blob: 32ddc0f9d6fa154d1d0239854b14f6b1f09eb54c [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.sql.group &#8212; PySpark 3.4.2 documentation</title>
<link rel="stylesheet" href="../../../_static/css/index.73d71520a4ca3b99cfee5594769eaaae.css">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet"
href="../../../_static/vendor/open-sans_all/1.44.1/index.css">
<link rel="stylesheet"
href="../../../_static/vendor/lato_latin-ext/1.44.1/index.css">
<link rel="stylesheet" href="../../../_static/basic.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/js/index.3da636dd464baa7582d2.js">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/group.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main">
<div class="container-xl">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo" />
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-menu" aria-controls="navbar-menu" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-menu" class="col-lg-9 collapse navbar-collapse">
<ul id="navbar-main-elements" class="navbar-nav mr-auto">
<li class="nav-item ">
<a class="nav-link" href="../../../index.html">Overview</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../getting_started/index.html">Getting Started</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../user_guide/index.html">User Guides</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../reference/index.html">API Reference</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../development/index.html">Development</a>
</li>
<li class="nav-item ">
<a class="nav-link" href="../../../migration_guide/index.html">Migration Guides</a>
</li>
</ul>
<ul class="navbar-nav">
</ul>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form>
<nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
</ul>
</nav>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
<nav id="bd-toc-nav">
<ul class="nav section-nav flex-column">
</ul>
</nav>
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.sql.group</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">overload</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">Tuple</span>
<span class="kn">from</span> <span class="nn">py4j.java_gateway</span> <span class="kn">import</span> <span class="n">JavaObject</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span><span class="p">,</span> <span class="n">_to_seq</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.session</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.group_ops</span> <span class="kn">import</span> <span class="n">PandasGroupedOpsMixin</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">LiteralType</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;GroupedData&quot;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">dfapi</span><span class="p">(</span><span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Callable</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">_api</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;GroupedData&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="p">,</span> <span class="n">name</span><span class="p">)()</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span>
<span class="n">_api</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">_api</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__doc__</span>
<span class="k">return</span> <span class="n">_api</span>
<span class="k">def</span> <span class="nf">df_varargs_api</span><span class="p">(</span><span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Callable</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">_api</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;GroupedData&quot;</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="p">,</span> <span class="n">name</span><span class="p">)(</span><span class="n">_to_seq</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">cols</span><span class="p">))</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span>
<span class="n">_api</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">_api</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="vm">__doc__</span>
<span class="k">return</span> <span class="n">_api</span>
<div class="viewcode-block" id="GroupedData"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData">[docs]</a><span class="k">class</span> <span class="nc">GroupedData</span><span class="p">(</span><span class="n">PandasGroupedOpsMixin</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A set of methods for aggregations on a :class:`DataFrame`,</span>
<span class="sd"> created by :func:`DataFrame.groupBy`.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">jgd</span><span class="p">:</span> <span class="n">JavaObject</span><span class="p">,</span> <span class="n">df</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span> <span class="o">=</span> <span class="n">jgd</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_df</span> <span class="o">=</span> <span class="n">df</span>
<span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">:</span> <span class="n">SparkSession</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">sparkSession</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">exprs</span><span class="p">:</span> <span class="n">Column</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<span class="nd">@overload</span>
<span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">__exprs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="o">...</span>
<div class="viewcode-block" id="GroupedData.agg"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.agg.html#pyspark.sql.GroupedData.agg">[docs]</a> <span class="k">def</span> <span class="nf">agg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">exprs</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Column</span><span class="p">,</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">str</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Compute aggregates and returns the result as a :class:`DataFrame`.</span>
<span class="sd"> The available aggregate functions can be:</span>
<span class="sd"> 1. built-in aggregation functions, such as `avg`, `max`, `min`, `sum`, `count`</span>
<span class="sd"> 2. group aggregate pandas UDFs, created with :func:`pyspark.sql.functions.pandas_udf`</span>
<span class="sd"> .. note:: There is no partial aggregation with group aggregate UDFs, i.e.,</span>
<span class="sd"> a full shuffle is required. Also, all the data of a group will be loaded into</span>
<span class="sd"> memory, so the user should be aware of the potential OOM risk if data is skewed</span>
<span class="sd"> and certain groups are too large to fit in memory.</span>
<span class="sd"> .. seealso:: :func:`pyspark.sql.functions.pandas_udf`</span>
<span class="sd"> If ``exprs`` is a single :class:`dict` mapping from string to string, then the key</span>
<span class="sd"> is the column to perform aggregation on, and the value is the aggregate function.</span>
<span class="sd"> Alternatively, ``exprs`` can also be a list of aggregate :class:`Column` expressions.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> exprs : dict</span>
<span class="sd"> a dict mapping from column name (string) to aggregate functions (string),</span>
<span class="sd"> or a list of :class:`Column`.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Built-in aggregation functions and group aggregate pandas UDFs cannot be mixed</span>
<span class="sd"> in a single call to this function.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import functions as F</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql.functions import pandas_udf, PandasUDFType</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (3, &quot;Alice&quot;), (5, &quot;Bob&quot;), (10, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> |age| name|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> | 2|Alice|</span>
<span class="sd"> | 3|Alice|</span>
<span class="sd"> | 5| Bob|</span>
<span class="sd"> | 10| Bob|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> Group-by name, and count each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(df.name).agg({&quot;*&quot;: &quot;count&quot;}).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|count(1)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 2|</span>
<span class="sd"> | Bob| 2|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Group-by name, and calculate the minimum age.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(df.name).agg(F.min(df.age)).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|min(age)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 2|</span>
<span class="sd"> | Bob| 5|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Same as above but uses pandas UDF.</span>
<span class="sd"> &gt;&gt;&gt; @pandas_udf(&#39;int&#39;, PandasUDFType.GROUPED_AGG) # doctest: +SKIP</span>
<span class="sd"> ... def min_udf(v):</span>
<span class="sd"> ... return v.min()</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(df.name).agg(min_udf(df.age)).sort(&quot;name&quot;).show() # doctest: +SKIP</span>
<span class="sd"> +-----+------------+</span>
<span class="sd"> | name|min_udf(age)|</span>
<span class="sd"> +-----+------------+</span>
<span class="sd"> |Alice| 2|</span>
<span class="sd"> | Bob| 5|</span>
<span class="sd"> +-----+------------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">exprs</span><span class="p">,</span> <span class="s2">&quot;exprs should not be empty&quot;</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">exprs</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="nb">dict</span><span class="p">):</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># Columns</span>
<span class="k">assert</span> <span class="nb">all</span><span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">Column</span><span class="p">)</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">),</span> <span class="s2">&quot;all exprs should be Column&quot;</span>
<span class="n">exprs</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">Tuple</span><span class="p">[</span><span class="n">Column</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="n">exprs</span><span class="p">)</span>
<span class="n">jdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">agg</span><span class="p">(</span><span class="n">exprs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">_jc</span><span class="p">,</span> <span class="n">_to_seq</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="p">[</span><span class="n">c</span><span class="o">.</span><span class="n">_jc</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">exprs</span><span class="p">[</span><span class="mi">1</span><span class="p">:]]))</span>
<span class="k">return</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">jdf</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">)</span></div>
<div class="viewcode-block" id="GroupedData.count"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.count.html#pyspark.sql.GroupedData.count">[docs]</a> <span class="nd">@dfapi</span>
<span class="k">def</span> <span class="nf">count</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Counts the number of records for each group.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame(</span>
<span class="sd"> ... [(2, &quot;Alice&quot;), (3, &quot;Alice&quot;), (5, &quot;Bob&quot;), (10, &quot;Bob&quot;)], [&quot;age&quot;, &quot;name&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> |age| name|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> | 2|Alice|</span>
<span class="sd"> | 3|Alice|</span>
<span class="sd"> | 5| Bob|</span>
<span class="sd"> | 10| Bob|</span>
<span class="sd"> +---+-----+</span>
<span class="sd"> Group-by name, and count each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(df.name).count().sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+-----+</span>
<span class="sd"> | name|count|</span>
<span class="sd"> +-----+-----+</span>
<span class="sd"> |Alice| 2|</span>
<span class="sd"> | Bob| 2|</span>
<span class="sd"> +-----+-----+</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="GroupedData.mean"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.mean.html#pyspark.sql.GroupedData.mean">[docs]</a> <span class="nd">@df_varargs_api</span>
<span class="k">def</span> <span class="nf">mean</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Computes average values for each numeric columns for each group.</span>
<span class="sd"> :func:`mean` is an alias for :func:`avg`.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cols : str</span>
<span class="sd"> column names. Non-numeric columns are ignored.</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="GroupedData.avg"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.avg.html#pyspark.sql.GroupedData.avg">[docs]</a> <span class="nd">@df_varargs_api</span>
<span class="k">def</span> <span class="nf">avg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Computes average values for each numeric columns for each group.</span>
<span class="sd"> :func:`mean` is an alias for :func:`avg`.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cols : str</span>
<span class="sd"> column names. Non-numeric columns are ignored.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([</span>
<span class="sd"> ... (2, &quot;Alice&quot;, 80), (3, &quot;Alice&quot;, 100),</span>
<span class="sd"> ... (5, &quot;Bob&quot;, 120), (10, &quot;Bob&quot;, 140)], [&quot;age&quot;, &quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> |age| name|height|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> | 2|Alice| 80|</span>
<span class="sd"> | 3|Alice| 100|</span>
<span class="sd"> | 5| Bob| 120|</span>
<span class="sd"> | 10| Bob| 140|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> Group-by name, and calculate the mean of the age in each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(&quot;name&quot;).avg(&#39;age&#39;).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|avg(age)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 2.5|</span>
<span class="sd"> | Bob| 7.5|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Calculate the mean of the age and height in all data.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy().avg(&#39;age&#39;, &#39;height&#39;).show()</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> |avg(age)|avg(height)|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> | 5.0| 110.0|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="GroupedData.max"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.max.html#pyspark.sql.GroupedData.max">[docs]</a> <span class="nd">@df_varargs_api</span>
<span class="k">def</span> <span class="nf">max</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Computes the max value for each numeric columns for each group.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([</span>
<span class="sd"> ... (2, &quot;Alice&quot;, 80), (3, &quot;Alice&quot;, 100),</span>
<span class="sd"> ... (5, &quot;Bob&quot;, 120), (10, &quot;Bob&quot;, 140)], [&quot;age&quot;, &quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> |age| name|height|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> | 2|Alice| 80|</span>
<span class="sd"> | 3|Alice| 100|</span>
<span class="sd"> | 5| Bob| 120|</span>
<span class="sd"> | 10| Bob| 140|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> Group-by name, and calculate the max of the age in each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(&quot;name&quot;).max(&quot;age&quot;).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|max(age)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 3|</span>
<span class="sd"> | Bob| 10|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Calculate the max of the age and height in all data.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy().max(&quot;age&quot;, &quot;height&quot;).show()</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> |max(age)|max(height)|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> | 10| 140|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="GroupedData.min"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.min.html#pyspark.sql.GroupedData.min">[docs]</a> <span class="nd">@df_varargs_api</span>
<span class="k">def</span> <span class="nf">min</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Computes the min value for each numeric column for each group.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cols : str</span>
<span class="sd"> column names. Non-numeric columns are ignored.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([</span>
<span class="sd"> ... (2, &quot;Alice&quot;, 80), (3, &quot;Alice&quot;, 100),</span>
<span class="sd"> ... (5, &quot;Bob&quot;, 120), (10, &quot;Bob&quot;, 140)], [&quot;age&quot;, &quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> |age| name|height|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> | 2|Alice| 80|</span>
<span class="sd"> | 3|Alice| 100|</span>
<span class="sd"> | 5| Bob| 120|</span>
<span class="sd"> | 10| Bob| 140|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> Group-by name, and calculate the min of the age in each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(&quot;name&quot;).min(&quot;age&quot;).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|min(age)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 2|</span>
<span class="sd"> | Bob| 5|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Calculate the min of the age and height in all data.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy().min(&quot;age&quot;, &quot;height&quot;).show()</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> |min(age)|min(height)|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> | 2| 80|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="GroupedData.sum"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.sum.html#pyspark.sql.GroupedData.sum">[docs]</a> <span class="nd">@df_varargs_api</span>
<span class="k">def</span> <span class="nf">sum</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">cols</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Computes the sum for each numeric columns for each group.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> cols : str</span>
<span class="sd"> column names. Non-numeric columns are ignored.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; df = spark.createDataFrame([</span>
<span class="sd"> ... (2, &quot;Alice&quot;, 80), (3, &quot;Alice&quot;, 100),</span>
<span class="sd"> ... (5, &quot;Bob&quot;, 120), (10, &quot;Bob&quot;, 140)], [&quot;age&quot;, &quot;name&quot;, &quot;height&quot;])</span>
<span class="sd"> &gt;&gt;&gt; df.show()</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> |age| name|height|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> | 2|Alice| 80|</span>
<span class="sd"> | 3|Alice| 100|</span>
<span class="sd"> | 5| Bob| 120|</span>
<span class="sd"> | 10| Bob| 140|</span>
<span class="sd"> +---+-----+------+</span>
<span class="sd"> Group-by name, and calculate the sum of the age in each group.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy(&quot;name&quot;).sum(&quot;age&quot;).sort(&quot;name&quot;).show()</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> | name|sum(age)|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> |Alice| 5|</span>
<span class="sd"> | Bob| 15|</span>
<span class="sd"> +-----+--------+</span>
<span class="sd"> Calculate the sum of the age and height in all data.</span>
<span class="sd"> &gt;&gt;&gt; df.groupBy().sum(&quot;age&quot;, &quot;height&quot;).show()</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> |sum(age)|sum(height)|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> | 20| 440|</span>
<span class="sd"> +--------+-----------+</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<span class="c1"># TODO(SPARK-41746): SparkSession.createDataFrame does not support nested datatypes</span>
<div class="viewcode-block" id="GroupedData.pivot"><a class="viewcode-back" href="../../../reference/pyspark.sql/api/pyspark.sql.GroupedData.pivot.html#pyspark.sql.GroupedData.pivot">[docs]</a> <span class="k">def</span> <span class="nf">pivot</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">pivot_col</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">values</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="s2">&quot;LiteralType&quot;</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;GroupedData&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Pivots a column of the current :class:`DataFrame` and perform the specified aggregation.</span>
<span class="sd"> There are two versions of the pivot function: one that requires the caller</span>
<span class="sd"> to specify the list of distinct values to pivot on, and one that does not.</span>
<span class="sd"> The latter is more concise but less efficient,</span>
<span class="sd"> because Spark needs to first compute the list of distinct values internally.</span>
<span class="sd"> .. versionadded:: 1.6.0</span>
<span class="sd"> .. versionchanged:: 3.4.0</span>
<span class="sd"> Supports Spark Connect.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> pivot_col : str</span>
<span class="sd"> Name of the column to pivot.</span>
<span class="sd"> values : list, optional</span>
<span class="sd"> List of values that will be translated to columns in the output DataFrame.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.sql import Row</span>
<span class="sd"> &gt;&gt;&gt; df1 = spark.createDataFrame([</span>
<span class="sd"> ... Row(course=&quot;dotNET&quot;, year=2012, earnings=10000),</span>
<span class="sd"> ... Row(course=&quot;Java&quot;, year=2012, earnings=20000),</span>
<span class="sd"> ... Row(course=&quot;dotNET&quot;, year=2012, earnings=5000),</span>
<span class="sd"> ... Row(course=&quot;dotNET&quot;, year=2013, earnings=48000),</span>
<span class="sd"> ... Row(course=&quot;Java&quot;, year=2013, earnings=30000),</span>
<span class="sd"> ... ])</span>
<span class="sd"> &gt;&gt;&gt; df1.show()</span>
<span class="sd"> +------+----+--------+</span>
<span class="sd"> |course|year|earnings|</span>
<span class="sd"> +------+----+--------+</span>
<span class="sd"> |dotNET|2012| 10000|</span>
<span class="sd"> | Java|2012| 20000|</span>
<span class="sd"> |dotNET|2012| 5000|</span>
<span class="sd"> |dotNET|2013| 48000|</span>
<span class="sd"> | Java|2013| 30000|</span>
<span class="sd"> +------+----+--------+</span>
<span class="sd"> &gt;&gt;&gt; df2 = spark.createDataFrame([</span>
<span class="sd"> ... Row(training=&quot;expert&quot;, sales=Row(course=&quot;dotNET&quot;, year=2012, earnings=10000)),</span>
<span class="sd"> ... Row(training=&quot;junior&quot;, sales=Row(course=&quot;Java&quot;, year=2012, earnings=20000)),</span>
<span class="sd"> ... Row(training=&quot;expert&quot;, sales=Row(course=&quot;dotNET&quot;, year=2012, earnings=5000)),</span>
<span class="sd"> ... Row(training=&quot;junior&quot;, sales=Row(course=&quot;dotNET&quot;, year=2013, earnings=48000)),</span>
<span class="sd"> ... Row(training=&quot;expert&quot;, sales=Row(course=&quot;Java&quot;, year=2013, earnings=30000)),</span>
<span class="sd"> ... ]) # doctest: +SKIP</span>
<span class="sd"> &gt;&gt;&gt; df2.show() # doctest: +SKIP</span>
<span class="sd"> +--------+--------------------+</span>
<span class="sd"> |training| sales|</span>
<span class="sd"> +--------+--------------------+</span>
<span class="sd"> | expert|{dotNET, 2012, 10...|</span>
<span class="sd"> | junior| {Java, 2012, 20000}|</span>
<span class="sd"> | expert|{dotNET, 2012, 5000}|</span>
<span class="sd"> | junior|{dotNET, 2013, 48...|</span>
<span class="sd"> | expert| {Java, 2013, 30000}|</span>
<span class="sd"> +--------+--------------------+</span>
<span class="sd"> Compute the sum of earnings for each year by course with each course as a separate column</span>
<span class="sd"> &gt;&gt;&gt; df1.groupBy(&quot;year&quot;).pivot(&quot;course&quot;, [&quot;dotNET&quot;, &quot;Java&quot;]).sum(&quot;earnings&quot;).show()</span>
<span class="sd"> +----+------+-----+</span>
<span class="sd"> |year|dotNET| Java|</span>
<span class="sd"> +----+------+-----+</span>
<span class="sd"> |2012| 15000|20000|</span>
<span class="sd"> |2013| 48000|30000|</span>
<span class="sd"> +----+------+-----+</span>
<span class="sd"> Or without specifying column values (less efficient)</span>
<span class="sd"> &gt;&gt;&gt; df1.groupBy(&quot;year&quot;).pivot(&quot;course&quot;).sum(&quot;earnings&quot;).show()</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> |year| Java|dotNET|</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> |2012|20000| 15000|</span>
<span class="sd"> |2013|30000| 48000|</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> &gt;&gt;&gt; df2.groupBy(&quot;sales.year&quot;).pivot(&quot;sales.course&quot;).sum(&quot;sales.earnings&quot;).show()</span>
<span class="sd"> ... # doctest: +SKIP</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> |year| Java|dotNET|</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> |2012|20000| 15000|</span>
<span class="sd"> |2013|30000| 48000|</span>
<span class="sd"> +----+-----+------+</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">values</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">jgd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">pivot</span><span class="p">(</span><span class="n">pivot_col</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">jgd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jgd</span><span class="o">.</span><span class="n">pivot</span><span class="p">(</span><span class="n">pivot_col</span><span class="p">,</span> <span class="n">values</span><span class="p">)</span>
<span class="k">return</span> <span class="n">GroupedData</span><span class="p">(</span><span class="n">jgd</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_df</span><span class="p">)</span></div></div>
<span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">doctest</span>
<span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span> <span class="nn">pyspark.sql.group</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">group</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;sql.group tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span>
<span class="n">pyspark</span><span class="o">.</span><span class="n">sql</span><span class="o">.</span><span class="n">group</span><span class="p">,</span>
<span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span>
<span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">REPORT_NDIFF</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<div class='prev-next-bottom'>
</div>
</main>
</div>
</div>
<script src="../../../_static/js/index.3da636dd464baa7582d2.js"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright .<br/>
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br/>
</p>
</div>
</footer>
</body>
</html>