| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <title>pyspark.streaming.dstream — PySpark 3.5.5 documentation</title> |
| |
| <link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"> |
| |
| <script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/language_data.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/streaming/dstream.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Google Analytics --> |
| |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <div class="container-fluid" id="banner"></div> |
| |
| |
| <nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl"> |
| |
| <div id="navbar-start"> |
| |
| |
| |
| <a class="navbar-brand" href="../../../index.html"> |
| <img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo"> |
| </a> |
| |
| |
| |
| </div> |
| |
| <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| |
| <div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse"> |
| <div id="navbar-center" class="mr-auto"> |
| |
| <div class="navbar-center-item"> |
| <ul id="navbar-main-elements" class="navbar-nav"> |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| |
| </ul> |
| </div> |
| |
| </div> |
| |
| <div id="navbar-end"> |
| |
| <div class="navbar-end-item"> |
| <!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 3.5.5 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/streaming/dstream.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script> |
| </div> |
| |
| </div> |
| </div> |
| </div> |
| </nav> |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| |
| <!-- Only show if we have sidebars configured, else just a small margin --> |
| <div class="col-12 col-md-3 bd-sidebar"> |
| <div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| <div class="bd-toc-item active"> |
| |
| </div> |
| </nav> |
| </div> |
| <div class="sidebar-end-items"> |
| </div> |
| </div> |
| |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| </div> |
| |
| |
| |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <h1>Source code for pyspark.streaming.dstream</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span><span class="w"> </span><span class="nn">operator</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">time</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">itertools</span><span class="w"> </span><span class="kn">import</span> <span class="n">chain</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">datetime</span><span class="w"> </span><span class="kn">import</span> <span class="n">datetime</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span> |
| <span class="n">Any</span><span class="p">,</span> |
| <span class="n">Callable</span><span class="p">,</span> |
| <span class="n">Generic</span><span class="p">,</span> |
| <span class="n">Hashable</span><span class="p">,</span> |
| <span class="n">Iterable</span><span class="p">,</span> |
| <span class="n">List</span><span class="p">,</span> |
| <span class="n">Optional</span><span class="p">,</span> |
| <span class="n">Tuple</span><span class="p">,</span> |
| <span class="n">TypeVar</span><span class="p">,</span> |
| <span class="n">Union</span><span class="p">,</span> |
| <span class="n">TYPE_CHECKING</span><span class="p">,</span> |
| <span class="n">cast</span><span class="p">,</span> |
| <span class="n">overload</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="kn">from</span><span class="w"> </span><span class="nn">py4j.protocol</span><span class="w"> </span><span class="kn">import</span> <span class="n">Py4JJavaError</span> |
| |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.storagelevel</span><span class="w"> </span><span class="kn">import</span> <span class="n">StorageLevel</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.streaming.util</span><span class="w"> </span><span class="kn">import</span> <span class="n">rddToFileName</span><span class="p">,</span> <span class="n">TransformFunction</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.rdd</span><span class="w"> </span><span class="kn">import</span> <span class="n">portable_hash</span><span class="p">,</span> <span class="n">RDD</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.resultiterable</span><span class="w"> </span><span class="kn">import</span> <span class="n">ResultIterable</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">py4j.java_gateway</span><span class="w"> </span><span class="kn">import</span> <span class="n">JavaObject</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.serializers</span><span class="w"> </span><span class="kn">import</span> <span class="n">Serializer</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.streaming.context</span><span class="w"> </span><span class="kn">import</span> <span class="n">StreamingContext</span> |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"DStream"</span><span class="p">]</span> |
| |
| <span class="n">S</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"S"</span><span class="p">)</span> |
| <span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"T"</span><span class="p">)</span> |
| <span class="n">T_co</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"T_co"</span><span class="p">,</span> <span class="n">covariant</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> |
| <span class="n">U</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"U"</span><span class="p">)</span> |
| <span class="n">K</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"K"</span><span class="p">,</span> <span class="n">bound</span><span class="o">=</span><span class="n">Hashable</span><span class="p">)</span> |
| <span class="n">V</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"V"</span><span class="p">)</span> |
| |
| |
| <div class="viewcode-block" id="DStream"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.html#pyspark.streaming.DStream">[docs]</a><span class="k">class</span><span class="w"> </span><span class="nc">DStream</span><span class="p">(</span><span class="n">Generic</span><span class="p">[</span><span class="n">T_co</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> A Discretized Stream (DStream), the basic abstraction in Spark Streaming,</span> |
| <span class="sd"> is a continuous sequence of RDDs (of the same type) representing a</span> |
| <span class="sd"> continuous stream of data (see :class:`RDD` in the Spark core documentation</span> |
| <span class="sd"> for more details on RDDs).</span> |
| |
| <span class="sd"> DStreams can either be created from live data (such as, data from TCP</span> |
| <span class="sd"> sockets, etc.) using a :class:`StreamingContext` or it can be</span> |
| <span class="sd"> generated by transforming existing DStreams using operations such as</span> |
| <span class="sd"> `map`, `window` and `reduceByKeyAndWindow`. While a Spark Streaming</span> |
| <span class="sd"> program is running, each DStream periodically generates a RDD, either</span> |
| <span class="sd"> from live data or by transforming the RDD generated by a parent DStream.</span> |
| |
| <span class="sd"> DStreams internally is characterized by a few basic properties:</span> |
| <span class="sd"> - A list of other DStreams that the DStream depends on</span> |
| <span class="sd"> - A time interval at which the DStream generates an RDD</span> |
| <span class="sd"> - A function that is used to generate an RDD after each time interval</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">jdstream</span><span class="p">:</span> <span class="n">JavaObject</span><span class="p">,</span> |
| <span class="n">ssc</span><span class="p">:</span> <span class="s2">"StreamingContext"</span><span class="p">,</span> |
| <span class="n">jrdd_deserializer</span><span class="p">:</span> <span class="s2">"Serializer"</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span> <span class="o">=</span> <span class="n">jdstream</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span> <span class="o">=</span> <span class="n">ssc</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="n">ssc</span><span class="o">.</span><span class="n">_sc</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="o">=</span> <span class="n">jrdd_deserializer</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">False</span> |
| |
| <div class="viewcode-block" id="DStream.context"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.context.html#pyspark.streaming.DStream.context">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">context</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"StreamingContext"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return the StreamingContext associated with this DStream</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span></div> |
| |
| <div class="viewcode-block" id="DStream.count"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.count.html#pyspark.streaming.DStream.count">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">count</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[int]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD has a single element</span> |
| <span class="sd"> generated by counting each RDD of this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="k">lambda</span> <span class="n">i</span><span class="p">:</span> <span class="p">[</span><span class="nb">sum</span><span class="p">(</span><span class="mi">1</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">i</span><span class="p">)])</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.filter"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.filter.html#pyspark.streaming.DStream.filter">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">filter</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">],</span> <span class="nb">bool</span><span class="p">])</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream containing only the elements that satisfy predicate.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="nb">filter</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.flatMap"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.flatMap.html#pyspark.streaming.DStream.flatMap">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">flatMap</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> |
| <span class="n">preservesPartitioning</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[U]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying a function to all elements of</span> |
| <span class="sd"> this DStream, and then flattening the results</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">s</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="n">chain</span><span class="o">.</span><span class="n">from_iterable</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">))</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.map"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.map.html#pyspark.streaming.DStream.map">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">map</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">],</span> <span class="n">U</span><span class="p">],</span> <span class="n">preservesPartitioning</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[U]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying a function to each element of DStream.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="nb">map</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">iterator</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.mapPartitions"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapPartitions.html#pyspark.streaming.DStream.mapPartitions">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">mapPartitions</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> |
| <span class="n">preservesPartitioning</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[U]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD is generated by applying</span> |
| <span class="sd"> mapPartitions() to each RDDs of this DStream.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">s</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="n">iterator</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.mapPartitionsWithIndex"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapPartitionsWithIndex.html#pyspark.streaming.DStream.mapPartitionsWithIndex">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">mapPartitionsWithIndex</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> |
| <span class="n">preservesPartitioning</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[U]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD is generated by applying</span> |
| <span class="sd"> mapPartitionsWithIndex() to each RDDs of this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">mapPartitionsWithIndex</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="p">))</span></div> |
| |
| <div class="viewcode-block" id="DStream.reduce"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduce.html#pyspark.streaming.DStream.reduce">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">reduce</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">,</span> <span class="n">T</span><span class="p">],</span> <span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD has a single element</span> |
| <span class="sd"> generated by reducing each RDD of this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="n">x</span><span class="p">))</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span></div> |
| |
| <div class="viewcode-block" id="DStream.reduceByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByKey.html#pyspark.streaming.DStream.reduceByKey">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">reduceByKey</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">,</span> <span class="n">V</span><span class="p">],</span> <span class="n">V</span><span class="p">],</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying reduceByKey to each RDD.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">combineByKey</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.combineByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.combineByKey.html#pyspark.streaming.DStream.combineByKey">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">combineByKey</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">createCombiner</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">],</span> <span class="n">U</span><span class="p">],</span> |
| <span class="n">mergeValue</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">U</span><span class="p">,</span> <span class="n">V</span><span class="p">],</span> <span class="n">U</span><span class="p">],</span> |
| <span class="n">mergeCombiners</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">U</span><span class="p">,</span> <span class="n">U</span><span class="p">],</span> <span class="n">U</span><span class="p">],</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying combineByKey to each RDD.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">]])</span> <span class="o">-></span> <span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span> |
| <span class="k">return</span> <span class="n">rdd</span><span class="o">.</span><span class="n">combineByKey</span><span class="p">(</span><span class="n">createCombiner</span><span class="p">,</span> <span class="n">mergeValue</span><span class="p">,</span> <span class="n">mergeCombiners</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">func</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.partitionBy"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.partitionBy.html#pyspark.streaming.DStream.partitionBy">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">partitionBy</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">partitionFunc</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">K</span><span class="p">],</span> <span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">portable_hash</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a copy of the DStream in which each RDD are partitioned</span> |
| <span class="sd"> using the specified partitioner.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">partitionBy</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">,</span> <span class="n">partitionFunc</span><span class="p">))</span></div> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">foreachRDD</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="kc">None</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">foreachRDD</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="kc">None</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="DStream.foreachRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.foreachRDD.html#pyspark.streaming.DStream.foreachRDD">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">foreachRDD</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="kc">None</span><span class="p">],</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="kc">None</span><span class="p">]],</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Apply a function to each RDD in this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="n">old_func</span> <span class="o">=</span> <span class="n">func</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">_</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="s2">"RDD[T]"</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">old_func</span><span class="p">(</span><span class="n">rdd</span><span class="p">)</span> <span class="c1"># type: ignore[call-arg, arg-type]</span> |
| |
| <span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">api</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonDStream</span> |
| <span class="n">api</span><span class="o">.</span><span class="n">callForeachRDD</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="p">,</span> <span class="n">jfunc</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.pprint"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.pprint.html#pyspark.streaming.DStream.pprint">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">pprint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Print the first num elements of each RDD generated in this DStream.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> num : int, optional</span> |
| <span class="sd"> the number of elements from the first will be printed.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">takeAndPrint</span><span class="p">(</span><span class="n">time</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">taken</span> <span class="o">=</span> <span class="n">rdd</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="n">num</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="nb">print</span><span class="p">(</span><span class="s2">"-------------------------------------------"</span><span class="p">)</span> |
| <span class="nb">print</span><span class="p">(</span><span class="s2">"Time: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">time</span><span class="p">)</span> |
| <span class="nb">print</span><span class="p">(</span><span class="s2">"-------------------------------------------"</span><span class="p">)</span> |
| <span class="k">for</span> <span class="n">record</span> <span class="ow">in</span> <span class="n">taken</span><span class="p">[:</span><span class="n">num</span><span class="p">]:</span> |
| <span class="nb">print</span><span class="p">(</span><span class="n">record</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">taken</span><span class="p">)</span> <span class="o">></span> <span class="n">num</span><span class="p">:</span> |
| <span class="nb">print</span><span class="p">(</span><span class="s2">"..."</span><span class="p">)</span> |
| <span class="nb">print</span><span class="p">(</span><span class="s2">""</span><span class="p">)</span> |
| |
| <span class="bp">self</span><span class="o">.</span><span class="n">foreachRDD</span><span class="p">(</span><span class="n">takeAndPrint</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.mapValues"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.mapValues.html#pyspark.streaming.DStream.mapValues">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">mapValues</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">],</span> <span class="n">U</span><span class="p">])</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying a map function to the value of</span> |
| <span class="sd"> each key-value pairs in this DStream without changing the key.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">map_values_fn</span><span class="p">(</span><span class="n">kv</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">])</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">U</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">f</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">map_values_fn</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.flatMapValues"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.flatMapValues.html#pyspark.streaming.DStream.flatMapValues">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">flatMapValues</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> <span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">U</span><span class="p">]]</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying a flatmap function to the value</span> |
| <span class="sd"> of each key-value pairs in this DStream without changing the key.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">flat_map_fn</span><span class="p">(</span><span class="n">kv</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">U</span><span class="p">]]:</span> |
| <span class="k">return</span> <span class="p">((</span><span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">f</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">flatMap</span><span class="p">(</span><span class="n">flat_map_fn</span><span class="p">,</span> <span class="n">preservesPartitioning</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.glom"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.glom.html#pyspark.streaming.DStream.glom">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">glom</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[List[T]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which RDD is generated by applying glom()</span> |
| <span class="sd"> to RDD of this DStream.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">iterator</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Iterable</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="k">yield</span> <span class="nb">list</span><span class="p">(</span><span class="n">iterator</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapPartitions</span><span class="p">(</span><span class="n">func</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.cache"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.cache.html#pyspark.streaming.DStream.cache">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">cache</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Persist the RDDs of this DStream with the default storage level</span> |
| <span class="sd"> (`MEMORY_ONLY`).</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">True</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">persist</span><span class="p">(</span><span class="n">StorageLevel</span><span class="o">.</span><span class="n">MEMORY_ONLY</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span></div> |
| |
| <div class="viewcode-block" id="DStream.persist"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.persist.html#pyspark.streaming.DStream.persist">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">persist</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">storageLevel</span><span class="p">:</span> <span class="n">StorageLevel</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Persist the RDDs of this DStream with the given storage level</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">True</span> |
| <span class="n">javaStorageLevel</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_getJavaStorageLevel</span><span class="p">(</span><span class="n">storageLevel</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">persist</span><span class="p">(</span><span class="n">javaStorageLevel</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span></div> |
| |
| <div class="viewcode-block" id="DStream.checkpoint"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.checkpoint.html#pyspark.streaming.DStream.checkpoint">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">interval</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Enable periodic checkpointing of RDDs of this DStream</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> interval : int</span> |
| <span class="sd"> time in seconds, after each period of that, generated</span> |
| <span class="sd"> RDD will be checkpointed</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">True</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">interval</span><span class="p">))</span> |
| <span class="k">return</span> <span class="bp">self</span></div> |
| |
| <div class="viewcode-block" id="DStream.groupByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.groupByKey.html#pyspark.streaming.DStream.groupByKey">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">groupByKey</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Iterable[V]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying groupByKey on each RDD.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">groupByKey</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span></div> |
| |
| <div class="viewcode-block" id="DStream.countByValue"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByValue.html#pyspark.streaming.DStream.countByValue">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">countByValue</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[K]"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, int]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD contains the counts of each</span> |
| <span class="sd"> distinct value in each RDD of this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.saveAsTextFiles"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.saveAsTextFiles.html#pyspark.streaming.DStream.saveAsTextFiles">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">saveAsTextFiles</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prefix</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">suffix</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Save each RDD in this DStream as at text file, using string</span> |
| <span class="sd"> representation of elements.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">saveAsTextFile</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">datetime</span><span class="p">],</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">path</span> <span class="o">=</span> <span class="n">rddToFileName</span><span class="p">(</span><span class="n">prefix</span><span class="p">,</span> <span class="n">suffix</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">rdd</span><span class="o">.</span><span class="n">saveAsTextFile</span><span class="p">(</span><span class="n">path</span><span class="p">)</span> |
| <span class="k">except</span> <span class="n">Py4JJavaError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span> |
| <span class="c1"># after recovered from checkpointing, the foreachRDD may</span> |
| <span class="c1"># be called twice</span> |
| <span class="k">if</span> <span class="s2">"FileAlreadyExistsException"</span> <span class="ow">not</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">e</span><span class="p">):</span> |
| <span class="k">raise</span> |
| |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">foreachRDD</span><span class="p">(</span><span class="n">saveAsTextFile</span><span class="p">)</span></div> |
| |
| <span class="c1"># TODO: uncomment this until we have ssc.pickleFileStream()</span> |
| <span class="c1"># def saveAsPickleFiles(self, prefix, suffix=None):</span> |
| <span class="c1"># """</span> |
| <span class="c1"># Save each RDD in this DStream as at binary file, the elements are</span> |
| <span class="c1"># serialized by pickle.</span> |
| <span class="c1"># """</span> |
| <span class="c1"># def saveAsPickleFile(t, rdd):</span> |
| <span class="c1"># path = rddToFileName(prefix, suffix, t)</span> |
| <span class="c1"># try:</span> |
| <span class="c1"># rdd.saveAsPickleFile(path)</span> |
| <span class="c1"># except Py4JJavaError as e:</span> |
| <span class="c1"># # after recovered from checkpointing, the foreachRDD may</span> |
| <span class="c1"># # be called twice</span> |
| <span class="c1"># if 'FileAlreadyExistsException' not in str(e):</span> |
| <span class="c1"># raise</span> |
| <span class="c1"># return self.foreachRDD(saveAsPickleFile)</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]])</span> <span class="o">-></span> <span class="s2">"TransformedDStream[U]"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]]</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"TransformedDStream[U]"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="DStream.transform"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.transform.html#pyspark.streaming.DStream.transform">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]]],</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"TransformedDStream[U]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD is generated by applying a function</span> |
| <span class="sd"> on each RDD of this DStream.</span> |
| |
| <span class="sd"> `func` can have one argument of `rdd`, or have two arguments of</span> |
| <span class="sd"> (`time`, `rdd`)</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="n">oldfunc</span> <span class="o">=</span> <span class="n">func</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">_</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="n">oldfunc</span><span class="p">(</span><span class="n">rdd</span><span class="p">)</span> <span class="c1"># type: ignore[arg-type, call-arg]</span> |
| |
| <span class="k">assert</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="s2">"func should take one or two arguments"</span> |
| <span class="k">return</span> <span class="n">TransformedDStream</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">)</span></div> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">transformWith</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">V</span><span class="p">]],</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[U]"</span><span class="p">,</span> |
| <span class="n">keepSerializer</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[V]"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">transformWith</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">V</span><span class="p">]],</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[U]"</span><span class="p">,</span> |
| <span class="n">keepSerializer</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="o">...</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[V]"</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="DStream.transformWith"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.transformWith.html#pyspark.streaming.DStream.transformWith">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">transformWith</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span> |
| <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">V</span><span class="p">]],</span> |
| <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">V</span><span class="p">]],</span> |
| <span class="p">],</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[U]"</span><span class="p">,</span> |
| <span class="n">keepSerializer</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[V]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD is generated by applying a function</span> |
| <span class="sd"> on each RDD of this DStream and 'other' DStream.</span> |
| |
| <span class="sd"> `func` can have two arguments of (`rdd_a`, `rdd_b`) or have three</span> |
| <span class="sd"> arguments of (`time`, `rdd_a`, `rdd_b`)</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span> |
| <span class="n">oldfunc</span> <span class="o">=</span> <span class="n">func</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">_</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">a</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">b</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">])</span> <span class="o">-></span> <span class="n">RDD</span><span class="p">[</span><span class="n">V</span><span class="p">]:</span> |
| <span class="k">return</span> <span class="n">oldfunc</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="c1"># type: ignore[call-arg, arg-type]</span> |
| |
| <span class="k">assert</span> <span class="n">func</span><span class="o">.</span><span class="vm">__code__</span><span class="o">.</span><span class="n">co_argcount</span> <span class="o">==</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">"func should take two or three arguments"</span> |
| <span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">,</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">,</span> |
| <span class="n">other</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonTransformed2DStream</span><span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">other</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jfunc</span> |
| <span class="p">)</span> |
| <span class="n">jrdd_serializer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="k">if</span> <span class="n">keepSerializer</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span> |
| <span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="n">jrdd_serializer</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.repartition"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.repartition.html#pyspark.streaming.DStream.repartition">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">repartition</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream with an increased or decreased level of parallelism.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="k">lambda</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">rdd</span><span class="o">.</span><span class="n">repartition</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">))</span></div> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">_slideDuration</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return the slideDuration in seconds of this DStream</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">()</span><span class="o">.</span><span class="n">slideDuration</span><span class="p">()</span><span class="o">.</span><span class="n">milliseconds</span><span class="p">()</span> <span class="o">/</span> <span class="mf">1000.0</span> |
| |
| <div class="viewcode-block" id="DStream.union"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.union.html#pyspark.streaming.DStream.union">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">union</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[U]"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Union[T, U]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by unifying data of another DStream with this DStream.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> other : :class:`DStream`</span> |
| <span class="sd"> Another DStream having the same interval (i.e., slideDuration)</span> |
| <span class="sd"> as this DStream.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_slideDuration</span> <span class="o">!=</span> <span class="n">other</span><span class="o">.</span><span class="n">_slideDuration</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"the two DStream should have same slide duration"</span><span class="p">)</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">b</span><span class="p">),</span> <span class="n">other</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.cogroup"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.cogroup.html#pyspark.streaming.DStream.cogroup">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">cogroup</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Tuple[ResultIterable[V], ResultIterable[U]]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying 'cogroup' between RDDs of this</span> |
| <span class="sd"> DStream and `other` DStream.</span> |
| |
| <span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions` partitions.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span> |
| <span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">cogroup</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> |
| <span class="n">other</span><span class="p">,</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.join"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.join.html#pyspark.streaming.DStream.join">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">join</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Tuple[V, U]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying 'join' between RDDs of this DStream and</span> |
| <span class="sd"> `other` DStream.</span> |
| |
| <span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span> |
| <span class="sd"> partitions.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.leftOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.leftOuterJoin.html#pyspark.streaming.DStream.leftOuterJoin">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">leftOuterJoin</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Tuple[V, Optional[U]]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying 'left outer join' between RDDs of this DStream and</span> |
| <span class="sd"> `other` DStream.</span> |
| |
| <span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span> |
| <span class="sd"> partitions.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">leftOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.rightOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.rightOuterJoin.html#pyspark.streaming.DStream.rightOuterJoin">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">rightOuterJoin</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Tuple[Optional[V], U]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying 'right outer join' between RDDs of this DStream and</span> |
| <span class="sd"> `other` DStream.</span> |
| |
| <span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span> |
| <span class="sd"> partitions.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">rightOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.fullOuterJoin"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.fullOuterJoin.html#pyspark.streaming.DStream.fullOuterJoin">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">fullOuterJoin</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">other</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, U]]"</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Tuple[Optional[V], Optional[U]]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying 'full outer join' between RDDs of this DStream and</span> |
| <span class="sd"> `other` DStream.</span> |
| |
| <span class="sd"> Hash partitioning is used to generate the RDDs with `numPartitions`</span> |
| <span class="sd"> partitions.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformWith</span><span class="p">(</span><span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">fullOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">),</span> <span class="n">other</span><span class="p">)</span></div> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">_jtime</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timestamp</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">datetime</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">])</span> <span class="o">-></span> <span class="n">JavaObject</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Convert datetime or unix_timestamp into Time"""</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">timestamp</span><span class="p">,</span> <span class="n">datetime</span><span class="p">):</span> |
| <span class="n">timestamp</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">mktime</span><span class="p">(</span><span class="n">timestamp</span><span class="o">.</span><span class="n">timetuple</span><span class="p">())</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">Time</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">timestamp</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">))</span> |
| |
| <div class="viewcode-block" id="DStream.slice"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.slice.html#pyspark.streaming.DStream.slice">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">slice</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">begin</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">datetime</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> <span class="n">end</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">datetime</span><span class="p">,</span> <span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="n">List</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return all the RDDs between 'begin' to 'end' (both included)</span> |
| |
| <span class="sd"> `begin`, `end` could be datetime.datetime() or unix_timestamp</span> |
| <span class="sd"> """</span> |
| <span class="n">jrdds</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">slice</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jtime</span><span class="p">(</span><span class="n">begin</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jtime</span><span class="p">(</span><span class="n">end</span><span class="p">))</span> |
| <span class="k">return</span> <span class="p">[</span><span class="n">RDD</span><span class="p">(</span><span class="n">jrdd</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> <span class="k">for</span> <span class="n">jrdd</span> <span class="ow">in</span> <span class="n">jrdds</span><span class="p">]</span></div> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">_validate_window_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">window</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">slide</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">duration</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">()</span><span class="o">.</span><span class="n">slideDuration</span><span class="p">()</span><span class="o">.</span><span class="n">milliseconds</span><span class="p">()</span> |
| <span class="k">if</span> <span class="nb">int</span><span class="p">(</span><span class="n">window</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span> <span class="o">%</span> <span class="n">duration</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"windowDuration must be multiple of the parent "</span> |
| <span class="s2">"dstream's slide (batch) duration (</span><span class="si">%d</span><span class="s2"> ms)"</span> <span class="o">%</span> <span class="n">duration</span> |
| <span class="p">)</span> |
| <span class="k">if</span> <span class="n">slide</span> <span class="ow">and</span> <span class="nb">int</span><span class="p">(</span><span class="n">slide</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span> <span class="o">%</span> <span class="n">duration</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"slideDuration must be multiple of the parent "</span> |
| <span class="s2">"dstream's slide (batch) duration (</span><span class="si">%d</span><span class="s2"> ms)"</span> <span class="o">%</span> <span class="n">duration</span> |
| <span class="p">)</span> |
| |
| <div class="viewcode-block" id="DStream.window"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.window.html#pyspark.streaming.DStream.window">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">window</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD contains all the elements in seen in a</span> |
| <span class="sd"> sliding window of time over this DStream.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> windowDuration : int</span> |
| <span class="sd"> width of the window; must be a multiple of this DStream's</span> |
| <span class="sd"> batching interval</span> |
| <span class="sd"> slideDuration : int, optional</span> |
| <span class="sd"> sliding interval of the window (i.e., the interval after which</span> |
| <span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span> |
| <span class="sd"> DStream's batching interval</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_validate_window_param</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span> |
| <span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">slideDuration</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">d</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">slideDuration</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">s</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.reduceByWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByWindow.html#pyspark.streaming.DStream.reduceByWindow">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">reduceByWindow</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">reduceFunc</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">,</span> <span class="n">T</span><span class="p">],</span> <span class="n">T</span><span class="p">],</span> |
| <span class="n">invReduceFunc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">T</span><span class="p">,</span> <span class="n">T</span><span class="p">],</span> <span class="n">T</span><span class="p">]],</span> |
| <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">slideDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[T]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD has a single element generated by reducing all</span> |
| <span class="sd"> elements in a sliding window over this DStream.</span> |
| |
| <span class="sd"> if `invReduceFunc` is not None, the reduction is done incrementally</span> |
| <span class="sd"> using the old window's reduced value :</span> |
| |
| <span class="sd"> 1. reduce the new values that entered the window (e.g., adding new counts)</span> |
| |
| <span class="sd"> 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)</span> |
| <span class="sd"> This is more efficient than `invReduceFunc` is None.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> reduceFunc : function</span> |
| <span class="sd"> associative and commutative reduce function</span> |
| <span class="sd"> invReduceFunc : function</span> |
| <span class="sd"> inverse reduce function of `reduceFunc`; such that for all y,</span> |
| <span class="sd"> and invertible x:</span> |
| <span class="sd"> `invReduceFunc(reduceFunc(x, y), x) = y`</span> |
| <span class="sd"> windowDuration : int</span> |
| <span class="sd"> width of the window; must be a multiple of this DStream's</span> |
| <span class="sd"> batching interval</span> |
| <span class="sd"> slideDuration : int</span> |
| <span class="sd"> sliding interval of the window (i.e., the interval after which</span> |
| <span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span> |
| <span class="sd"> DStream's batching interval</span> |
| <span class="sd"> """</span> |
| <span class="n">keyed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="p">))</span> |
| <span class="n">reduced</span> <span class="o">=</span> <span class="n">keyed</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span> |
| <span class="n">reduceFunc</span><span class="p">,</span> <span class="n">invReduceFunc</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="mi">1</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">reduced</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span></div> |
| |
| <div class="viewcode-block" id="DStream.countByWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByWindow.html#pyspark.streaming.DStream.countByWindow">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">countByWindow</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">:</span> <span class="nb">int</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[int]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD has a single element generated</span> |
| <span class="sd"> by counting the number of elements in a window over this DStream.</span> |
| <span class="sd"> windowDuration and slideDuration are as defined in the window() operation.</span> |
| |
| <span class="sd"> This is equivalent to window(windowDuration, slideDuration).count(),</span> |
| <span class="sd"> but will be more efficient if window is large.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByWindow</span><span class="p">(</span> |
| <span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">,</span> <span class="n">operator</span><span class="o">.</span><span class="n">sub</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.countByValueAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.countByValueAndWindow.html#pyspark.streaming.DStream.countByValueAndWindow">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">countByValueAndWindow</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[T]"</span><span class="p">,</span> |
| <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">slideDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[T, int]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream in which each RDD contains the count of distinct elements in</span> |
| <span class="sd"> RDDs in a sliding window over this DStream.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> windowDuration : int</span> |
| <span class="sd"> width of the window; must be a multiple of this DStream's</span> |
| <span class="sd"> batching interval</span> |
| <span class="sd"> slideDuration : int</span> |
| <span class="sd"> sliding interval of the window (i.e., the interval after which</span> |
| <span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span> |
| <span class="sd"> DStream's batching interval</span> |
| <span class="sd"> numPartitions : int, optional</span> |
| <span class="sd"> number of partitions of each RDD in the new DStream.</span> |
| <span class="sd"> """</span> |
| <span class="n">keyed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span> |
| <span class="n">counted</span> <span class="o">=</span> <span class="n">keyed</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span> |
| <span class="n">operator</span><span class="o">.</span><span class="n">add</span><span class="p">,</span> <span class="n">operator</span><span class="o">.</span><span class="n">sub</span><span class="p">,</span> <span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">,</span> <span class="n">numPartitions</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">counted</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.groupByKeyAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.groupByKeyAndWindow.html#pyspark.streaming.DStream.groupByKeyAndWindow">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">groupByKeyAndWindow</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">slideDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, Iterable[V]]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying `groupByKey` over a sliding window.</span> |
| <span class="sd"> Similar to `DStream.groupByKey()`, but applies it over a sliding window.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> windowDuration : int</span> |
| <span class="sd"> width of the window; must be a multiple of this DStream's</span> |
| <span class="sd"> batching interval</span> |
| <span class="sd"> slideDuration : int</span> |
| <span class="sd"> sliding interval of the window (i.e., the interval after which</span> |
| <span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span> |
| <span class="sd"> DStream's batching interval</span> |
| <span class="sd"> numPartitions : int, optional</span> |
| <span class="sd"> Number of partitions of each RDD in the new DStream.</span> |
| <span class="sd"> """</span> |
| <span class="n">ls</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">[</span><span class="n">x</span><span class="p">])</span> |
| <span class="n">grouped</span> <span class="o">=</span> <span class="n">ls</span><span class="o">.</span><span class="n">reduceByKeyAndWindow</span><span class="p">(</span> |
| <span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="ow">or</span> <span class="n">a</span><span class="p">,</span> <span class="c1"># type: ignore[func-returns-value]</span> |
| <span class="k">lambda</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">a</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="p">:],</span> |
| <span class="n">windowDuration</span><span class="p">,</span> |
| <span class="n">slideDuration</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">grouped</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="n">ResultIterable</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.reduceByKeyAndWindow"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.reduceByKeyAndWindow.html#pyspark.streaming.DStream.reduceByKeyAndWindow">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">reduceByKeyAndWindow</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">,</span> <span class="n">V</span><span class="p">],</span> <span class="n">V</span><span class="p">],</span> |
| <span class="n">invFunc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">V</span><span class="p">,</span> <span class="n">V</span><span class="p">],</span> <span class="n">V</span><span class="p">]],</span> |
| <span class="n">windowDuration</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">slideDuration</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">filterFunc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">]],</span> <span class="nb">bool</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new DStream by applying incremental `reduceByKey` over a sliding window.</span> |
| |
| <span class="sd"> The reduced value of over a new window is calculated using the old window's reduce value :</span> |
| <span class="sd"> 1. reduce the new values that entered the window (e.g., adding new counts)</span> |
| <span class="sd"> 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)</span> |
| |
| <span class="sd"> `invFunc` can be None, then it will reduce all the RDDs in window, could be slower</span> |
| <span class="sd"> than having `invFunc`.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> func : function</span> |
| <span class="sd"> associative and commutative reduce function</span> |
| <span class="sd"> invFunc : function</span> |
| <span class="sd"> inverse function of `reduceFunc`</span> |
| <span class="sd"> windowDuration : int</span> |
| <span class="sd"> width of the window; must be a multiple of this DStream's</span> |
| <span class="sd"> batching interval</span> |
| <span class="sd"> slideDuration : int, optional</span> |
| <span class="sd"> sliding interval of the window (i.e., the interval after which</span> |
| <span class="sd"> the new DStream will generate RDDs); must be a multiple of this</span> |
| <span class="sd"> DStream's batching interval</span> |
| <span class="sd"> numPartitions : int, optional</span> |
| <span class="sd"> number of partitions of each RDD in the new DStream.</span> |
| <span class="sd"> filterFunc : function, optional</span> |
| <span class="sd"> function to filter expired key-value pairs;</span> |
| <span class="sd"> only pairs that satisfy the function are retained</span> |
| <span class="sd"> set this to null if you do not want to filter</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_validate_window_param</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| |
| <span class="n">reduced</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> |
| |
| <span class="k">if</span> <span class="n">invFunc</span><span class="p">:</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">reduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">a</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> |
| <span class="n">r</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">b</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> <span class="k">if</span> <span class="n">a</span> <span class="k">else</span> <span class="n">b</span> |
| <span class="k">if</span> <span class="n">filterFunc</span><span class="p">:</span> |
| <span class="n">r</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">filterFunc</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">r</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">invReduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">a</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> |
| <span class="n">joined</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">leftOuterJoin</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">joined</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span> |
| <span class="k">lambda</span> <span class="n">kv</span><span class="p">:</span> <span class="n">invFunc</span><span class="p">(</span><span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="c1"># type: ignore[misc]</span> |
| <span class="k">if</span> <span class="n">kv</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">else</span> <span class="n">kv</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> |
| <span class="p">)</span> |
| |
| <span class="n">jreduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">reduceFunc</span><span class="p">,</span> <span class="n">reduced</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="n">jinvReduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="n">invReduceFunc</span><span class="p">,</span> <span class="n">reduced</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">slideDuration</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">slideDuration</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_slideDuration</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonReducedWindowedDStream</span><span class="p">(</span> |
| <span class="n">reduced</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> |
| <span class="n">jreduceFunc</span><span class="p">,</span> |
| <span class="n">jinvReduceFunc</span><span class="p">,</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">),</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_jduration</span><span class="p">(</span><span class="n">slideDuration</span><span class="p">),</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="n">reduced</span><span class="o">.</span><span class="n">window</span><span class="p">(</span><span class="n">windowDuration</span><span class="p">,</span> <span class="n">slideDuration</span><span class="p">)</span><span class="o">.</span><span class="n">reduceByKey</span><span class="p">(</span> |
| <span class="n">func</span><span class="p">,</span> <span class="n">numPartitions</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DStream.updateStateByKey"><a class="viewcode-back" href="../../../reference/api/pyspark.streaming.DStream.updateStateByKey.html#pyspark.streaming.DStream.updateStateByKey">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">updateStateByKey</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="s2">"DStream[Tuple[K, V]]"</span><span class="p">,</span> |
| <span class="n">updateFunc</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Iterable</span><span class="p">[</span><span class="n">V</span><span class="p">],</span> <span class="n">Optional</span><span class="p">[</span><span class="n">S</span><span class="p">]],</span> <span class="n">S</span><span class="p">],</span> |
| <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">initialRDD</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">S</span><span class="p">]],</span> <span class="n">Iterable</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">S</span><span class="p">]]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"DStream[Tuple[K, S]]"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Return a new "state" DStream where the state for each key is updated by applying</span> |
| <span class="sd"> the given function on the previous state of the key and the new values of the key.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> updateFunc : function</span> |
| <span class="sd"> State update function. If this function returns None, then</span> |
| <span class="sd"> corresponding state key-value pair will be eliminated.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">numPartitions</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">numPartitions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">defaultParallelism</span> |
| |
| <span class="k">if</span> <span class="n">initialRDD</span> <span class="ow">and</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">initialRDD</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span> |
| <span class="n">initialRDD</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">initialRDD</span><span class="p">)</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">reduceFunc</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">a</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> |
| <span class="k">if</span> <span class="n">a</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">g</span> <span class="o">=</span> <span class="n">b</span><span class="o">.</span><span class="n">groupByKey</span><span class="p">(</span><span class="n">numPartitions</span><span class="p">)</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">vs</span><span class="p">:</span> <span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">vs</span><span class="p">),</span> <span class="kc">None</span><span class="p">))</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">g</span> <span class="o">=</span> <span class="n">a</span><span class="o">.</span><span class="n">cogroup</span><span class="p">(</span><span class="n">b</span><span class="o">.</span><span class="n">partitionBy</span><span class="p">(</span><span class="n">cast</span><span class="p">(</span><span class="nb">int</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">)),</span> <span class="n">numPartitions</span><span class="p">)</span> |
| <span class="n">g</span> <span class="o">=</span> <span class="n">g</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">ab</span><span class="p">:</span> <span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="nb">list</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">0</span><span class="p">])[</span><span class="mi">0</span><span class="p">]</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">ab</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="k">else</span> <span class="kc">None</span><span class="p">))</span> |
| <span class="n">state</span> <span class="o">=</span> <span class="n">g</span><span class="o">.</span><span class="n">mapValues</span><span class="p">(</span><span class="k">lambda</span> <span class="n">vs_s</span><span class="p">:</span> <span class="n">updateFunc</span><span class="p">(</span><span class="n">vs_s</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">vs_s</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span> |
| <span class="k">return</span> <span class="n">state</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">k_v</span><span class="p">:</span> <span class="n">k_v</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> |
| |
| <span class="n">jreduceFunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> |
| <span class="n">reduceFunc</span><span class="p">,</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">,</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">if</span> <span class="n">initialRDD</span><span class="p">:</span> |
| <span class="n">initialRDD</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">RDD</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">S</span><span class="p">]],</span> <span class="n">initialRDD</span><span class="p">)</span><span class="o">.</span><span class="n">_reserialize</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonStateDStream</span><span class="p">(</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> |
| <span class="n">jreduceFunc</span><span class="p">,</span> |
| <span class="n">initialRDD</span><span class="o">.</span><span class="n">_jrdd</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonStateDStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jreduceFunc</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">DStream</span><span class="p">(</span><span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span><span class="p">)</span></div></div> |
| |
| |
| <span class="k">class</span><span class="w"> </span><span class="nc">TransformedDStream</span><span class="p">(</span><span class="n">DStream</span><span class="p">[</span><span class="n">U</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> TransformedDStream is a DStream generated by an Python function</span> |
| <span class="sd"> transforming each RDD of a DStream to another RDDs.</span> |
| |
| <span class="sd"> Multiple continuous transformations of DStream can be combined into</span> |
| <span class="sd"> one transformation.</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">U</span><span class="p">],</span> <span class="n">prev</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]]):</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">U</span><span class="p">],</span> |
| <span class="n">prev</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> |
| <span class="p">):</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="n">prev</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">T</span><span class="p">],</span> |
| <span class="n">func</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]]],</span> |
| <span class="p">):</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">_ssc</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ssc</span><span class="o">.</span><span class="n">_sc</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jrdd_deserializer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">serializer</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_cached</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">is_checkpointed</span> <span class="o">=</span> <span class="kc">False</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="o">=</span> <span class="kc">None</span> |
| |
| <span class="c1"># Using type() to avoid folding the functions and compacting the DStreams which is not</span> |
| <span class="c1"># not strictly an object of TransformedDStream.</span> |
| <span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span> <span class="ow">is</span> <span class="n">TransformedDStream</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">prev</span><span class="o">.</span><span class="n">is_cached</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">prev</span><span class="o">.</span><span class="n">is_checkpointed</span><span class="p">:</span> |
| <span class="n">prev_func</span><span class="p">:</span> <span class="n">Callable</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">func</span> |
| <span class="n">func</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">func</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span> |
| <span class="n">Callable</span><span class="p">[[</span><span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]],</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">datetime</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">RDD</span><span class="p">[</span><span class="n">U</span><span class="p">]]</span> |
| <span class="p">]</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">:</span> <span class="n">func</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">prev_func</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">rdd</span><span class="p">))</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">prev</span><span class="p">:</span> <span class="n">DStream</span><span class="p">[</span><span class="n">T</span><span class="p">]</span> <span class="o">=</span> <span class="n">prev</span><span class="o">.</span><span class="n">prev</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">prev</span> <span class="o">=</span> <span class="n">prev</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">func</span> |
| |
| <span class="nd">@property</span> |
| <span class="k">def</span><span class="w"> </span><span class="nf">_jdstream</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">JavaObject</span><span class="p">:</span> |
| <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> |
| |
| <span class="n">jfunc</span> <span class="o">=</span> <span class="n">TransformFunction</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">prev</span><span class="o">.</span><span class="n">_jrdd_deserializer</span><span class="p">)</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="n">dstream</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonTransformedDStream</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">prev</span><span class="o">.</span><span class="n">_jdstream</span><span class="o">.</span><span class="n">dstream</span><span class="p">(),</span> <span class="n">jfunc</span><span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> <span class="o">=</span> <span class="n">dstream</span><span class="o">.</span><span class="n">asJavaDStream</span><span class="p">()</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_jdstream_val</span> |
| </pre></div> |
| |
| </div> |
| |
| |
| <!-- Previous / next buttons --> |
| <div class='prev-next-area'> |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script> |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| |
| <div class="footer-item"> |
| <p class="copyright"> |
| © Copyright .<br> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br> |
| </p> |
| </div> |
| |
| </div> |
| </footer> |
| </body> |
| </html> |