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span> |
| <span class="k">lambda</span> <span class="n">row</span><span class="p">:</span> <span class="n">_infer_schema</span><span class="p">(</span> |
| <span class="n">row</span><span class="p">,</span> |
| <span class="n">names</span><span class="p">,</span> |
| <span class="n">infer_dict_as_struct</span><span class="o">=</span><span class="n">infer_dict_as_struct</span><span class="p">,</span> |
| <span class="n">prefer_timestamp_ntz</span><span class="o">=</span><span class="n">prefer_timestamp_ntz</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="p">)</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">_merge_type</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">schema</span> |
| |
| <span class="k">def</span> <span class="nf">_createFromRDD</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">],</span> <span class="n">StructType</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Create an RDD for DataFrame from an existing RDD, returns the RDD and schema.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">schema</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span> |
| <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_inferSchema</span><span class="p">(</span><span class="n">rdd</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span> |
| <span class="n">converter</span> <span class="o">=</span> <span class="n">_create_converter</span><span class="p">(</span><span class="n">struct</span><span class="p">)</span> |
| <span class="n">tupled_rdd</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">converter</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span> |
| <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span> |
| <span class="n">struct</span><span class="o">.</span><span class="n">fields</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span> |
| <span class="n">struct</span><span class="o">.</span><span class="n">names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">name</span> |
| |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="n">struct</span> <span class="o">=</span> <span class="n">schema</span> |
| <span class="n">tupled_rdd</span> <span class="o">=</span> <span class="n">rdd</span> |
| |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"schema should be StructType or list or None, but got: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">schema</span><span class="p">)</span> |
| |
| <span class="c1"># convert python objects to sql data</span> |
| <span class="n">internal_rdd</span> <span class="o">=</span> <span class="n">tupled_rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">struct</span><span class="o">.</span><span class="n">toInternal</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">internal_rdd</span><span class="p">,</span> <span class="n">struct</span> |
| |
| <span class="k">def</span> <span class="nf">_createFromLocal</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]]</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">],</span> <span class="n">StructType</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Create an RDD for DataFrame from a list or pandas.DataFrame, returns</span> |
| <span class="sd"> the RDD and schema.</span> |
| <span class="sd"> """</span> |
| <span class="c1"># make sure data could consumed multiple times</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span> |
| <span class="n">data</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| |
| <span class="k">if</span> <span class="n">schema</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span> |
| <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_inferSchemaFromList</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">schema</span><span class="p">)</span> |
| <span class="n">converter</span> <span class="o">=</span> <span class="n">_create_converter</span><span class="p">(</span><span class="n">struct</span><span class="p">)</span> |
| <span class="n">tupled_data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Tuple</span><span class="p">]</span> <span class="o">=</span> <span class="nb">map</span><span class="p">(</span><span class="n">converter</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span> |
| <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">schema</span><span class="p">):</span> |
| <span class="n">struct</span><span class="o">.</span><span class="n">fields</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">name</span> |
| <span class="n">struct</span><span class="o">.</span><span class="n">names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">name</span> |
| |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="n">struct</span> <span class="o">=</span> <span class="n">schema</span> |
| <span class="n">tupled_data</span> <span class="o">=</span> <span class="n">data</span> |
| |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"schema should be StructType or list or None, but got: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">schema</span><span class="p">)</span> |
| |
| <span class="c1"># convert python objects to sql data</span> |
| <span class="n">internal_data</span> <span class="o">=</span> <span class="p">[</span><span class="n">struct</span><span class="o">.</span><span class="n">toInternal</span><span class="p">(</span><span class="n">row</span><span class="p">)</span> <span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">tupled_data</span><span class="p">]</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">internal_data</span><span class="p">),</span> <span class="n">struct</span> |
| |
| <span class="nd">@staticmethod</span> |
| <span class="k">def</span> <span class="nf">_create_shell_session</span><span class="p">()</span> <span class="o">-></span> <span class="s2">"SparkSession"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Initialize a :class:`SparkSession` for a pyspark shell session. This is called from</span> |
| <span class="sd"> shell.py to make error handling simpler without needing to declare local variables in</span> |
| <span class="sd"> that script, which would expose those to users.</span> |
| <span class="sd"> """</span> |
| <span class="kn">import</span> <span class="nn">py4j</span> |
| <span class="kn">from</span> <span class="nn">pyspark.conf</span> <span class="kn">import</span> <span class="n">SparkConf</span> |
| <span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| |
| <span class="k">try</span><span class="p">:</span> |
| <span class="c1"># Try to access HiveConf, it will raise exception if Hive is not added</span> |
| <span class="n">conf</span> <span class="o">=</span> <span class="n">SparkConf</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">if</span> <span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.sql.catalogImplementation"</span><span class="p">,</span> <span class="s2">"hive"</span><span class="p">)</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="o">==</span> <span class="s2">"hive"</span><span class="p">:</span> |
| <span class="n">SparkContext</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">hadoop</span><span class="o">.</span><span class="n">hive</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">HiveConf</span><span class="p">()</span> |
| <span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">enableHiveSupport</span><span class="p">()</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span> |
| <span class="k">except</span> <span class="p">(</span><span class="n">py4j</span><span class="o">.</span><span class="n">protocol</span><span class="o">.</span><span class="n">Py4JError</span><span class="p">,</span> <span class="ne">TypeError</span><span class="p">):</span> |
| <span class="k">if</span> <span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"spark.sql.catalogImplementation"</span><span class="p">,</span> <span class="s2">""</span><span class="p">)</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="o">==</span> <span class="s2">"hive"</span><span class="p">:</span> |
| <span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span> |
| <span class="s2">"Fall back to non-hive support because failing to access HiveConf, "</span> |
| <span class="s2">"please make sure you build spark with hive"</span> |
| <span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span> |
| |
| <span class="nd">@staticmethod</span> |
| <span class="k">def</span> <span class="nf">_getActiveSessionOrCreate</span><span class="p">(</span><span class="o">**</span><span class="n">static_conf</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns the active :class:`SparkSession` for the current thread, returned by the builder,</span> |
| <span class="sd"> or if there is no existing one, creates a new one based on the options set in the builder.</span> |
| |
| <span class="sd"> NOTE that 'static_conf' might not be set if there's an active or default Spark session</span> |
| <span class="sd"> running.</span> |
| <span class="sd"> """</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">getActiveSession</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">spark</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">builder</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span> |
| <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">static_conf</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> |
| <span class="n">builder</span> <span class="o">=</span> <span class="n">builder</span><span class="o">.</span><span class="n">config</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">builder</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="k">return</span> <span class="n">spark</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">"RowLike"</span><span class="p">],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="o">...</span><span class="p">]]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="s2">"RDD[RowLike]"</span><span class="p">,</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="o">...</span><span class="p">]]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">"RowLike"</span><span class="p">],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="s2">"RDD[RowLike]"</span><span class="p">,</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="s2">"RDD[AtomicValue]"</span><span class="p">,</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="s2">"AtomicValue"</span><span class="p">],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="s2">"PandasDataFrameLike"</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="o">...</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="s2">"PandasDataFrameLike"</span><span class="p">,</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="SparkSession.createDataFrame"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.createDataFrame.html#pyspark.sql.SparkSession.createDataFrame">[docs]</a> <span class="k">def</span> <span class="nf">createDataFrame</span><span class="p">(</span> <span class="c1"># type: ignore[misc]</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="s2">"PandasDataFrameLike"</span><span class="p">],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.</span> |
| |
| <span class="sd"> When ``schema`` is a list of column names, the type of each column</span> |
| <span class="sd"> will be inferred from ``data``.</span> |
| |
| <span class="sd"> When ``schema`` is ``None``, it will try to infer the schema (column names and types)</span> |
| <span class="sd"> from ``data``, which should be an RDD of either :class:`Row`,</span> |
| <span class="sd"> :class:`namedtuple`, or :class:`dict`.</span> |
| |
| <span class="sd"> When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match</span> |
| <span class="sd"> the real data, or an exception will be thrown at runtime. If the given schema is not</span> |
| <span class="sd"> :class:`pyspark.sql.types.StructType`, it will be wrapped into a</span> |
| <span class="sd"> :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value".</span> |
| <span class="sd"> Each record will also be wrapped into a tuple, which can be converted to row later.</span> |
| |
| <span class="sd"> If schema inference is needed, ``samplingRatio`` is used to determined the ratio of</span> |
| <span class="sd"> rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> .. versionchanged:: 2.1.0</span> |
| <span class="sd"> Added verifySchema.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :class:`RDD` or iterable</span> |
| <span class="sd"> an RDD of any kind of SQL data representation (:class:`Row`,</span> |
| <span class="sd"> :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or</span> |
| <span class="sd"> :class:`pandas.DataFrame`.</span> |
| <span class="sd"> schema : :class:`pyspark.sql.types.DataType`, str or list, optional</span> |
| <span class="sd"> a :class:`pyspark.sql.types.DataType` or a datatype string or a list of</span> |
| <span class="sd"> column names, default is None. The data type string format equals to</span> |
| <span class="sd"> :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can</span> |
| <span class="sd"> omit the ``struct<>``.</span> |
| <span class="sd"> samplingRatio : float, optional</span> |
| <span class="sd"> the sample ratio of rows used for inferring</span> |
| <span class="sd"> verifySchema : bool, optional</span> |
| <span class="sd"> verify data types of every row against schema. Enabled by default.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrame`</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> Usage with spark.sql.execution.arrow.pyspark.enabled=True is experimental.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> l = [('Alice', 1)]</span> |
| <span class="sd"> >>> spark.createDataFrame(l).collect()</span> |
| <span class="sd"> [Row(_1='Alice', _2=1)]</span> |
| <span class="sd"> >>> spark.createDataFrame(l, ['name', 'age']).collect()</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| |
| <span class="sd"> >>> d = [{'name': 'Alice', 'age': 1}]</span> |
| <span class="sd"> >>> spark.createDataFrame(d).collect()</span> |
| <span class="sd"> [Row(age=1, name='Alice')]</span> |
| |
| <span class="sd"> >>> rdd = sc.parallelize(l)</span> |
| <span class="sd"> >>> spark.createDataFrame(rdd).collect()</span> |
| <span class="sd"> [Row(_1='Alice', _2=1)]</span> |
| <span class="sd"> >>> df = spark.createDataFrame(rdd, ['name', 'age'])</span> |
| <span class="sd"> >>> df.collect()</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| |
| <span class="sd"> >>> from pyspark.sql import Row</span> |
| <span class="sd"> >>> Person = Row('name', 'age')</span> |
| <span class="sd"> >>> person = rdd.map(lambda r: Person(*r))</span> |
| <span class="sd"> >>> df2 = spark.createDataFrame(person)</span> |
| <span class="sd"> >>> df2.collect()</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| |
| <span class="sd"> >>> from pyspark.sql.types import *</span> |
| <span class="sd"> >>> schema = StructType([</span> |
| <span class="sd"> ... StructField("name", StringType(), True),</span> |
| <span class="sd"> ... StructField("age", IntegerType(), True)])</span> |
| <span class="sd"> >>> df3 = spark.createDataFrame(rdd, schema)</span> |
| <span class="sd"> >>> df3.collect()</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| |
| <span class="sd"> >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(name='Alice', age=1)]</span> |
| <span class="sd"> >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP</span> |
| <span class="sd"> [Row(0=1, 1=2)]</span> |
| |
| <span class="sd"> >>> spark.createDataFrame(rdd, "a: string, b: int").collect()</span> |
| <span class="sd"> [Row(a='Alice', b=1)]</span> |
| <span class="sd"> >>> rdd = rdd.map(lambda row: row[1])</span> |
| <span class="sd"> >>> spark.createDataFrame(rdd, "int").collect()</span> |
| <span class="sd"> [Row(value=1)]</span> |
| <span class="sd"> >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL</span> |
| <span class="sd"> Traceback (most recent call last):</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> Py4JJavaError: ...</span> |
| <span class="sd"> """</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="bp">self</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">setActiveSession</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"data is already a DataFrame"</span><span class="p">)</span> |
| |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">Union</span><span class="p">[</span><span class="n">AtomicType</span><span class="p">,</span> <span class="n">StructType</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="n">schema</span><span class="p">))</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span> |
| <span class="c1"># Must re-encode any unicode strings to be consistent with StructField names</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="s2">"utf-8"</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">str</span><span class="p">)</span> <span class="k">else</span> <span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">schema</span><span class="p">]</span> |
| |
| <span class="k">try</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">pandas</span> |
| |
| <span class="n">has_pandas</span> <span class="o">=</span> <span class="kc">True</span> |
| <span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span> |
| <span class="n">has_pandas</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="k">if</span> <span class="n">has_pandas</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pandas</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span> |
| <span class="c1"># Create a DataFrame from pandas DataFrame.</span> |
| <span class="k">return</span> <span class="nb">super</span><span class="p">(</span><span class="n">SparkSession</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">createDataFrame</span><span class="p">(</span> <span class="c1"># type: ignore[call-overload]</span> |
| <span class="n">data</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">verifySchema</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_dataframe</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">,</span> <span class="n">verifySchema</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span></div> |
| |
| <span class="k">def</span> <span class="nf">_create_dataframe</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Any</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Any</span><span class="p">]],</span> |
| <span class="n">schema</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">DataType</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]],</span> |
| <span class="n">samplingRatio</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span> |
| <span class="n">verifySchema</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="n">verify_func</span> <span class="o">=</span> <span class="n">_make_type_verifier</span><span class="p">(</span><span class="n">schema</span><span class="p">)</span> <span class="k">if</span> <span class="n">verifySchema</span> <span class="k">else</span> <span class="k">lambda</span> <span class="n">_</span><span class="p">:</span> <span class="kc">True</span> |
| |
| <span class="nd">@no_type_check</span> |
| <span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">):</span> |
| <span class="n">verify_func</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">obj</span> |
| |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">schema</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span> |
| <span class="n">dataType</span> <span class="o">=</span> <span class="n">schema</span> |
| <span class="n">schema</span> <span class="o">=</span> <span class="n">StructType</span><span class="p">()</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">"value"</span><span class="p">,</span> <span class="n">schema</span><span class="p">)</span> |
| |
| <span class="n">verify_func</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="n">_make_type_verifier</span><span class="p">(</span><span class="n">dataType</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">"field value"</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">verifySchema</span> |
| <span class="k">else</span> <span class="k">lambda</span> <span class="n">_</span><span class="p">:</span> <span class="kc">True</span> |
| <span class="p">)</span> |
| |
| <span class="nd">@no_type_check</span> |
| <span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">):</span> |
| <span class="n">verify_func</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span> |
| <span class="k">return</span> <span class="p">(</span><span class="n">obj</span><span class="p">,)</span> |
| |
| <span class="k">else</span><span class="p">:</span> |
| |
| <span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">obj</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">obj</span> |
| |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span> |
| <span class="n">rdd</span><span class="p">,</span> <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_createFromRDD</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">prepare</span><span class="p">),</span> <span class="n">schema</span><span class="p">,</span> <span class="n">samplingRatio</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">rdd</span><span class="p">,</span> <span class="n">struct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_createFromLocal</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="n">prepare</span><span class="p">,</span> <span class="n">data</span><span class="p">),</span> <span class="n">schema</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">jrdd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SerDeUtil</span><span class="o">.</span><span class="n">toJavaArray</span><span class="p">(</span><span class="n">rdd</span><span class="o">.</span><span class="n">_to_java_object_rdd</span><span class="p">())</span> |
| <span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">applySchemaToPythonRDD</span><span class="p">(</span><span class="n">jrdd</span><span class="o">.</span><span class="n">rdd</span><span class="p">(),</span> <span class="n">struct</span><span class="o">.</span><span class="n">json</span><span class="p">())</span> |
| <span class="n">df</span> <span class="o">=</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span> |
| <span class="n">df</span><span class="o">.</span><span class="n">_schema</span> <span class="o">=</span> <span class="n">struct</span> |
| <span class="k">return</span> <span class="n">df</span> |
| |
| <div class="viewcode-block" id="SparkSession.sql"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.sql.html#pyspark.sql.SparkSession.sql">[docs]</a> <span class="k">def</span> <span class="nf">sql</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sqlQuery</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Returns a :class:`DataFrame` representing the result of the given query.</span> |
| <span class="sd"> When ``kwargs`` is specified, this method formats the given string by using the Python</span> |
| <span class="sd"> standard formatter.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> sqlQuery : str</span> |
| <span class="sd"> SQL query string.</span> |
| <span class="sd"> kwargs : dict</span> |
| <span class="sd"> Other variables that the user wants to set that can be referenced in the query</span> |
| |
| <span class="sd"> .. versionchanged:: 3.3.0</span> |
| <span class="sd"> Added optional argument ``kwargs`` to specify the mapping of variables in the query.</span> |
| <span class="sd"> This feature is experimental and unstable.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrame`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> Executing a SQL query.</span> |
| |
| <span class="sd"> >>> spark.sql("SELECT * FROM range(10) where id > 7").show()</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | id|</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | 8|</span> |
| <span class="sd"> | 9|</span> |
| <span class="sd"> +---+</span> |
| |
| <span class="sd"> Executing a SQL query with variables as Python formatter standard.</span> |
| |
| <span class="sd"> >>> spark.sql(</span> |
| <span class="sd"> ... "SELECT * FROM range(10) WHERE id > {bound1} AND id < {bound2}", bound1=7, bound2=9</span> |
| <span class="sd"> ... ).show()</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | id|</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | 8|</span> |
| <span class="sd"> +---+</span> |
| |
| <span class="sd"> >>> mydf = spark.range(10)</span> |
| <span class="sd"> >>> spark.sql(</span> |
| <span class="sd"> ... "SELECT {col} FROM {mydf} WHERE id IN {x}",</span> |
| <span class="sd"> ... col=mydf.id, mydf=mydf, x=tuple(range(4))).show()</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | id|</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | 0|</span> |
| <span class="sd"> | 1|</span> |
| <span class="sd"> | 2|</span> |
| <span class="sd"> | 3|</span> |
| <span class="sd"> +---+</span> |
| |
| <span class="sd"> >>> spark.sql('''</span> |
| <span class="sd"> ... SELECT m1.a, m2.b</span> |
| <span class="sd"> ... FROM {table1} m1 INNER JOIN {table2} m2</span> |
| <span class="sd"> ... ON m1.key = m2.key</span> |
| <span class="sd"> ... ORDER BY m1.a, m2.b''',</span> |
| <span class="sd"> ... table1=spark.createDataFrame([(1, "a"), (2, "b")], ["a", "key"]),</span> |
| <span class="sd"> ... table2=spark.createDataFrame([(3, "a"), (4, "b"), (5, "b")], ["b", "key"])).show()</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | a| b|</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | 1| 3|</span> |
| <span class="sd"> | 2| 4|</span> |
| <span class="sd"> | 2| 5|</span> |
| <span class="sd"> +---+---+</span> |
| |
| <span class="sd"> Also, it is possible to query using class:`Column` from :class:`DataFrame`.</span> |
| |
| <span class="sd"> >>> mydf = spark.createDataFrame([(1, 4), (2, 4), (3, 6)], ["A", "B"])</span> |
| <span class="sd"> >>> spark.sql("SELECT {df.A}, {df[B]} FROM {df}", df=mydf).show()</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | A| B|</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | 1| 4|</span> |
| <span class="sd"> | 2| 4|</span> |
| <span class="sd"> | 3| 6|</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">formatter</span> <span class="o">=</span> <span class="n">SQLStringFormatter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span> |
| <span class="n">sqlQuery</span> <span class="o">=</span> <span class="n">formatter</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">sqlQuery</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">sql</span><span class="p">(</span><span class="n">sqlQuery</span><span class="p">),</span> <span class="bp">self</span><span class="p">)</span> |
| <span class="k">finally</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span> |
| <span class="n">formatter</span><span class="o">.</span><span class="n">clear</span><span class="p">()</span></div> |
| |
| <div class="viewcode-block" id="SparkSession.table"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.table.html#pyspark.sql.SparkSession.table">[docs]</a> <span class="k">def</span> <span class="nf">table</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tableName</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrame</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Returns the specified table as a :class:`DataFrame`.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrame`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> df.createOrReplaceTempView("table1")</span> |
| <span class="sd"> >>> df2 = spark.table("table1")</span> |
| <span class="sd"> >>> sorted(df.collect()) == sorted(df2.collect())</span> |
| <span class="sd"> True</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="n">tableName</span><span class="p">),</span> <span class="bp">self</span><span class="p">)</span></div> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">read</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataFrameReader</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns a :class:`DataFrameReader` that can be used to read data</span> |
| <span class="sd"> in as a :class:`DataFrame`.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataFrameReader`</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="n">DataFrameReader</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">readStream</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataStreamReader</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Returns a :class:`DataStreamReader` that can be used to read data streams</span> |
| <span class="sd"> as a streaming :class:`DataFrame`.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> This API is evolving.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`DataStreamReader`</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="n">DataStreamReader</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span> <span class="nf">streams</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"StreamingQueryManager"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Returns a :class:`StreamingQueryManager` that allows managing all the</span> |
| <span class="sd"> :class:`StreamingQuery` instances active on `this` context.</span> |
| |
| <span class="sd"> .. versionadded:: 2.0.0</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> This API is evolving.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :class:`StreamingQueryManager`</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.streaming</span> <span class="kn">import</span> <span class="n">StreamingQueryManager</span> |
| |
| <span class="k">return</span> <span class="n">StreamingQueryManager</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">streams</span><span class="p">())</span> |
| |
| <div class="viewcode-block" id="SparkSession.stop"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.SparkSession.stop.html#pyspark.sql.SparkSession.stop">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">stop</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Stop the underlying :class:`SparkContext`."""</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.context</span> <span class="kn">import</span> <span class="n">SQLContext</span> |
| |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="c1"># We should clean the default session up. See SPARK-23228.</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">clearDefaultSession</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SparkSession</span><span class="o">.</span><span class="n">clearActiveSession</span><span class="p">()</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">_activeSession</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="n">SQLContext</span><span class="o">.</span><span class="n">_instantiatedContext</span> <span class="o">=</span> <span class="kc">None</span></div> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="fm">__enter__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"SparkSession"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="mf">2.0</span><span class="p">)</span> |
| <span class="k">def</span> <span class="fm">__exit__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">exc_type</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Type</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">]],</span> |
| <span class="n">exc_val</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="ne">BaseException</span><span class="p">],</span> |
| <span class="n">exc_tb</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TracebackType</span><span class="p">],</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax.</span> |
| |
| <span class="sd"> Specifically stop the SparkSession on exit of the with block.</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">os</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">Row</span> |
| <span class="kn">import</span> <span class="nn">pyspark.sql.session</span> |
| |
| <span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"SPARK_HOME"</span><span class="p">])</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">,</span> <span class="s2">"PythonTest"</span><span class="p">)</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"sc"</span><span class="p">]</span> <span class="o">=</span> <span class="n">sc</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"spark"</span><span class="p">]</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"rdd"</span><span class="p">]</span> <span class="o">=</span> <span class="n">rdd</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span> |
| <span class="p">[</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">field1</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">field2</span><span class="o">=</span><span class="s2">"row1"</span><span class="p">),</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">field1</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">field2</span><span class="o">=</span><span class="s2">"row2"</span><span class="p">),</span> |
| <span class="n">Row</span><span class="p">(</span><span class="n">field1</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">field2</span><span class="o">=</span><span class="s2">"row3"</span><span class="p">),</span> |
| <span class="p">]</span> |
| <span class="p">)</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"df"</span><span class="p">]</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">toDF</span><span class="p">()</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">session</span><span class="p">,</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> |
| <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"sc"</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </div> |
| |
| |
| <div class='prev-next-bottom'> |
| |
| |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| |
| <script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script> |
| |
| |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| <p> |
| © Copyright .<br/> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/> |
| </p> |
| </div> |
| </footer> |
| </body> |
| </html> |