blob: 8a267ce8a45a449e1ba849d00b8fd59085cabb86 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.sql.udf &#8212; PySpark 3.4.2 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/udf.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../index.html">Overview</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guides</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guides</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.sql.udf</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">User-defined function related classes and functions</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">inspect</span> <span class="kn">import</span> <span class="n">getfullargspec</span>
<span class="kn">import</span> <span class="nn">functools</span>
<span class="kn">import</span> <span class="nn">inspect</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Any</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span> <span class="nn">pyspark.profiler</span> <span class="kn">import</span> <span class="n">Profiler</span>
<span class="kn">from</span> <span class="nn">pyspark.rdd</span> <span class="kn">import</span> <span class="n">_prepare_for_python_RDD</span><span class="p">,</span> <span class="n">PythonEvalType</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span><span class="p">,</span> <span class="n">_to_java_column</span><span class="p">,</span> <span class="n">_to_seq</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">ArrayType</span><span class="p">,</span>
<span class="n">BinaryType</span><span class="p">,</span>
<span class="n">DataType</span><span class="p">,</span>
<span class="n">MapType</span><span class="p">,</span>
<span class="n">StringType</span><span class="p">,</span>
<span class="n">StructType</span><span class="p">,</span>
<span class="n">_parse_datatype_string</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.utils</span> <span class="kn">import</span> <span class="n">get_active_spark_context</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.types</span> <span class="kn">import</span> <span class="n">to_arrow_type</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.utils</span> <span class="kn">import</span> <span class="n">require_minimum_pandas_version</span><span class="p">,</span> <span class="n">require_minimum_pyarrow_version</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">DataTypeOrString</span><span class="p">,</span> <span class="n">ColumnOrName</span><span class="p">,</span> <span class="n">UserDefinedFunctionLike</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.session</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;UDFRegistration&quot;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">_wrap_function</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">returnType</span><span class="p">:</span> <span class="s2">&quot;DataTypeOrString&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="n">command</span> <span class="o">=</span> <span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">returnType</span><span class="p">)</span>
<span class="n">pickled_command</span><span class="p">,</span> <span class="n">broadcast_vars</span><span class="p">,</span> <span class="n">env</span><span class="p">,</span> <span class="n">includes</span> <span class="o">=</span> <span class="n">_prepare_for_python_RDD</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">command</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">SimplePythonFunction</span><span class="p">(</span>
<span class="nb">bytearray</span><span class="p">(</span><span class="n">pickled_command</span><span class="p">),</span>
<span class="n">env</span><span class="p">,</span>
<span class="n">includes</span><span class="p">,</span>
<span class="n">sc</span><span class="o">.</span><span class="n">pythonExec</span><span class="p">,</span>
<span class="n">sc</span><span class="o">.</span><span class="n">pythonVer</span><span class="p">,</span>
<span class="n">broadcast_vars</span><span class="p">,</span>
<span class="n">sc</span><span class="o">.</span><span class="n">_javaAccumulator</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">_create_udf</span><span class="p">(</span>
<span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span>
<span class="n">returnType</span><span class="p">:</span> <span class="s2">&quot;DataTypeOrString&quot;</span><span class="p">,</span>
<span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">deterministic</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">:</span>
<span class="c1"># Set the name of the UserDefinedFunction object to be the name of function f</span>
<span class="n">udf_obj</span> <span class="o">=</span> <span class="n">UserDefinedFunction</span><span class="p">(</span>
<span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="o">=</span><span class="n">returnType</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">evalType</span><span class="o">=</span><span class="n">evalType</span><span class="p">,</span> <span class="n">deterministic</span><span class="o">=</span><span class="n">deterministic</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">udf_obj</span><span class="o">.</span><span class="n">_wrapped</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">_create_py_udf</span><span class="p">(</span>
<span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span>
<span class="n">returnType</span><span class="p">:</span> <span class="s2">&quot;DataTypeOrString&quot;</span><span class="p">,</span>
<span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">:</span>
<span class="c1"># The following table shows the results when the type coercion in Arrow is needed, that is,</span>
<span class="c1"># when the user-specified return type(SQL Type) of the UDF and the actual instance(Python</span>
<span class="c1"># Value(Type)) that the UDF returns are different.</span>
<span class="c1"># Arrow and Pickle have different type coercion rules, so a UDF might have a different result</span>
<span class="c1"># with/without Arrow optimization. That&#39;s the main reason the Arrow optimization for Python</span>
<span class="c1"># UDFs is disabled by default.</span>
<span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span>
<span class="c1"># |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)| a(str)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array(&#39;i&#39;, [1])(array)|[1](list)| (1,)(tuple)|bytearray(b&#39;ABC&#39;)(bytearray)| 1(Decimal)|{&#39;a&#39;: 1}(dict)| # noqa</span>
<span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span>
<span class="c1"># | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | tinyint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | smallint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | int| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | bigint| None| None| 1| None| None| None| None| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | string| None| &#39;true&#39;| &#39;1&#39;| &#39;a&#39;|&#39;java.util.Gregor...| &#39;java.util.Gregor...| &#39;1.0&#39;| &#39;[I@120d813a&#39;| &#39;[1]&#39;|&#39;[Ljava.lang.Obje...| &#39;[B@48571878&#39;| &#39;1&#39;| &#39;{a=1}&#39;| # noqa</span>
<span class="c1"># | date| None| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| # noqa</span>
<span class="c1"># | timestamp| None| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| # noqa</span>
<span class="c1"># | float| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | double| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| # noqa</span>
<span class="c1"># | binary| None| None| None|bytearray(b&#39;a&#39;)| None| None| None| None| None| None| bytearray(b&#39;ABC&#39;)| None| None| # noqa</span>
<span class="c1"># | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None|Decimal(&#39;1&#39;)| None| # noqa</span>
<span class="c1"># +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+ # noqa</span>
<span class="c1"># Note: Python 3.9.15, Pandas 1.5.2 and PyArrow 10.0.1 are used.</span>
<span class="c1"># Note: The values of &#39;SQL Type&#39; are DDL formatted strings, which can be used as `returnType`s.</span>
<span class="c1"># Note: The values inside the table are generated by `repr`. X&#39; means it throws an exception</span>
<span class="c1"># during the conversion.</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">session</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_instantiatedSession</span>
<span class="n">is_arrow_enabled</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">session</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="ow">and</span> <span class="n">session</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.sql.execution.pythonUDF.arrow.enabled&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;true&quot;</span>
<span class="p">)</span>
<span class="n">regular_udf</span> <span class="o">=</span> <span class="n">_create_udf</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="p">,</span> <span class="n">evalType</span><span class="p">)</span>
<span class="n">return_type</span> <span class="o">=</span> <span class="n">regular_udf</span><span class="o">.</span><span class="n">returnType</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">is_func_with_args</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">getfullargspec</span><span class="p">(</span><span class="n">f</span><span class="p">)</span><span class="o">.</span><span class="n">args</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="n">is_func_with_args</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">is_output_atomic_type</span> <span class="o">=</span> <span class="p">(</span>
<span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">StructType</span><span class="p">)</span>
<span class="ow">and</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">MapType</span><span class="p">)</span>
<span class="ow">and</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">ArrayType</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">is_arrow_enabled</span> <span class="ow">and</span> <span class="n">is_output_atomic_type</span> <span class="ow">and</span> <span class="n">is_func_with_args</span><span class="p">:</span>
<span class="n">require_minimum_pandas_version</span><span class="p">()</span>
<span class="n">require_minimum_pyarrow_version</span><span class="p">()</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.functions</span> <span class="kn">import</span> <span class="n">_create_pandas_udf</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="c1"># &quot;result_func&quot; ensures the result of a Python UDF to be consistent with/without Arrow</span>
<span class="c1"># optimization.</span>
<span class="c1"># Otherwise, an Arrow-optimized Python UDF raises &quot;pyarrow.lib.ArrowTypeError: Expected a</span>
<span class="c1"># string or bytes dtype, got ...&quot; whereas a non-Arrow-optimized Python UDF returns</span>
<span class="c1"># successfully.</span>
<span class="n">result_func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">pdf</span><span class="p">:</span> <span class="n">pdf</span> <span class="c1"># noqa: E731</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">return_type</span><span class="p">)</span> <span class="o">==</span> <span class="n">StringType</span><span class="p">:</span>
<span class="n">result_func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">r</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">r</span><span class="p">)</span> <span class="k">if</span> <span class="n">r</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">r</span> <span class="c1"># noqa: E731</span>
<span class="k">elif</span> <span class="nb">type</span><span class="p">(</span><span class="n">return_type</span><span class="p">)</span> <span class="o">==</span> <span class="n">BinaryType</span><span class="p">:</span>
<span class="n">result_func</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">r</span><span class="p">:</span> <span class="nb">bytes</span><span class="p">(</span><span class="n">r</span><span class="p">)</span> <span class="k">if</span> <span class="n">r</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">r</span> <span class="c1"># noqa: E731</span>
<span class="k">def</span> <span class="nf">vectorized_udf</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">arg</span><span class="p">:</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">arg</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">),</span> <span class="n">args</span><span class="p">)):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Struct input type are not supported with Arrow optimization &quot;</span>
<span class="s2">&quot;enabled in Python UDFs. Disable &quot;</span>
<span class="s2">&quot;&#39;spark.sql.execution.pythonUDF.arrow.enabled&#39; to workaround.&quot;</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">result_func</span><span class="p">(</span><span class="n">f</span><span class="p">(</span><span class="o">*</span><span class="n">a</span><span class="p">))</span> <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">))</span>
<span class="c1"># Regular UDFs can take callable instances too.</span>
<span class="n">vectorized_udf</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="s2">&quot;__name__&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="n">f</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">vectorized_udf</span><span class="o">.</span><span class="vm">__module__</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">f</span><span class="o">.</span><span class="vm">__module__</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="s2">&quot;__module__&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="n">f</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__module__</span>
<span class="p">)</span>
<span class="n">vectorized_udf</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__doc__</span>
<span class="n">pudf</span> <span class="o">=</span> <span class="n">_create_pandas_udf</span><span class="p">(</span><span class="n">vectorized_udf</span><span class="p">,</span> <span class="n">returnType</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Keep the attributes as if this is a regular Python UDF.</span>
<span class="n">pudf</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">f</span>
<span class="n">pudf</span><span class="o">.</span><span class="n">returnType</span> <span class="o">=</span> <span class="n">return_type</span>
<span class="n">pudf</span><span class="o">.</span><span class="n">evalType</span> <span class="o">=</span> <span class="n">regular_udf</span><span class="o">.</span><span class="n">evalType</span>
<span class="k">return</span> <span class="n">pudf</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">regular_udf</span>
<div class="viewcode-block" id="UserDefinedFunction"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.udf.UserDefinedFunction.html#pyspark.sql.UserDefinedFunction">[docs]</a><span class="k">class</span> <span class="nc">UserDefinedFunction</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> User defined function in Python</span>
<span class="sd"> .. versionadded:: 1.3</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> The constructor of this class is not supposed to be directly called.</span>
<span class="sd"> Use :meth:`pyspark.sql.functions.udf` or :meth:`pyspark.sql.functions.pandas_udf`</span>
<span class="sd"> to create this instance.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span>
<span class="n">returnType</span><span class="p">:</span> <span class="s2">&quot;DataTypeOrString&quot;</span> <span class="o">=</span> <span class="n">StringType</span><span class="p">(),</span>
<span class="n">name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">evalType</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span>
<span class="n">deterministic</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">callable</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid function: not a function or callable (__call__ is not defined): &quot;</span>
<span class="s2">&quot;</span><span class="si">{0}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">func</span><span class="p">))</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="p">(</span><span class="n">DataType</span><span class="p">,</span> <span class="nb">str</span><span class="p">)):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type: returnType should be DataType or str &quot;</span>
<span class="s2">&quot;but is </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">evalType</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid evaluation type: evalType should be an int but is </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">evalType</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">func</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span> <span class="o">=</span> <span class="n">returnType</span>
<span class="c1"># Stores UserDefinedPythonFunctions jobj, once initialized</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">DataType</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span> <span class="ow">or</span> <span class="p">(</span>
<span class="n">func</span><span class="o">.</span><span class="vm">__name__</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="s2">&quot;__name__&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="n">func</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">=</span> <span class="n">evalType</span>
<span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="n">deterministic</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">returnType</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataType</span><span class="p">:</span>
<span class="c1"># This makes sure this is called after SparkContext is initialized.</span>
<span class="c1"># ``_parse_datatype_string`` accesses to JVM for parsing a DDL formatted string.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span> <span class="o">=</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType</span><span class="p">)</span>
<span class="k">if</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_UDF</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span>
<span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">to_arrow_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type with scalar Pandas UDFs: </span><span class="si">%s</span><span class="s2"> is &quot;</span>
<span class="s2">&quot;not supported&quot;</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_MAP_PANDAS_UDF</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE</span>
<span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">to_arrow_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type with grouped map Pandas UDFs or &quot;</span>
<span class="s2">&quot;at groupby.applyInPandas(WithState): </span><span class="si">%s</span><span class="s2"> is not supported&quot;</span>
<span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type for grouped map Pandas &quot;</span>
<span class="s2">&quot;UDFs or at groupby.applyInPandas(WithState): return type must be a &quot;</span>
<span class="s2">&quot;StructType.&quot;</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_PANDAS_ITER_UDF</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_ARROW_ITER_UDF</span>
<span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">to_arrow_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type in mapInPandas: &quot;</span>
<span class="s2">&quot;</span><span class="si">%s</span><span class="s2"> is not supported&quot;</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type in mapInPandas/mapInArrow: &quot;</span>
<span class="s2">&quot;return type must be a StructType.&quot;</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_COGROUPED_MAP_PANDAS_UDF</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">to_arrow_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type in cogroup.applyInPandas: &quot;</span>
<span class="s2">&quot;</span><span class="si">%s</span><span class="s2"> is not supported&quot;</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type in cogroup.applyInPandas: &quot;</span>
<span class="s2">&quot;return type must be a StructType.&quot;</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="o">==</span> <span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_AGG_PANDAS_UDF</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># StructType is not yet allowed as a return type, explicitly check here to fail fast</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span>
<span class="n">to_arrow_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">TypeError</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type with grouped aggregate Pandas UDFs: &quot;</span>
<span class="s2">&quot;</span><span class="si">%s</span><span class="s2"> is not supported&quot;</span> <span class="o">%</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_returnType_placeholder</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">_judf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="c1"># It is possible that concurrent access, to newly created UDF,</span>
<span class="c1"># will initialize multiple UserDefinedPythonFunctions.</span>
<span class="c1"># This is unlikely, doesn&#39;t affect correctness,</span>
<span class="c1"># and should have a minimal performance impact.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span>
<span class="k">def</span> <span class="nf">_create_judf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">JavaObject</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">_getActiveSessionOrCreate</span><span class="p">()</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span>
<span class="n">wrapped_func</span> <span class="o">=</span> <span class="n">_wrap_function</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">returnType</span><span class="p">)</span>
<span class="n">jdt</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">parseDataType</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">returnType</span><span class="o">.</span><span class="n">json</span><span class="p">())</span>
<span class="k">assert</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">judf</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">execution</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">UserDefinedPythonFunction</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_name</span><span class="p">,</span> <span class="n">wrapped_func</span><span class="p">,</span> <span class="n">jdt</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">judf</span>
<span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="s2">&quot;ColumnOrName&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Column</span><span class="p">:</span>
<span class="n">sc</span> <span class="o">=</span> <span class="n">get_active_spark_context</span><span class="p">()</span>
<span class="n">profiler</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Profiler</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">memory_profiler</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Profiler</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="p">:</span>
<span class="n">profiler_enabled</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.python.profile&quot;</span><span class="p">,</span> <span class="s2">&quot;false&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;true&quot;</span>
<span class="n">memory_profiler_enabled</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">_conf</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;spark.python.profile.memory&quot;</span><span class="p">,</span> <span class="s2">&quot;false&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;true&quot;</span>
<span class="c1"># Disable profiling Pandas UDFs with iterators as input/output.</span>
<span class="k">if</span> <span class="n">profiler_enabled</span> <span class="ow">or</span> <span class="n">memory_profiler_enabled</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span><span class="p">,</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_PANDAS_ITER_UDF</span><span class="p">,</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_MAP_ARROW_ITER_UDF</span><span class="p">,</span>
<span class="p">]:</span>
<span class="n">profiler_enabled</span> <span class="o">=</span> <span class="n">memory_profiler_enabled</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s2">&quot;Profiling UDFs with iterators input/output is not supported.&quot;</span><span class="p">,</span>
<span class="ne">UserWarning</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># Disallow enabling two profilers at the same time.</span>
<span class="k">if</span> <span class="n">profiler_enabled</span> <span class="ow">and</span> <span class="n">memory_profiler_enabled</span><span class="p">:</span>
<span class="c1"># When both profilers are enabled, they interfere with each other,</span>
<span class="c1"># that makes the result profile misleading.</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s2">&quot;&#39;spark.python.profile&#39; and &#39;spark.python.profile.memory&#39; configuration&quot;</span>
<span class="s2">&quot; cannot be enabled together.&quot;</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="n">profiler_enabled</span><span class="p">:</span>
<span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span>
<span class="n">profiler</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">new_udf_profiler</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">profiler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">profiler</span><span class="o">.</span><span class="n">profile</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">func</span><span class="o">.</span><span class="n">__signature__</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="n">func</span><span class="p">)</span>
<span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">_to_java_column</span><span class="p">))</span>
<span class="nb">id</span> <span class="o">=</span> <span class="n">jPythonUDF</span><span class="o">.</span><span class="n">expr</span><span class="p">()</span><span class="o">.</span><span class="n">resultId</span><span class="p">()</span><span class="o">.</span><span class="n">id</span><span class="p">()</span>
<span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">add_profiler</span><span class="p">(</span><span class="nb">id</span><span class="p">,</span> <span class="n">profiler</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span> <span class="c1"># memory_profiler_enabled</span>
<span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span>
<span class="n">memory_profiler</span> <span class="o">=</span> <span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">new_memory_profiler</span><span class="p">(</span><span class="n">sc</span><span class="p">)</span>
<span class="p">(</span><span class="n">sub_lines</span><span class="p">,</span> <span class="n">start_line</span><span class="p">)</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">getsourcelines</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="vm">__code__</span><span class="p">)</span>
<span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">memory_profiler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">memory_profiler</span><span class="o">.</span><span class="n">profile</span><span class="p">(</span>
<span class="n">sub_lines</span><span class="p">,</span> <span class="n">start_line</span><span class="p">,</span> <span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">func</span><span class="o">.</span><span class="n">__signature__</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_create_judf</span><span class="p">(</span><span class="n">func</span><span class="p">)</span>
<span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">_to_java_column</span><span class="p">))</span>
<span class="nb">id</span> <span class="o">=</span> <span class="n">jPythonUDF</span><span class="o">.</span><span class="n">expr</span><span class="p">()</span><span class="o">.</span><span class="n">resultId</span><span class="p">()</span><span class="o">.</span><span class="n">id</span><span class="p">()</span>
<span class="n">sc</span><span class="o">.</span><span class="n">profiler_collector</span><span class="o">.</span><span class="n">add_profiler</span><span class="p">(</span><span class="nb">id</span><span class="p">,</span> <span class="n">memory_profiler</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">judf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_judf</span>
<span class="n">jPythonUDF</span> <span class="o">=</span> <span class="n">judf</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">_to_seq</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="n">cols</span><span class="p">,</span> <span class="n">_to_java_column</span><span class="p">))</span>
<span class="k">return</span> <span class="n">Column</span><span class="p">(</span><span class="n">jPythonUDF</span><span class="p">)</span>
<span class="c1"># This function is for improving the online help system in the interactive interpreter.</span>
<span class="c1"># For example, the built-in help / pydoc.help. It wraps the UDF with the docstring and</span>
<span class="c1"># argument annotation. (See: SPARK-19161)</span>
<span class="k">def</span> <span class="nf">_wrapped</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Wrap this udf with a function and attach docstring from func</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># It is possible for a callable instance without __name__ attribute or/and</span>
<span class="c1"># __module__ attribute to be wrapped here. For example, functools.partial. In this case,</span>
<span class="c1"># we should avoid wrapping the attributes from the wrapped function to the wrapper</span>
<span class="c1"># function. So, we take out these attribute names from the default names to set and</span>
<span class="c1"># then manually assign it after being wrapped.</span>
<span class="n">assignments</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">(</span>
<span class="n">a</span> <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">functools</span><span class="o">.</span><span class="n">WRAPPER_ASSIGNMENTS</span> <span class="k">if</span> <span class="n">a</span> <span class="o">!=</span> <span class="s2">&quot;__name__&quot;</span> <span class="ow">and</span> <span class="n">a</span> <span class="o">!=</span> <span class="s2">&quot;__module__&quot;</span>
<span class="p">)</span>
<span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="n">assigned</span><span class="o">=</span><span class="n">assignments</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">wrapper</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="s2">&quot;ColumnOrName&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Column</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">)</span>
<span class="n">wrapper</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_name</span>
<span class="n">wrapper</span><span class="o">.</span><span class="vm">__module__</span> <span class="o">=</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="vm">__module__</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="s2">&quot;__module__&quot;</span><span class="p">)</span>
<span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__module__</span>
<span class="p">)</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">returnType</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">returnType</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">evalType</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">evalType</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">asNondeterministic</span> <span class="o">=</span> <span class="n">functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">asNondeterministic</span>
<span class="p">)(</span><span class="k">lambda</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">asNondeterministic</span><span class="p">()</span><span class="o">.</span><span class="n">_wrapped</span><span class="p">())</span>
<span class="n">wrapper</span><span class="o">.</span><span class="n">_unwrapped</span> <span class="o">=</span> <span class="bp">self</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">return</span> <span class="n">wrapper</span> <span class="c1"># type: ignore[return-value]</span>
<div class="viewcode-block" id="UserDefinedFunction.asNondeterministic"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.udf.UserDefinedFunction.asNondeterministic.html#pyspark.sql.UserDefinedFunction.asNondeterministic">[docs]</a> <span class="k">def</span> <span class="nf">asNondeterministic</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UserDefinedFunction&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Updates UserDefinedFunction to nondeterministic.</span>
<span class="sd"> .. versionadded:: 2.3</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># Here, we explicitly clean the cache to create a JVM UDF instance</span>
<span class="c1"># with &#39;deterministic&#39; updated. See SPARK-23233.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_judf_placeholder</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">deterministic</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">return</span> <span class="bp">self</span></div></div>
<div class="viewcode-block" id="UDFRegistration"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.html#pyspark.sql.UDFRegistration">[docs]</a><span class="k">class</span> <span class="nc">UDFRegistration</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Wrapper for user-defined function registration. This instance can be accessed by</span>
<span class="sd"> :attr:`spark.udf` or :attr:`sqlContext.udf`.</span>
<span class="sd"> .. versionadded:: 1.3.1</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sparkSession</span><span class="p">:</span> <span class="s2">&quot;SparkSession&quot;</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span> <span class="o">=</span> <span class="n">sparkSession</span>
<div class="viewcode-block" id="UDFRegistration.register"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.register.html#pyspark.sql.UDFRegistration.register">[docs]</a> <span class="k">def</span> <span class="nf">register</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">f</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">],</span>
<span class="n">returnType</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;DataTypeOrString&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Register a Python function (including lambda function) or a user-defined function</span>
<span class="sd"> as a SQL function.</span>
<span class="sd"> .. versionadded:: 1.3.1</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str,</span>
<span class="sd"> name of the user-defined function in SQL statements.</span>
<span class="sd"> f : function, :meth:`pyspark.sql.functions.udf` or :meth:`pyspark.sql.functions.pandas_udf`</span>
<span class="sd"> a Python function, or a user-defined function. The user-defined function can</span>
<span class="sd"> be either row-at-a-time or vectorized. See :meth:`pyspark.sql.functions.udf` and</span>
<span class="sd"> :meth:`pyspark.sql.functions.pandas_udf`.</span>
<span class="sd"> returnType : :class:`pyspark.sql.types.DataType` or str, optional</span>
<span class="sd"> the return type of the registered user-defined function. The value can</span>
<span class="sd"> be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.</span>
<span class="sd"> `returnType` can be optionally specified when `f` is a Python function but not</span>
<span class="sd"> when `f` is a user-defined function. Please see the examples below.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> function</span>
<span class="sd"> a user-defined function</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> To register a nondeterministic Python function, users need to first build</span>
<span class="sd"> a nondeterministic user-defined function for the Python function and then register it</span>
<span class="sd"> as a SQL function.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> 1. When `f` is a Python function:</span>
<span class="sd"> `returnType` defaults to string type and can be optionally specified. The produced</span>
<span class="sd"> object must match the specified type. In this case, this API works as if</span>
<span class="sd"> `register(name, f, returnType=StringType())`.</span>
<span class="sd"> &gt;&gt;&gt; strlen = spark.udf.register(&quot;stringLengthString&quot;, lambda x: len(x))</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT stringLengthString(&#39;test&#39;)&quot;).collect()</span>
<span class="sd"> [Row(stringLengthString(test)=&#39;4&#39;)]</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT &#39;foo&#39; AS text&quot;).select(strlen(&quot;text&quot;)).collect()</span>
<span class="sd"> [Row(stringLengthString(text)=&#39;3&#39;)]</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import IntegerType</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.udf.register(&quot;stringLengthInt&quot;, lambda x: len(x), IntegerType())</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT stringLengthInt(&#39;test&#39;)&quot;).collect()</span>
<span class="sd"> [Row(stringLengthInt(test)=4)]</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import IntegerType</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.udf.register(&quot;stringLengthInt&quot;, lambda x: len(x), IntegerType())</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT stringLengthInt(&#39;test&#39;)&quot;).collect()</span>
<span class="sd"> [Row(stringLengthInt(test)=4)]</span>
<span class="sd"> 2. When `f` is a user-defined function (from Spark 2.3.0):</span>
<span class="sd"> Spark uses the return type of the given user-defined function as the return type of</span>
<span class="sd"> the registered user-defined function. `returnType` should not be specified.</span>
<span class="sd"> In this case, this API works as if `register(name, f)`.</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import IntegerType</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import udf</span>
<span class="sd"> &gt;&gt;&gt; slen = udf(lambda s: len(s), IntegerType())</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.udf.register(&quot;slen&quot;, slen)</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT slen(&#39;test&#39;)&quot;).collect()</span>
<span class="sd"> [Row(slen(test)=4)]</span>
<span class="sd"> &gt;&gt;&gt; import random</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import udf</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import IntegerType</span>
<span class="sd"> &gt;&gt;&gt; random_udf = udf(lambda: random.randint(0, 100), IntegerType()).asNondeterministic()</span>
<span class="sd"> &gt;&gt;&gt; new_random_udf = spark.udf.register(&quot;random_udf&quot;, random_udf)</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT random_udf()&quot;).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(random_udf()=82)]</span>
<span class="sd"> &gt;&gt;&gt; import pandas as pd # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import pandas_udf</span>
<span class="sd"> &gt;&gt;&gt; @pandas_udf(&quot;integer&quot;) # doctest: +SKIP</span>
<span class="sd"> ... def add_one(s: pd.Series) -&gt; pd.Series:</span>
<span class="sd"> ... return s + 1</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.udf.register(&quot;add_one&quot;, add_one) # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT add_one(id) FROM range(3)&quot;).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(add_one(id)=1), Row(add_one(id)=2), Row(add_one(id)=3)]</span>
<span class="sd"> &gt;&gt;&gt; @pandas_udf(&quot;integer&quot;) # doctest: +SKIP</span>
<span class="sd"> ... def sum_udf(v: pd.Series) -&gt; int:</span>
<span class="sd"> ... return v.sum()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; _ = spark.udf.register(&quot;sum_udf&quot;, sum_udf) # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; q = &quot;SELECT sum_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2&quot;</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(q).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(sum_udf(v1)=1), Row(sum_udf(v1)=5)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># This is to check whether the input function is from a user-defined function or</span>
<span class="c1"># Python function.</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="s2">&quot;asNondeterministic&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="s2">&quot;Invalid return type: data type can not be specified when f is&quot;</span>
<span class="s2">&quot;a user-defined function, but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="n">returnType</span>
<span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="s2">&quot;UserDefinedFunctionLike&quot;</span><span class="p">,</span> <span class="n">f</span><span class="p">)</span>
<span class="k">if</span> <span class="n">f</span><span class="o">.</span><span class="n">evalType</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_UDF</span><span class="p">,</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_SCALAR_PANDAS_ITER_UDF</span><span class="p">,</span>
<span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_GROUPED_AGG_PANDAS_UDF</span><span class="p">,</span>
<span class="p">]:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;Invalid f: f must be SQL_BATCHED_UDF, SQL_SCALAR_PANDAS_UDF, &quot;</span>
<span class="s2">&quot;SQL_SCALAR_PANDAS_ITER_UDF or SQL_GROUPED_AGG_PANDAS_UDF.&quot;</span>
<span class="p">)</span>
<span class="n">register_udf</span> <span class="o">=</span> <span class="n">_create_udf</span><span class="p">(</span>
<span class="n">f</span><span class="o">.</span><span class="n">func</span><span class="p">,</span>
<span class="n">returnType</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">returnType</span><span class="p">,</span>
<span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span>
<span class="n">evalType</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">evalType</span><span class="p">,</span>
<span class="n">deterministic</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">deterministic</span><span class="p">,</span>
<span class="p">)</span><span class="o">.</span><span class="n">_unwrapped</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">return_udf</span> <span class="o">=</span> <span class="n">f</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">returnType</span> <span class="o">=</span> <span class="n">StringType</span><span class="p">()</span>
<span class="n">return_udf</span> <span class="o">=</span> <span class="n">_create_udf</span><span class="p">(</span>
<span class="n">f</span><span class="p">,</span> <span class="n">returnType</span><span class="o">=</span><span class="n">returnType</span><span class="p">,</span> <span class="n">evalType</span><span class="o">=</span><span class="n">PythonEvalType</span><span class="o">.</span><span class="n">SQL_BATCHED_UDF</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">name</span>
<span class="p">)</span>
<span class="n">register_udf</span> <span class="o">=</span> <span class="n">return_udf</span><span class="o">.</span><span class="n">_unwrapped</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerPython</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">register_udf</span><span class="o">.</span><span class="n">_judf</span><span class="p">)</span>
<span class="k">return</span> <span class="n">return_udf</span></div>
<div class="viewcode-block" id="UDFRegistration.registerJavaFunction"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.registerJavaFunction.html#pyspark.sql.UDFRegistration.registerJavaFunction">[docs]</a> <span class="k">def</span> <span class="nf">registerJavaFunction</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">javaClassName</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">returnType</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;DataTypeOrString&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Register a Java user-defined function as a SQL function.</span>
<span class="sd"> In addition to a name and the function itself, the return type can be optionally specified.</span>
<span class="sd"> When the return type is not specified we would infer it via reflection.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> name : str</span>
<span class="sd"> name of the user-defined function</span>
<span class="sd"> javaClassName : str</span>
<span class="sd"> fully qualified name of java class</span>
<span class="sd"> returnType : :class:`pyspark.sql.types.DataType` or str, optional</span>
<span class="sd"> the return type of the registered Java function. The value can be either</span>
<span class="sd"> a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.types import IntegerType</span>
<span class="sd"> &gt;&gt;&gt; spark.udf.registerJavaFunction(</span>
<span class="sd"> ... &quot;javaStringLength&quot;, &quot;test.org.apache.spark.sql.JavaStringLength&quot;, IntegerType())</span>
<span class="sd"> ... # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT javaStringLength(&#39;test&#39;)&quot;).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(javaStringLength(test)=4)]</span>
<span class="sd"> &gt;&gt;&gt; spark.udf.registerJavaFunction(</span>
<span class="sd"> ... &quot;javaStringLength2&quot;, &quot;test.org.apache.spark.sql.JavaStringLength&quot;)</span>
<span class="sd"> ... # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT javaStringLength2(&#39;test&#39;)&quot;).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(javaStringLength2(test)=4)]</span>
<span class="sd"> &gt;&gt;&gt; spark.udf.registerJavaFunction(</span>
<span class="sd"> ... &quot;javaStringLength3&quot;, &quot;test.org.apache.spark.sql.JavaStringLength&quot;, &quot;integer&quot;)</span>
<span class="sd"> ... # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(&quot;SELECT javaStringLength3(&#39;test&#39;)&quot;).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(javaStringLength3(test)=4)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">jdt</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">returnType</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">returnType</span><span class="p">,</span> <span class="n">DataType</span><span class="p">):</span>
<span class="n">returnType</span> <span class="o">=</span> <span class="n">_parse_datatype_string</span><span class="p">(</span><span class="n">returnType</span><span class="p">)</span>
<span class="n">jdt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">parseDataType</span><span class="p">(</span><span class="n">returnType</span><span class="o">.</span><span class="n">json</span><span class="p">())</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerJava</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">,</span> <span class="n">jdt</span><span class="p">)</span></div>
<div class="viewcode-block" id="UDFRegistration.registerJavaUDAF"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.UDFRegistration.registerJavaUDAF.html#pyspark.sql.UDFRegistration.registerJavaUDAF">[docs]</a> <span class="k">def</span> <span class="nf">registerJavaUDAF</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Register a Java user-defined aggregate function as a SQL function.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> name : str</span>
<span class="sd"> name of the user-defined aggregate function</span>
<span class="sd"> javaClassName : str</span>
<span class="sd"> fully qualified name of java class</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; spark.udf.registerJavaUDAF(&quot;javaUDAF&quot;, &quot;test.org.apache.spark.sql.MyDoubleAvg&quot;)</span>
<span class="sd"> ... # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([(1, &quot;a&quot;),(2, &quot;b&quot;), (3, &quot;a&quot;)],[&quot;id&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.createOrReplaceTempView(&quot;df&quot;)</span>
<span class="sd"> &gt;&gt;&gt; q = &quot;SELECT name, javaUDAF(id) as avg from df group by name order by name desc&quot;</span>
<span class="sd"> &gt;&gt;&gt; spark.sql(q).collect() # doctest: +SKIP</span>
<span class="sd"> [Row(name=&#39;b&#39;, avg=102.0), Row(name=&#39;a&#39;, avg=102.0)]</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sparkSession</span><span class="o">.</span><span class="n">_jsparkSession</span><span class="o">.</span><span class="n">udf</span><span class="p">()</span><span class="o">.</span><span class="n">registerJavaUDAF</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">javaClassName</span><span class="p">)</span></div></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.sql.udf</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">udf</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;sql.udf tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span>
<span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">udf</span><span class="p">,</span> <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span>
<span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>