blob: 84d2f306a26775225f1612f9c301c793e0a14f92 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.sql.observation &#8212; PySpark 3.3.4 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/observation.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guide</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guide</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.sql.observation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span><span class="p">,</span> <span class="n">JVMView</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">column</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;Observation&quot;</span><span class="p">]</span>
<div class="viewcode-block" id="Observation"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.Observation.html#pyspark.sql.Observation">[docs]</a><span class="k">class</span> <span class="nc">Observation</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Class to observe (named) metrics on a :class:`DataFrame`.</span>
<span class="sd"> Metrics are aggregation expressions, which are applied to the DataFrame while it is being</span>
<span class="sd"> processed by an action.</span>
<span class="sd"> The metrics have the following guarantees:</span>
<span class="sd"> - It will compute the defined aggregates (metrics) on all the data that is flowing through</span>
<span class="sd"> the Dataset during the action.</span>
<span class="sd"> - It will report the value of the defined aggregate columns as soon as we reach the end of</span>
<span class="sd"> the action.</span>
<span class="sd"> The metrics columns must either contain a literal (e.g. lit(42)), or should contain one or</span>
<span class="sd"> more aggregate functions (e.g. sum(a) or sum(a + b) + avg(c) - lit(1)). Expressions that</span>
<span class="sd"> contain references to the input Dataset&#39;s columns must always be wrapped in an aggregate</span>
<span class="sd"> function.</span>
<span class="sd"> An Observation instance collects the metrics while the first action is executed. Subsequent</span>
<span class="sd"> actions do not modify the metrics returned by `Observation.get`. Retrieval of the metric via</span>
<span class="sd"> `Observation.get` blocks until the first action has finished and metrics become available.</span>
<span class="sd"> .. versionadded:: 3.3.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> This class does not support streaming datasets.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import col, count, lit, max</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Observation</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([[&quot;Alice&quot;, 2], [&quot;Bob&quot;, 5]], [&quot;name&quot;, &quot;age&quot;])</span>
<span class="sd"> &gt;&gt;&gt; observation = Observation(&quot;my metrics&quot;)</span>
<span class="sd"> &gt;&gt;&gt; observed_df = df.observe(observation, count(lit(1)).alias(&quot;count&quot;), max(col(&quot;age&quot;)))</span>
<span class="sd"> &gt;&gt;&gt; observed_df.count()</span>
<span class="sd"> 2</span>
<span class="sd"> &gt;&gt;&gt; observation.get</span>
<span class="sd"> {&#39;count&#39;: 2, &#39;max(age)&#39;: 5}</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Constructs a named or unnamed Observation instance.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str, optional</span>
<span class="sd"> default is a random UUID string. This is the name of the Observation and the metric.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;name should be a string&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;&quot;</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;name should not be empty&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JVMView</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">JavaObject</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span> <span class="nf">_on</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">df</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="o">*</span><span class="n">exprs</span><span class="p">:</span> <span class="n">Column</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Attaches this observation to the given :class:`DataFrame` to observe aggregations.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> df : :class:`DataFrame`</span>
<span class="sd"> the :class:`DataFrame` to be observed</span>
<span class="sd"> exprs : list of :class:`Column`</span>
<span class="sd"> column expressions (:class:`Column`).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :class:`DataFrame`</span>
<span class="sd"> the observed :class:`DataFrame`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">exprs</span><span class="p">,</span> <span class="s2">&quot;exprs should not be empty&quot;</span>
<span class="k">assert</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">Column</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">),</span> <span class="s2">&quot;all exprs should be Column&quot;</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jo</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;an Observation can be used with a DataFrame only once&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">cls</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">Observation</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jo</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_name</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">cls</span><span class="p">()</span>
<span class="n">observed_df</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jo</span><span class="o">.</span><span class="n">on</span><span class="p">(</span>
<span class="n">df</span><span class="o">.</span><span class="n">_jdf</span><span class="p">,</span> <span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jc</span><span class="p">,</span> <span class="n">column</span><span class="o">.</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="p">[</span><span class="n">c</span><span class="o">.</span><span class="n">_jc</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">[</span><span class="mi">1</span><span class="p">:]])</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">observed_df</span><span class="p">,</span> <span class="n">df</span><span class="o">.</span><span class="n">sparkSession</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">get</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Get the observed metrics.</span>
<span class="sd"> Waits until the observed dataset finishes its first action. Only the result of the</span>
<span class="sd"> first action is available. Subsequent actions do not modify the result.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> dict</span>
<span class="sd"> the observed metrics</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jo</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;call DataFrame.observe&quot;</span>
<span class="n">jmap</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jo</span><span class="o">.</span><span class="n">getAsJava</span><span class="p">()</span>
<span class="c1"># return a pure Python dict, not jmap which is a py4j JavaMap</span>
<span class="k">return</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">jmap</span><span class="o">.</span><span class="n">items</span><span class="p">()}</span></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">pyspark.context</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.sql.observation</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">observation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">,</span> <span class="s2">&quot;PythonTest&quot;</span><span class="p">)</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">observation</span><span class="p">,</span> <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">)</span>
<span class="n">sc</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>