blob: bc239122b71ea1565dc444711c5d497a08f82960 [file] [log] [blame]
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Basic Statistics - MLlib - Spark 1.2.2 Documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
</style>
<meta name="viewport" content="width=device-width">
<link rel="stylesheet" href="css/bootstrap-responsive.min.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script>
<link rel="stylesheet" href="css/pygments-default.css">
<!-- Google analytics script -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-32518208-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<!--[if lt IE 7]>
<p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
<![endif]-->
<!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html -->
<div class="navbar navbar-fixed-top" id="topbar">
<div class="navbar-inner">
<div class="container">
<div class="brand"><a href="index.html">
<img src="img/spark-logo-hd.png" style="height:50px;"/></a><span class="version">1.2.2</span>
</div>
<ul class="nav">
<!--TODO(andyk): Add class="active" attribute to li some how.-->
<li><a href="index.html">Overview</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Programming Guides<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quick-start.html">Quick Start</a></li>
<li><a href="programming-guide.html">Spark Programming Guide</a></li>
<li class="divider"></li>
<li><a href="streaming-programming-guide.html">Spark Streaming</a></li>
<li><a href="sql-programming-guide.html">Spark SQL</a></li>
<li><a href="mllib-guide.html">MLlib (Machine Learning)</a></li>
<li><a href="graphx-programming-guide.html">GraphX (Graph Processing)</a></li>
<li><a href="bagel-programming-guide.html">Bagel (Pregel on Spark)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/scala/index.html#org.apache.spark.package">Scala</a></li>
<li><a href="api/java/index.html">Java</a></li>
<li><a href="api/python/index.html">Python</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Deploying<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cluster-overview.html">Overview</a></li>
<li><a href="submitting-applications.html">Submitting Applications</a></li>
<li class="divider"></li>
<li><a href="spark-standalone.html">Spark Standalone</a></li>
<li><a href="running-on-mesos.html">Mesos</a></li>
<li><a href="running-on-yarn.html">YARN</a></li>
<li class="divider"></li>
<li><a href="ec2-scripts.html">Amazon EC2</a></li>
</ul>
</li>
<li class="dropdown">
<a href="api.html" class="dropdown-toggle" data-toggle="dropdown">More<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="configuration.html">Configuration</a></li>
<li><a href="monitoring.html">Monitoring</a></li>
<li><a href="tuning.html">Tuning Guide</a></li>
<li><a href="job-scheduling.html">Job Scheduling</a></li>
<li><a href="security.html">Security</a></li>
<li><a href="hardware-provisioning.html">Hardware Provisioning</a></li>
<li><a href="hadoop-third-party-distributions.html">3<sup>rd</sup>-Party Hadoop Distros</a></li>
<li class="divider"></li>
<li><a href="building-spark.html">Building Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark">Contributing to Spark</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/SPARK/Supplemental+Spark+Projects">Supplemental Projects</a></li>
</ul>
</li>
</ul>
<!--<p class="navbar-text pull-right"><span class="version-text">v1.2.2</span></p>-->
</div>
</div>
</div>
<div class="container" id="content">
<h1 class="title"><a href="mllib-guide.html">MLlib</a> - Basic Statistics</h1>
<ul id="markdown-toc">
<li><a href="#summary-statistics">Summary statistics</a></li>
<li><a href="#correlations">Correlations</a></li>
<li><a href="#stratified-sampling">Stratified sampling</a></li>
<li><a href="#hypothesis-testing">Hypothesis testing</a></li>
<li><a href="#random-data-generation">Random data generation</a></li>
</ul>
<p><code>\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]</code></p>
<h2 id="summary-statistics">Summary statistics</h2>
<p>We provide column summary statistics for <code>RDD[Vector]</code> through the function <code>colStats</code>
available in <code>Statistics</code>.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>colStats()</code></a> returns an instance of
<a href="api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.</span><span class="o">{</span><span class="nc">MultivariateStatisticalSummary</span><span class="o">,</span> <span class="nc">Statistics</span><span class="o">}</span>
<span class="k">val</span> <span class="n">observations</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Vector</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD of Vectors</span>
<span class="c1">// Compute column summary statistics.</span>
<span class="k">val</span> <span class="n">summary</span><span class="k">:</span> <span class="kt">MultivariateStatisticalSummary</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">colStats</span><span class="o">(</span><span class="n">observations</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">mean</span><span class="o">)</span> <span class="c1">// a dense vector containing the mean value for each column</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">variance</span><span class="o">)</span> <span class="c1">// column-wise variance</span>
<span class="n">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="n">numNonzeros</span><span class="o">)</span> <span class="c1">// number of nonzeros in each column</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>colStats()</code></a> returns an instance of
<a href="api/java/org/apache/spark/mllib/stat/MultivariateStatisticalSummary.html"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.Vector</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.MultivariateStatisticalSummary</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of Vectors</span>
<span class="c1">// Compute column summary statistics.</span>
<span class="n">MultivariateStatisticalSummary</span> <span class="n">summary</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">colStats</span><span class="o">(</span><span class="n">mat</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">mean</span><span class="o">());</span> <span class="c1">// a dense vector containing the mean value for each column</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">variance</span><span class="o">());</span> <span class="c1">// column-wise variance</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">summary</span><span class="o">.</span><span class="na">numNonzeros</span><span class="o">());</span> <span class="c1">// number of nonzeros in each column</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.stat.Statistics-class.html#colStats"><code>colStats()</code></a> returns an instance of
<a href="api/python/pyspark.mllib.stat.MultivariateStatisticalSummary-class.html"><code>MultivariateStatisticalSummary</code></a>,
which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the
total count.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of Vectors</span>
<span class="c"># Compute column summary statistics.</span>
<span class="n">summary</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">colStats</span><span class="p">(</span><span class="n">mat</span><span class="p">)</span>
<span class="k">print</span> <span class="n">summary</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">print</span> <span class="n">summary</span><span class="o">.</span><span class="n">variance</span><span class="p">()</span>
<span class="k">print</span> <span class="n">summary</span><span class="o">.</span><span class="n">numNonzeros</span><span class="p">()</span></code></pre></div>
</div>
</div>
<h2 id="correlations">Correlations</h2>
<p>Calculating the correlation between two series of data is a common operation in Statistics. In MLlib
we provide the flexibility to calculate pairwise correlations among many series. The supported
correlation methods are currently Pearson&#8217;s and Spearman&#8217;s correlation.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>RDD[Double]</code>s or
an <code>RDD[Vector]</code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">seriesX</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// a series</span>
<span class="k">val</span> <span class="n">seriesY</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// must have the same number of partitions and cardinality as seriesX</span>
<span class="c1">// compute the correlation using Pearson&#39;s method. Enter &quot;spearman&quot; for Spearman&#39;s method. If a </span>
<span class="c1">// method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="k">val</span> <span class="n">correlation</span><span class="k">:</span> <span class="kt">Double</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="o">(</span><span class="n">seriesX</span><span class="o">,</span> <span class="n">seriesY</span><span class="o">,</span> <span class="s">&quot;pearson&quot;</span><span class="o">)</span>
<span class="k">val</span> <span class="n">data</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">Vector</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// note that each Vector is a row and not a column</span>
<span class="c1">// calculate the correlation matrix using Pearson&#39;s method. Use &quot;spearman&quot; for Spearman&#39;s method.</span>
<span class="c1">// If a method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="k">val</span> <span class="n">correlMatrix</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="s">&quot;pearson&quot;</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>JavaDoubleRDD</code>s or
a <code>JavaRDD&lt;Vector&gt;</code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaDoubleRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaDoubleRDD</span> <span class="n">seriesX</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a series</span>
<span class="n">JavaDoubleRDD</span> <span class="n">seriesY</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// must have the same number of partitions and cardinality as seriesX</span>
<span class="c1">// compute the correlation using Pearson&#39;s method. Enter &quot;spearman&quot; for Spearman&#39;s method. If a </span>
<span class="c1">// method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="n">Double</span> <span class="n">correlation</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">seriesX</span><span class="o">.</span><span class="na">srdd</span><span class="o">(),</span> <span class="n">seriesY</span><span class="o">.</span><span class="na">srdd</span><span class="o">(),</span> <span class="s">&quot;pearson&quot;</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">Vector</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// note that each Vector is a row and not a column</span>
<span class="c1">// calculate the correlation matrix using Pearson&#39;s method. Use &quot;spearman&quot; for Spearman&#39;s method.</span>
<span class="c1">// If a method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="n">Matrix</span> <span class="n">correlMatrix</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">data</span><span class="o">.</span><span class="na">rdd</span><span class="o">(),</span> <span class="s">&quot;pearson&quot;</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.stat.Statistics-class.html"><code>Statistics</code></a> provides methods to
calculate correlations between series. Depending on the type of input, two <code>RDD[Double]</code>s or
an <code>RDD[Vector]</code>, the output will be a <code>Double</code> or the correlation <code>Matrix</code> respectively.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">seriesX</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># a series</span>
<span class="n">seriesY</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># must have the same number of partitions and cardinality as seriesX</span>
<span class="c"># Compute the correlation using Pearson&#39;s method. Enter &quot;spearman&quot; for Spearman&#39;s method. If a </span>
<span class="c"># method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="k">print</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="p">(</span><span class="n">seriesX</span><span class="p">,</span> <span class="n">seriesY</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s">&quot;pearson&quot;</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of Vectors</span>
<span class="c"># calculate the correlation matrix using Pearson&#39;s method. Use &quot;spearman&quot; for Spearman&#39;s method.</span>
<span class="c"># If a method is not specified, Pearson&#39;s method will be used by default. </span>
<span class="k">print</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">corr</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s">&quot;pearson&quot;</span><span class="p">)</span></code></pre></div>
</div>
</div>
<h2 id="stratified-sampling">Stratified sampling</h2>
<p>Unlike the other statistics functions, which reside in MLlib, stratified sampling methods,
<code>sampleByKey</code> and <code>sampleByKeyExact</code>, can be performed on RDD&#8217;s of key-value pairs. For stratified
sampling, the keys can be thought of as a label and the value as a specific attribute. For example
the key can be man or woman, or document ids, and the respective values can be the list of ages
of the people in the population or the list of words in the documents. The <code>sampleByKey</code> method
will flip a coin to decide whether an observation will be sampled or not, therefore requires one
pass over the data, and provides an <em>expected</em> sample size. <code>sampleByKeyExact</code> requires significant
more resources than the per-stratum simple random sampling used in <code>sampleByKey</code>, but will provide
the exact sampling size with 99.99% confidence. <code>sampleByKeyExact</code> is currently not supported in
python.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions"><code>sampleByKeyExact()</code></a> allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.SparkContext._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.rdd.PairRDDFunctions</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">data</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// an RDD[(K, V)] of any key value pairs</span>
<span class="k">val</span> <span class="n">fractions</span><span class="k">:</span> <span class="kt">Map</span><span class="o">[</span><span class="kt">K</span>, <span class="kt">Double</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// specify the exact fraction desired from each key</span>
<span class="c1">// Get an exact sample from each stratum</span>
<span class="k">val</span> <span class="n">approxSample</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKey</span><span class="o">(</span><span class="n">withReplacement</span> <span class="k">=</span> <span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">)</span>
<span class="k">val</span> <span class="n">exactSample</span> <span class="k">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKeyExact</span><span class="o">(</span><span class="n">withReplacement</span> <span class="k">=</span> <span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/api/java/JavaPairRDD.html"><code>sampleByKeyExact()</code></a> allows users to
sample exactly $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired
fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of
keys. Sampling without replacement requires one additional pass over the RDD to guarantee sample
size, whereas sampling with replacement requires two additional passes.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">java.util.Map</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaPairRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">JavaPairRDD</span><span class="o">&lt;</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">&gt;</span> <span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of any key value pairs</span>
<span class="n">Map</span><span class="o">&lt;</span><span class="n">K</span><span class="o">,</span> <span class="n">Object</span><span class="o">&gt;</span> <span class="n">fractions</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// specify the exact fraction desired from each key</span>
<span class="c1">// Get an exact sample from each stratum</span>
<span class="n">JavaPairRDD</span><span class="o">&lt;</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">&gt;</span> <span class="n">approxSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">sampleByKey</span><span class="o">(</span><span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">);</span>
<span class="n">JavaPairRDD</span><span class="o">&lt;</span><span class="n">K</span><span class="o">,</span> <span class="n">V</span><span class="o">&gt;</span> <span class="n">exactSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="na">sampleByKeyExact</span><span class="o">(</span><span class="kc">false</span><span class="o">,</span> <span class="n">fractions</span><span class="o">);</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.rdd.RDD-class.html#sampleByKey"><code>sampleByKey()</code></a> allows users to
sample approximately $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the
desired fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the
set of keys.</p>
<p><em>Note:</em> <code>sampleByKeyExact()</code> is currently not supported in Python.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="n">data</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># an RDD of any key value pairs</span>
<span class="n">fractions</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># specify the exact fraction desired from each key as a dictionary</span>
<span class="n">approxSample</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sampleByKey</span><span class="p">(</span><span class="bp">False</span><span class="p">,</span> <span class="n">fractions</span><span class="p">);</span></code></pre></div>
</div>
</div>
<h2 id="hypothesis-testing">Hypothesis testing</h2>
<p>Hypothesis testing is a powerful tool in statistics to determine whether a result is statistically
significant, whether this result occurred by chance or not. MLlib currently supports Pearson&#8217;s
chi-squared ( $\chi^2$) tests for goodness of fit and independence. The input data types determine
whether the goodness of fit or the independence test is conducted. The goodness of fit test requires
an input type of <code>Vector</code>, whereas the independence test requires a <code>Matrix</code> as input.</p>
<p>MLlib also supports the input type <code>RDD[LabeledPoint]</code> to enable feature selection via chi-squared
independence tests.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
run Pearson&#8217;s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.linalg._</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics._</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="k">val</span> <span class="n">vec</span><span class="k">:</span> <span class="kt">Vector</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a vector composed of the frequencies of events</span>
<span class="c1">// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, </span>
<span class="c1">// the test runs against a uniform distribution. </span>
<span class="k">val</span> <span class="n">goodnessOfFitTestResult</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">vec</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">goodnessOfFitTestResult</span><span class="o">)</span> <span class="c1">// summary of the test including the p-value, degrees of freedom, </span>
<span class="c1">// test statistic, the method used, and the null hypothesis.</span>
<span class="k">val</span> <span class="n">mat</span><span class="k">:</span> <span class="kt">Matrix</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a contingency matrix</span>
<span class="c1">// conduct Pearson&#39;s independence test on the input contingency matrix</span>
<span class="k">val</span> <span class="n">independenceTestResult</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">mat</span><span class="o">)</span>
<span class="n">println</span><span class="o">(</span><span class="n">independenceTestResult</span><span class="o">)</span> <span class="c1">// summary of the test including the p-value, degrees of freedom...</span>
<span class="k">val</span> <span class="n">obs</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> <span class="o">...</span> <span class="c1">// (feature, label) pairs.</span>
<span class="c1">// The contingency table is constructed from the raw (feature, label) pairs and used to conduct</span>
<span class="c1">// the independence test. Returns an array containing the ChiSquaredTestResult for every feature </span>
<span class="c1">// against the label.</span>
<span class="k">val</span> <span class="n">featureTestResults</span><span class="k">:</span> <span class="kt">Array</span><span class="o">[</span><span class="kt">ChiSqTestResult</span><span class="o">]</span> <span class="k">=</span> <span class="nc">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="o">(</span><span class="n">obs</span><span class="o">)</span>
<span class="k">var</span> <span class="n">i</span> <span class="k">=</span> <span class="mi">1</span>
<span class="n">featureTestResults</span><span class="o">.</span><span class="n">foreach</span> <span class="o">{</span> <span class="n">result</span> <span class="k">=&gt;</span>
<span class="n">println</span><span class="o">(</span><span class="n">s</span><span class="s">&quot;Column $i:\n$result&quot;</span><span class="o">)</span>
<span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="o">}</span> <span class="c1">// summary of the test</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/org/apache/spark/mllib/stat/Statistics.html"><code>Statistics</code></a> provides methods to
run Pearson&#8217;s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.java.JavaSparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.linalg.*</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.regression.LabeledPoint</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.Statistics</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.mllib.stat.test.ChiSqTestResult</span><span class="o">;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">Vector</span> <span class="n">vec</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a vector composed of the frequencies of events</span>
<span class="c1">// compute the goodness of fit. If a second vector to test against is not supplied as a parameter, </span>
<span class="c1">// the test runs against a uniform distribution. </span>
<span class="n">ChiSqTestResult</span> <span class="n">goodnessOfFitTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">vec</span><span class="o">);</span>
<span class="c1">// summary of the test including the p-value, degrees of freedom, test statistic, the method used, </span>
<span class="c1">// and the null hypothesis.</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">goodnessOfFitTestResult</span><span class="o">);</span>
<span class="n">Matrix</span> <span class="n">mat</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// a contingency matrix</span>
<span class="c1">// conduct Pearson&#39;s independence test on the input contingency matrix</span>
<span class="n">ChiSqTestResult</span> <span class="n">independenceTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">mat</span><span class="o">);</span>
<span class="c1">// summary of the test including the p-value, degrees of freedom...</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">independenceTestResult</span><span class="o">);</span>
<span class="n">JavaRDD</span><span class="o">&lt;</span><span class="n">LabeledPoint</span><span class="o">&gt;</span> <span class="n">obs</span> <span class="o">=</span> <span class="o">...</span> <span class="c1">// an RDD of labeled points</span>
<span class="c1">// The contingency table is constructed from the raw (feature, label) pairs and used to conduct</span>
<span class="c1">// the independence test. Returns an array containing the ChiSquaredTestResult for every feature </span>
<span class="c1">// against the label.</span>
<span class="n">ChiSqTestResult</span><span class="o">[]</span> <span class="n">featureTestResults</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="na">chiSqTest</span><span class="o">(</span><span class="n">obs</span><span class="o">.</span><span class="na">rdd</span><span class="o">());</span>
<span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">1</span><span class="o">;</span>
<span class="k">for</span> <span class="o">(</span><span class="n">ChiSqTestResult</span> <span class="n">result</span> <span class="o">:</span> <span class="n">featureTestResults</span><span class="o">)</span> <span class="o">{</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">&quot;Column &quot;</span> <span class="o">+</span> <span class="n">i</span> <span class="o">+</span> <span class="s">&quot;:&quot;</span><span class="o">);</span>
<span class="n">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="n">result</span><span class="o">);</span> <span class="c1">// summary of the test</span>
<span class="n">i</span><span class="o">++;</span>
<span class="o">}</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/index.html#pyspark.mllib.stat.Statistics$"><code>Statistics</code></a> provides methods to
run Pearson&#8217;s chi-squared tests. The following example demonstrates how to run and interpret
hypothesis tests.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span><span class="p">,</span> <span class="n">Matrices</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.regresssion</span> <span class="kn">import</span> <span class="n">LabeledPoint</span>
<span class="kn">from</span> <span class="nn">pyspark.mllib.stat</span> <span class="kn">import</span> <span class="n">Statistics</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="p">()</span>
<span class="n">vec</span> <span class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># a vector composed of the frequencies of events</span>
<span class="c"># compute the goodness of fit. If a second vector to test against is not supplied as a parameter,</span>
<span class="c"># the test runs against a uniform distribution.</span>
<span class="n">goodnessOfFitTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">vec</span><span class="p">)</span>
<span class="k">print</span> <span class="n">goodnessOfFitTestResult</span> <span class="c"># summary of the test including the p-value, degrees of freedom,</span>
<span class="c"># test statistic, the method used, and the null hypothesis.</span>
<span class="n">mat</span> <span class="o">=</span> <span class="n">Matrices</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># a contingency matrix</span>
<span class="c"># conduct Pearson&#39;s independence test on the input contingency matrix</span>
<span class="n">independenceTestResult</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">mat</span><span class="p">)</span>
<span class="k">print</span> <span class="n">independenceTestResult</span> <span class="c"># summary of the test including the p-value, degrees of freedom...</span>
<span class="n">obs</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="o">...</span><span class="p">)</span> <span class="c"># LabeledPoint(feature, label) .</span>
<span class="c"># The contingency table is constructed from an RDD of LabeledPoint and used to conduct</span>
<span class="c"># the independence test. Returns an array containing the ChiSquaredTestResult for every feature</span>
<span class="c"># against the label.</span>
<span class="n">featureTestResults</span> <span class="o">=</span> <span class="n">Statistics</span><span class="o">.</span><span class="n">chiSqTest</span><span class="p">(</span><span class="n">obs</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">result</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">featureTestResults</span><span class="p">):</span>
<span class="k">print</span> <span class="s">&quot;Column $d:&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">print</span> <span class="n">result</span></code></pre></div>
</div>
</div>
<h2 id="random-data-generation">Random data generation</h2>
<p>Random data generation is useful for randomized algorithms, prototyping, and performance testing.
MLlib supports generating random RDDs with i.i.d. values drawn from a given distribution:
uniform, standard normal, or Poisson.</p>
<div class="codetabs">
<div data-lang="scala">
<p><a href="api/scala/index.html#org.apache.spark.mllib.random.RandomRDDs"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<div class="highlight"><pre><code class="language-scala" data-lang="scala"><span class="k">import</span> <span class="nn">org.apache.spark.SparkContext</span>
<span class="k">import</span> <span class="nn">org.apache.spark.mllib.random.RandomRDDs._</span>
<span class="k">val</span> <span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span> <span class="o">=</span> <span class="o">...</span>
<span class="c1">// Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c1">// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="k">val</span> <span class="n">u</span> <span class="k">=</span> <span class="n">normalRDD</span><span class="o">(</span><span class="n">sc</span><span class="o">,</span> <span class="mi">1000000L</span><span class="o">,</span> <span class="mi">10</span><span class="o">)</span>
<span class="c1">// Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="k">val</span> <span class="n">v</span> <span class="k">=</span> <span class="n">u</span><span class="o">.</span><span class="n">map</span><span class="o">(</span><span class="n">x</span> <span class="k">=&gt;</span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="o">)</span></code></pre></div>
</div>
<div data-lang="java">
<p><a href="api/java/index.html#org.apache.spark.mllib.random.RandomRDDs"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<div class="highlight"><pre><code class="language-java" data-lang="java"><span class="kn">import</span> <span class="nn">org.apache.spark.SparkContext</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">org.apache.spark.api.JavaDoubleRDD</span><span class="o">;</span>
<span class="kn">import</span> <span class="nn">static</span> <span class="n">org</span><span class="o">.</span><span class="na">apache</span><span class="o">.</span><span class="na">spark</span><span class="o">.</span><span class="na">mllib</span><span class="o">.</span><span class="na">random</span><span class="o">.</span><span class="na">RandomRDDs</span><span class="o">.*;</span>
<span class="n">JavaSparkContext</span> <span class="n">jsc</span> <span class="o">=</span> <span class="o">...</span>
<span class="c1">// Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c1">// standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="n">JavaDoubleRDD</span> <span class="n">u</span> <span class="o">=</span> <span class="n">normalJavaRDD</span><span class="o">(</span><span class="n">jsc</span><span class="o">,</span> <span class="mi">1000000L</span><span class="o">,</span> <span class="mi">10</span><span class="o">);</span>
<span class="c1">// Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="n">JavaDoubleRDD</span> <span class="n">v</span> <span class="o">=</span> <span class="n">u</span><span class="o">.</span><span class="na">map</span><span class="o">(</span>
<span class="k">new</span> <span class="n">Function</span><span class="o">&lt;</span><span class="n">Double</span><span class="o">,</span> <span class="n">Double</span><span class="o">&gt;()</span> <span class="o">{</span>
<span class="kd">public</span> <span class="n">Double</span> <span class="nf">call</span><span class="o">(</span><span class="n">Double</span> <span class="n">x</span><span class="o">)</span> <span class="o">{</span>
<span class="k">return</span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="o">;</span>
<span class="o">}</span>
<span class="o">});</span></code></pre></div>
</div>
<div data-lang="python">
<p><a href="api/python/pyspark.mllib.random.RandomRDDs-class.html"><code>RandomRDDs</code></a> provides factory
methods to generate random double RDDs or vector RDDs.
The following example generates a random double RDD, whose values follows the standard normal
distribution <code>N(0, 1)</code>, and then map it to <code>N(1, 4)</code>.</p>
<div class="highlight"><pre><code class="language-python" data-lang="python"><span class="kn">from</span> <span class="nn">pyspark.mllib.random</span> <span class="kn">import</span> <span class="n">RandomRDDs</span>
<span class="n">sc</span> <span class="o">=</span> <span class="o">...</span> <span class="c"># SparkContext</span>
<span class="c"># Generate a random double RDD that contains 1 million i.i.d. values drawn from the</span>
<span class="c"># standard normal distribution `N(0, 1)`, evenly distributed in 10 partitions.</span>
<span class="n">u</span> <span class="o">=</span> <span class="n">RandomRDDs</span><span class="o">.</span><span class="n">uniformRDD</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="il">1000000L</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="c"># Apply a transform to get a random double RDD following `N(1, 4)`.</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">u</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="mf">1.0</span> <span class="o">+</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span></code></pre></div>
</div>
</div>
</div> <!-- /container -->
<script src="js/vendor/jquery-1.8.0.min.js"></script>
<script src="js/vendor/bootstrap.min.js"></script>
<script src="js/main.js"></script>
<!-- MathJax Section -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script>
// Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS.
// We could use "//cdn.mathjax...", but that won't support "file://".
(function(d, script) {
script = d.createElement('script');
script.type = 'text/javascript';
script.async = true;
script.onload = function(){
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
processEscapes: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
};
script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') +
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
d.getElementsByTagName('head')[0].appendChild(script);
}(document));
</script>
</body>
</html>