blob: 9cfe48697e627365062c58bae5b2849fc8c8137b [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.pandas.resample &#8212; PySpark 3.5.5 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/pandas/resample.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
3.5.5
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/pandas/resample.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.pandas.resample</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">A wrapper for ResampledData to behave like pandas Resampler.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">abc</span><span class="w"> </span><span class="kn">import</span> <span class="n">ABCMeta</span><span class="p">,</span> <span class="n">abstractmethod</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">distutils.version</span><span class="w"> </span><span class="kn">import</span> <span class="n">LooseVersion</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">functools</span><span class="w"> </span><span class="kn">import</span> <span class="n">partial</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">Any</span><span class="p">,</span>
<span class="n">Generic</span><span class="p">,</span>
<span class="n">List</span><span class="p">,</span>
<span class="n">Optional</span><span class="p">,</span>
<span class="n">Union</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pandas.tseries.frequencies</span><span class="w"> </span><span class="kn">import</span> <span class="n">to_offset</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.3.0&quot;</span><span class="p">):</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pandas.core.common</span><span class="w"> </span><span class="kn">import</span> <span class="n">_builtin_table</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="k">else</span><span class="p">:</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pandas.core.base</span><span class="w"> </span><span class="kn">import</span> <span class="n">SelectionMixin</span>
<span class="n">_builtin_table</span> <span class="o">=</span> <span class="n">SelectionMixin</span><span class="o">.</span><span class="n">_builtin_table</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql</span><span class="w"> </span><span class="kn">import</span> <span class="n">Column</span><span class="p">,</span> <span class="n">functions</span> <span class="k">as</span> <span class="n">F</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql.types</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">NumericType</span><span class="p">,</span>
<span class="n">StructField</span><span class="p">,</span>
<span class="n">TimestampNTZType</span><span class="p">,</span>
<span class="n">DataType</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark</span><span class="w"> </span><span class="kn">import</span> <span class="n">pandas</span> <span class="k">as</span> <span class="n">ps</span> <span class="c1"># For running doctests and reference resolution in PyCharm.</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas._typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">FrameLike</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.frame</span><span class="w"> </span><span class="kn">import</span> <span class="n">DataFrame</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.internal</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">InternalField</span><span class="p">,</span>
<span class="n">InternalFrame</span><span class="p">,</span>
<span class="n">SPARK_DEFAULT_INDEX_NAME</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.missing.resample</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">MissingPandasLikeDataFrameResampler</span><span class="p">,</span>
<span class="n">MissingPandasLikeSeriesResampler</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.series</span><span class="w"> </span><span class="kn">import</span> <span class="n">Series</span><span class="p">,</span> <span class="n">first_series</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">scol_for</span><span class="p">,</span>
<span class="n">verify_temp_column_name</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql.utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">is_remote</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.spark.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">timestampdiff</span>
<span class="k">class</span><span class="w"> </span><span class="nc">Resampler</span><span class="p">(</span><span class="n">Generic</span><span class="p">[</span><span class="n">FrameLike</span><span class="p">],</span> <span class="n">metaclass</span><span class="o">=</span><span class="n">ABCMeta</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Class for resampling datetimelike data, a groupby-like operation.</span>
<span class="sd"> It&#39;s easiest to use obj.resample(...) to use Resampler.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> psdf : DataFrame</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> a Resampler of the appropriate type</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> After resampling, see aggregate, apply, and transform functions.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span>
<span class="n">resamplekey</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Series</span><span class="p">],</span>
<span class="n">rule</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">closed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">agg_columns</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Series</span><span class="p">]</span> <span class="o">=</span> <span class="p">[],</span>
<span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span> <span class="o">=</span> <span class="n">psdf</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey</span> <span class="o">=</span> <span class="n">resamplekey</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_offset</span> <span class="o">=</span> <span class="n">to_offset</span><span class="p">(</span><span class="n">rule</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">rule_code</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;A-DEC&quot;</span><span class="p">,</span> <span class="s2">&quot;M&quot;</span><span class="p">,</span> <span class="s2">&quot;D&quot;</span><span class="p">,</span> <span class="s2">&quot;H&quot;</span><span class="p">,</span> <span class="s2">&quot;T&quot;</span><span class="p">,</span> <span class="s2">&quot;S&quot;</span><span class="p">]:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;rule code </span><span class="si">{}</span><span class="s2"> is not supported&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">rule_code</span><span class="p">))</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="p">,</span> <span class="s2">&quot;n&quot;</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;rule offset must be positive&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">closed</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_closed</span> <span class="o">=</span> <span class="s2">&quot;right&quot;</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">rule_code</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;A-DEC&quot;</span><span class="p">,</span> <span class="s2">&quot;M&quot;</span><span class="p">]</span> <span class="k">else</span> <span class="s2">&quot;left&quot;</span>
<span class="k">elif</span> <span class="n">closed</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;left&quot;</span><span class="p">,</span> <span class="s2">&quot;right&quot;</span><span class="p">]:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_closed</span> <span class="o">=</span> <span class="n">closed</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;invalid closed: &#39;</span><span class="si">{}</span><span class="s2">&#39;&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">closed</span><span class="p">))</span>
<span class="k">if</span> <span class="n">label</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_label</span> <span class="o">=</span> <span class="s2">&quot;right&quot;</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">rule_code</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;A-DEC&quot;</span><span class="p">,</span> <span class="s2">&quot;M&quot;</span><span class="p">]</span> <span class="k">else</span> <span class="s2">&quot;left&quot;</span>
<span class="k">elif</span> <span class="n">label</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;left&quot;</span><span class="p">,</span> <span class="s2">&quot;right&quot;</span><span class="p">]:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_label</span> <span class="o">=</span> <span class="n">label</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;invalid label: &#39;</span><span class="si">{}</span><span class="s2">&#39;&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">label</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_agg_columns</span> <span class="o">=</span> <span class="n">agg_columns</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_resamplekey_scol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Column</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">column</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">column</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_resamplekey_type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataType</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">data_type</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">data_type</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_agg_columns_scols</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="n">Column</span><span class="p">]:</span>
<span class="k">return</span> <span class="p">[</span><span class="n">s</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">column</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_agg_columns</span><span class="p">]</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_make_interval</span><span class="p">(</span> <span class="c1"># type: ignore[return]</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">unit</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">col</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Column</span><span class="p">,</span> <span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Column</span><span class="p">:</span>
<span class="k">if</span> <span class="n">is_remote</span><span class="p">():</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql.connect.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">lit</span><span class="p">,</span> <span class="n">make_interval</span>
<span class="n">col</span> <span class="o">=</span> <span class="n">col</span> <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">col</span><span class="p">,</span> <span class="p">(</span><span class="nb">int</span><span class="p">,</span> <span class="nb">float</span><span class="p">))</span> <span class="k">else</span> <span class="n">lit</span><span class="p">(</span><span class="n">col</span><span class="p">)</span> <span class="c1"># type: ignore[assignment]</span>
<span class="k">if</span> <span class="n">unit</span> <span class="o">==</span> <span class="s2">&quot;MONTH&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">make_interval</span><span class="p">(</span><span class="n">months</span><span class="o">=</span><span class="n">col</span><span class="p">)</span> <span class="c1"># type: ignore</span>
<span class="k">if</span> <span class="n">unit</span> <span class="o">==</span> <span class="s2">&quot;HOUR&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">make_interval</span><span class="p">(</span><span class="n">hours</span><span class="o">=</span><span class="n">col</span><span class="p">)</span> <span class="c1"># type: ignore</span>
<span class="k">if</span> <span class="n">unit</span> <span class="o">==</span> <span class="s2">&quot;MINUTE&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">make_interval</span><span class="p">(</span><span class="n">mins</span><span class="o">=</span><span class="n">col</span><span class="p">)</span> <span class="c1"># type: ignore</span>
<span class="k">if</span> <span class="n">unit</span> <span class="o">==</span> <span class="s2">&quot;SECOND&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">make_interval</span><span class="p">(</span><span class="n">secs</span><span class="o">=</span><span class="n">col</span><span class="p">)</span> <span class="c1"># type: ignore</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">sql_utils</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">PythonSQLUtils</span>
<span class="n">col</span> <span class="o">=</span> <span class="n">col</span><span class="o">.</span><span class="n">_jc</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">col</span><span class="p">,</span> <span class="n">Column</span><span class="p">)</span> <span class="k">else</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="n">col</span><span class="p">)</span><span class="o">.</span><span class="n">_jc</span>
<span class="k">return</span> <span class="n">sql_utils</span><span class="o">.</span><span class="n">makeInterval</span><span class="p">(</span><span class="n">unit</span><span class="p">,</span> <span class="n">col</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_bin_timestamp</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">origin</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Timestamp</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">:</span> <span class="n">Column</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Column</span><span class="p">:</span>
<span class="n">key_type</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey_type</span>
<span class="n">origin_scol</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="n">origin</span><span class="p">)</span>
<span class="p">(</span><span class="n">rule_code</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">rule_code</span><span class="p">,</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="p">,</span> <span class="s2">&quot;n&quot;</span><span class="p">))</span>
<span class="n">left_closed</span><span class="p">,</span> <span class="n">right_closed</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_closed</span> <span class="o">==</span> <span class="s2">&quot;left&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_closed</span> <span class="o">==</span> <span class="s2">&quot;right&quot;</span><span class="p">)</span>
<span class="n">left_labeled</span><span class="p">,</span> <span class="n">right_labeled</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_label</span> <span class="o">==</span> <span class="s2">&quot;left&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_label</span> <span class="o">==</span> <span class="s2">&quot;right&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rule_code</span> <span class="o">==</span> <span class="s2">&quot;A-DEC&quot;</span><span class="p">:</span>
<span class="k">assert</span> <span class="p">(</span>
<span class="n">origin</span><span class="o">.</span><span class="n">month</span> <span class="o">==</span> <span class="mi">12</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">day</span> <span class="o">==</span> <span class="mi">31</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">hour</span> <span class="o">==</span> <span class="mi">0</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">minute</span> <span class="o">==</span> <span class="mi">0</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">second</span> <span class="o">==</span> <span class="mi">0</span>
<span class="p">)</span>
<span class="n">diff</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">-</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">origin_scol</span><span class="p">)</span>
<span class="n">mod</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="k">else</span> <span class="p">(</span><span class="n">diff</span> <span class="o">%</span> <span class="n">n</span><span class="p">)</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">month</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">12</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">dayofmonth</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">31</span><span class="p">)</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span>
<span class="k">if</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">right_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">+=</span> <span class="n">n</span>
<span class="k">elif</span> <span class="n">right_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">-=</span> <span class="n">n</span>
<span class="k">if</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">-</span> <span class="n">n</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">-</span> <span class="n">mod</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">))</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">mod</span> <span class="o">-</span> <span class="n">n</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">to_timestamp</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">make_date</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">non_edge_label</span><span class="p">),</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="mi">12</span><span class="p">),</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="mi">31</span><span class="p">)</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="n">rule_code</span> <span class="o">==</span> <span class="s2">&quot;M&quot;</span><span class="p">:</span>
<span class="k">assert</span> <span class="p">(</span>
<span class="n">origin</span><span class="o">.</span><span class="n">is_month_end</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">hour</span> <span class="o">==</span> <span class="mi">0</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">minute</span> <span class="o">==</span> <span class="mi">0</span>
<span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">second</span> <span class="o">==</span> <span class="mi">0</span>
<span class="p">)</span>
<span class="n">diff</span> <span class="o">=</span> <span class="p">(</span>
<span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">-</span> <span class="n">F</span><span class="o">.</span><span class="n">year</span><span class="p">(</span><span class="n">origin_scol</span><span class="p">))</span> <span class="o">*</span> <span class="mi">12</span>
<span class="o">+</span> <span class="n">F</span><span class="o">.</span><span class="n">month</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span>
<span class="o">-</span> <span class="n">F</span><span class="o">.</span><span class="n">month</span><span class="p">(</span><span class="n">origin_scol</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">mod</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="k">else</span> <span class="p">(</span><span class="n">diff</span> <span class="o">%</span> <span class="n">n</span><span class="p">)</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">dayofmonth</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="n">F</span><span class="o">.</span><span class="n">dayofmonth</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">last_day</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)))</span>
<span class="n">truncated_ts_scol</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">)</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">truncated_ts_scol</span>
<span class="k">if</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">right_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">right_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">-=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">if</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span>
<span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">truncated_ts_scol</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span>
<span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">truncated_ts_scol</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">mod</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">truncated_ts_scol</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">truncated_ts_scol</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="s2">&quot;MONTH&quot;</span><span class="p">,</span> <span class="n">mod</span> <span class="o">-</span> <span class="n">n</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">to_timestamp</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">last_day</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">non_edge_label</span><span class="p">))</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="n">rule_code</span> <span class="o">==</span> <span class="s2">&quot;D&quot;</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">origin</span><span class="o">.</span><span class="n">hour</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">minute</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">second</span> <span class="o">==</span> <span class="mi">0</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="c1"># NOTE: the logic to process &#39;1D&#39; is different from the cases with n&gt;1,</span>
<span class="c1"># since hour/minute/second parts are taken into account to determine edges!</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="p">(</span>
<span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">hour</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">minute</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">second</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">right_labeled</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">date_add</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="k">elif</span> <span class="n">right_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">date_sub</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">,</span> <span class="mi">1</span><span class="p">)))</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">))</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">F</span><span class="o">.</span><span class="n">date_add</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">diff</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">datediff</span><span class="p">(</span><span class="n">end</span><span class="o">=</span><span class="n">ts_scol</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="n">origin_scol</span><span class="p">)</span>
<span class="n">mod</span> <span class="o">=</span> <span class="n">diff</span> <span class="o">%</span> <span class="n">n</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span>
<span class="n">truncated_ts_scol</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="s2">&quot;DAY&quot;</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">)</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">truncated_ts_scol</span>
<span class="k">if</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">right_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_add</span><span class="p">(</span><span class="n">truncated_ts_scol</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">right_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_sub</span><span class="p">(</span><span class="n">truncated_ts_scol</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">if</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_sub</span><span class="p">(</span><span class="n">truncated_ts_scol</span><span class="p">,</span> <span class="n">mod</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_sub</span><span class="p">(</span><span class="n">truncated_ts_scol</span><span class="p">,</span> <span class="n">mod</span> <span class="o">-</span> <span class="n">n</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">non_edge_label</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">rule_code</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;H&quot;</span><span class="p">,</span> <span class="s2">&quot;T&quot;</span><span class="p">,</span> <span class="s2">&quot;S&quot;</span><span class="p">]:</span>
<span class="n">unit_mapping</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;H&quot;</span><span class="p">:</span> <span class="s2">&quot;HOUR&quot;</span><span class="p">,</span> <span class="s2">&quot;T&quot;</span><span class="p">:</span> <span class="s2">&quot;MINUTE&quot;</span><span class="p">,</span> <span class="s2">&quot;S&quot;</span><span class="p">:</span> <span class="s2">&quot;SECOND&quot;</span><span class="p">}</span>
<span class="n">unit_str</span> <span class="o">=</span> <span class="n">unit_mapping</span><span class="p">[</span><span class="n">rule_code</span><span class="p">]</span>
<span class="n">truncated_ts_scol</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">date_trunc</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">ts_scol</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">key_type</span><span class="p">,</span> <span class="n">TimestampNTZType</span><span class="p">):</span>
<span class="n">truncated_ts_scol</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">to_timestamp_ntz</span><span class="p">(</span><span class="n">truncated_ts_scol</span><span class="p">)</span>
<span class="n">diff</span> <span class="o">=</span> <span class="n">timestampdiff</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">origin_scol</span><span class="p">,</span> <span class="n">truncated_ts_scol</span><span class="p">)</span>
<span class="n">mod</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="k">else</span> <span class="p">(</span><span class="n">diff</span> <span class="o">%</span> <span class="n">F</span><span class="o">.</span><span class="n">lit</span><span class="p">(</span><span class="n">n</span><span class="p">))</span>
<span class="k">if</span> <span class="n">rule_code</span> <span class="o">==</span> <span class="s2">&quot;H&quot;</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">origin</span><span class="o">.</span><span class="n">minute</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">origin</span><span class="o">.</span><span class="n">second</span> <span class="o">==</span> <span class="mi">0</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">minute</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">second</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">rule_code</span> <span class="o">==</span> <span class="s2">&quot;T&quot;</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">origin</span><span class="o">.</span><span class="n">second</span> <span class="o">==</span> <span class="mi">0</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">second</span><span class="p">(</span><span class="n">ts_scol</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">edge_cond</span> <span class="o">=</span> <span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span>
<span class="n">edge_label</span> <span class="o">=</span> <span class="n">truncated_ts_scol</span>
<span class="k">if</span> <span class="n">left_closed</span> <span class="ow">and</span> <span class="n">right_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">right_closed</span> <span class="ow">and</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">edge_label</span> <span class="o">-=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">if</span> <span class="n">left_labeled</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">truncated_ts_scol</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span>
<span class="n">truncated_ts_scol</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">mod</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">non_edge_label</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span>
<span class="n">mod</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">truncated_ts_scol</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span>
<span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">truncated_ts_scol</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_make_interval</span><span class="p">(</span><span class="n">unit_str</span><span class="p">,</span> <span class="n">mod</span> <span class="o">-</span> <span class="n">n</span><span class="p">))</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">when</span><span class="p">(</span><span class="n">edge_cond</span><span class="p">,</span> <span class="n">edge_label</span><span class="p">)</span><span class="o">.</span><span class="n">otherwise</span><span class="p">(</span><span class="n">non_edge_label</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Got the unexpected unit </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">rule_code</span><span class="p">))</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">key_type</span><span class="p">,</span> <span class="n">TimestampNTZType</span><span class="p">):</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">to_timestamp_ntz</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">ret</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_downsample</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Downsample the defined function.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> how : string / mapped function</span>
<span class="sd"> **kwargs : kw args passed to how function</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># a simple example to illustrate the computation:</span>
<span class="c1"># dates = [</span>
<span class="c1"># datetime(2012, 1, 2),</span>
<span class="c1"># datetime(2012, 5, 3),</span>
<span class="c1"># datetime(2022, 5, 3),</span>
<span class="c1"># ]</span>
<span class="c1"># index = pd.DatetimeIndex(dates)</span>
<span class="c1"># pdf = pd.DataFrame(np.array([1,2,3]), index=index, columns=[&#39;A&#39;])</span>
<span class="c1"># pdf.resample(&#39;3Y&#39;).max()</span>
<span class="c1"># A</span>
<span class="c1"># 2012-12-31 2.0</span>
<span class="c1"># 2015-12-31 NaN</span>
<span class="c1"># 2018-12-31 NaN</span>
<span class="c1"># 2021-12-31 NaN</span>
<span class="c1"># 2024-12-31 3.0</span>
<span class="c1">#</span>
<span class="c1"># in this case:</span>
<span class="c1"># 1, obtain one origin point to bin all timestamps, we can get one (2009-12-31)</span>
<span class="c1"># from the minimum timestamp (2012-01-02);</span>
<span class="c1"># 2, the default intervals for &#39;Y&#39; are right-closed, so intervals are:</span>
<span class="c1"># (2009-12-31, 2012-12-31], (2012-12-31, 2015-12-31], (2015-12-31, 2018-12-31], ...</span>
<span class="c1"># 3, bin all timestamps, for example, 2022-05-03 belongs to interval</span>
<span class="c1"># (2021-12-31, 2024-12-31], since the default label is &#39;right&#39;, label it with the right</span>
<span class="c1"># edge 2024-12-31;</span>
<span class="c1"># 4, some intervals maybe too large for this down sampling, so we need to pad the dataframe</span>
<span class="c1"># to avoid missing some results, like: 2015-12-31, 2018-12-31 and 2021-12-31;</span>
<span class="c1"># 5, union the binned dataframe and padded dataframe, and apply aggregation &#39;max&#39; to get</span>
<span class="c1"># the final results;</span>
<span class="c1"># one action to obtain the range, in the future we may cache it in the index.</span>
<span class="n">ts_min</span><span class="p">,</span> <span class="n">ts_max</span> <span class="o">=</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">spark_frame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey_scol</span><span class="p">),</span> <span class="n">F</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey_scol</span><span class="p">)</span>
<span class="p">)</span>
<span class="o">.</span><span class="n">toPandas</span><span class="p">()</span>
<span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="p">)</span>
<span class="c1"># the logic to obtain an origin point to bin the timestamps is too complex to follow,</span>
<span class="c1"># here just use Pandas&#39; resample on a 1-length series to get it.</span>
<span class="n">ts_origin</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="mi">0</span><span class="p">],</span> <span class="n">index</span><span class="o">=</span><span class="p">[</span><span class="n">ts_min</span><span class="p">])</span>
<span class="o">.</span><span class="n">resample</span><span class="p">(</span><span class="n">rule</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">freqstr</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_closed</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;left&quot;</span><span class="p">)</span>
<span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="o">.</span><span class="n">index</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="p">)</span>
<span class="k">assert</span> <span class="n">ts_origin</span> <span class="o">&lt;=</span> <span class="n">ts_min</span>
<span class="n">bin_col_name</span> <span class="o">=</span> <span class="s2">&quot;__tmp_resample_bin_col__&quot;</span>
<span class="n">bin_col_label</span> <span class="o">=</span> <span class="n">verify_temp_column_name</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="p">,</span> <span class="n">bin_col_name</span><span class="p">)</span>
<span class="n">bin_col_field</span> <span class="o">=</span> <span class="n">InternalField</span><span class="p">(</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="s2">&quot;datetime64[ns]&quot;</span><span class="p">),</span>
<span class="n">struct_field</span><span class="o">=</span><span class="n">StructField</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey_type</span><span class="p">,</span> <span class="kc">True</span><span class="p">),</span>
<span class="p">)</span>
<span class="n">bin_scol</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bin_timestamp</span><span class="p">(</span><span class="n">ts_origin</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_resamplekey_scol</span><span class="p">)</span>
<span class="n">agg_columns</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">psser</span> <span class="k">for</span> <span class="n">psser</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_agg_columns</span> <span class="k">if</span> <span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">psser</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">data_type</span><span class="p">,</span> <span class="n">NumericType</span><span class="p">))</span>
<span class="p">]</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">agg_columns</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span>
<span class="c1"># in the binning side, label the timestamps according to the origin and the freq(rule)</span>
<span class="n">bin_sdf</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">spark_frame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span>
<span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">SPARK_DEFAULT_INDEX_NAME</span><span class="p">),</span>
<span class="n">bin_scol</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">),</span>
<span class="o">*</span><span class="p">[</span><span class="n">psser</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">column</span> <span class="k">for</span> <span class="n">psser</span> <span class="ow">in</span> <span class="n">agg_columns</span><span class="p">],</span>
<span class="p">)</span>
<span class="c1"># in the padding side, insert necessary points</span>
<span class="c1"># again, directly apply Pandas&#39; resample on a 2-length series to obtain the indices</span>
<span class="n">pad_sdf</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">ps</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span>
<span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">index</span><span class="o">=</span><span class="p">[</span><span class="n">ts_min</span><span class="p">,</span> <span class="n">ts_max</span><span class="p">])</span>
<span class="o">.</span><span class="n">resample</span><span class="p">(</span><span class="n">rule</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_offset</span><span class="o">.</span><span class="n">freqstr</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_closed</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_label</span><span class="p">)</span>
<span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="o">.</span><span class="n">index</span>
<span class="p">)</span>
<span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">spark_frame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">SPARK_DEFAULT_INDEX_NAME</span><span class="p">)</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">))</span>
<span class="o">.</span><span class="n">where</span><span class="p">((</span><span class="n">ts_min</span> <span class="o">&lt;=</span> <span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">))</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">)</span> <span class="o">&lt;=</span> <span class="n">ts_max</span><span class="p">))</span>
<span class="p">)</span>
<span class="c1"># union the above two spark dataframes.</span>
<span class="n">sdf</span> <span class="o">=</span> <span class="n">bin_sdf</span><span class="o">.</span><span class="n">unionByName</span><span class="p">(</span><span class="n">pad_sdf</span><span class="p">,</span> <span class="n">allowMissingColumns</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">where</span><span class="p">(</span>
<span class="o">~</span><span class="n">F</span><span class="o">.</span><span class="n">isnull</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">))</span>
<span class="p">)</span>
<span class="n">internal</span> <span class="o">=</span> <span class="n">InternalFrame</span><span class="p">(</span>
<span class="n">spark_frame</span><span class="o">=</span><span class="n">sdf</span><span class="p">,</span>
<span class="n">index_spark_columns</span><span class="o">=</span><span class="p">[</span><span class="n">scol_for</span><span class="p">(</span><span class="n">sdf</span><span class="p">,</span> <span class="n">SPARK_DEFAULT_INDEX_NAME</span><span class="p">)],</span>
<span class="n">data_spark_columns</span><span class="o">=</span><span class="p">[</span><span class="n">F</span><span class="o">.</span><span class="n">col</span><span class="p">(</span><span class="n">bin_col_name</span><span class="p">)]</span>
<span class="o">+</span> <span class="p">[</span><span class="n">scol_for</span><span class="p">(</span><span class="n">sdf</span><span class="p">,</span> <span class="n">psser</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">data_spark_column_names</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="k">for</span> <span class="n">psser</span> <span class="ow">in</span> <span class="n">agg_columns</span><span class="p">],</span>
<span class="n">column_labels</span><span class="o">=</span><span class="p">[</span><span class="n">bin_col_label</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span><span class="n">psser</span><span class="o">.</span><span class="n">_column_label</span> <span class="k">for</span> <span class="n">psser</span> <span class="ow">in</span> <span class="n">agg_columns</span><span class="p">],</span>
<span class="n">data_fields</span><span class="o">=</span><span class="p">[</span><span class="n">bin_col_field</span><span class="p">]</span>
<span class="o">+</span> <span class="p">[</span><span class="n">psser</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">data_fields</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">nullable</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="k">for</span> <span class="n">psser</span> <span class="ow">in</span> <span class="n">agg_columns</span><span class="p">],</span>
<span class="n">column_label_names</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_psdf</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">column_label_names</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span> <span class="o">=</span> <span class="n">DataFrame</span><span class="p">(</span><span class="n">internal</span><span class="p">)</span>
<span class="n">groupby</span> <span class="o">=</span> <span class="n">psdf</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="n">psdf</span><span class="o">.</span><span class="n">_psser_for</span><span class="p">(</span><span class="n">bin_col_label</span><span class="p">),</span> <span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">downsampled</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">groupby</span><span class="p">,</span> <span class="n">f</span><span class="p">)()</span>
<span class="n">downsampled</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">downsampled</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="k">pass</span>
<div class="viewcode-block" id="Resampler.min"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.min.html#pyspark.pandas.resample.Resampler.min">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">min</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute min of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).min().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 0.010527 0.561204</span>
<span class="sd"> 2022-05-07 NaN NaN</span>
<span class="sd"> 2022-05-10 0.813726 0.745100</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;min&quot;</span><span class="p">))</span></div>
<div class="viewcode-block" id="Resampler.max"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.max.html#pyspark.pandas.resample.Resampler.max">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">max</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute max of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).max().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.420538 0.859182</span>
<span class="sd"> 2022-05-04 0.270533 0.691041</span>
<span class="sd"> 2022-05-07 NaN NaN</span>
<span class="sd"> 2022-05-10 0.813726 0.745100</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;max&quot;</span><span class="p">))</span></div>
<div class="viewcode-block" id="Resampler.sum"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.sum.html#pyspark.pandas.resample.Resampler.sum">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">sum</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute sum of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).sum().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.800160 1.679727</span>
<span class="sd"> 2022-05-04 0.281060 1.252245</span>
<span class="sd"> 2022-05-07 0.000000 0.000000</span>
<span class="sd"> 2022-05-10 0.813726 0.745100</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;sum&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="mf">0.0</span><span class="p">))</span></div>
<div class="viewcode-block" id="Resampler.mean"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.mean.html#pyspark.pandas.resample.Resampler.mean">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">mean</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute mean of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).mean().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.266720 0.559909</span>
<span class="sd"> 2022-05-04 0.140530 0.626123</span>
<span class="sd"> 2022-05-07 NaN NaN</span>
<span class="sd"> 2022-05-10 0.813726 0.745100</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;mean&quot;</span><span class="p">))</span></div>
<div class="viewcode-block" id="Resampler.std"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.std.html#pyspark.pandas.resample.Resampler.std">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">std</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute std of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).std().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.134509 0.268835</span>
<span class="sd"> 2022-05-04 0.183852 0.091809</span>
<span class="sd"> 2022-05-07 NaN NaN</span>
<span class="sd"> 2022-05-10 NaN NaN</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;std&quot;</span><span class="p">))</span></div>
<div class="viewcode-block" id="Resampler.var"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.resample.Resampler.var.html#pyspark.pandas.resample.Resampler.var">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">FrameLike</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Compute var of resampled values.</span>
<span class="sd"> .. versionadded:: 3.4.0</span>
<span class="sd"> See Also</span>
<span class="sd"> --------</span>
<span class="sd"> pyspark.pandas.Series.groupby</span>
<span class="sd"> pyspark.pandas.DataFrame.groupby</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from datetime import datetime</span>
<span class="sd"> &gt;&gt;&gt; np.random.seed(22)</span>
<span class="sd"> &gt;&gt;&gt; dates = [</span>
<span class="sd"> ... datetime(2022, 5, 1, 4, 5, 6),</span>
<span class="sd"> ... datetime(2022, 5, 3),</span>
<span class="sd"> ... datetime(2022, 5, 3, 23, 59, 59),</span>
<span class="sd"> ... datetime(2022, 5, 4),</span>
<span class="sd"> ... pd.NaT,</span>
<span class="sd"> ... datetime(2022, 5, 4, 0, 0, 1),</span>
<span class="sd"> ... datetime(2022, 5, 11),</span>
<span class="sd"> ... ]</span>
<span class="sd"> &gt;&gt;&gt; df = ps.DataFrame(</span>
<span class="sd"> ... np.random.rand(len(dates), 2), index=pd.DatetimeIndex(dates), columns=[&quot;A&quot;, &quot;B&quot;]</span>
<span class="sd"> ... )</span>
<span class="sd"> &gt;&gt;&gt; df</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 04:05:06 0.208461 0.481681</span>
<span class="sd"> 2022-05-03 00:00:00 0.420538 0.859182</span>
<span class="sd"> 2022-05-03 23:59:59 0.171162 0.338864</span>
<span class="sd"> 2022-05-04 00:00:00 0.270533 0.691041</span>
<span class="sd"> NaT 0.220405 0.811951</span>
<span class="sd"> 2022-05-04 00:00:01 0.010527 0.561204</span>
<span class="sd"> 2022-05-11 00:00:00 0.813726 0.745100</span>
<span class="sd"> &gt;&gt;&gt; df.resample(&quot;3D&quot;).var().sort_index()</span>
<span class="sd"> A B</span>
<span class="sd"> 2022-05-01 0.018093 0.072272</span>
<span class="sd"> 2022-05-04 0.033802 0.008429</span>
<span class="sd"> 2022-05-07 NaN NaN</span>
<span class="sd"> 2022-05-10 NaN NaN</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_downsample</span><span class="p">(</span><span class="s2">&quot;var&quot;</span><span class="p">))</span></div>
<span class="k">class</span><span class="w"> </span><span class="nc">DataFrameResampler</span><span class="p">(</span><span class="n">Resampler</span><span class="p">[</span><span class="n">DataFrame</span><span class="p">]):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span>
<span class="n">resamplekey</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Series</span><span class="p">],</span>
<span class="n">rule</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">closed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">agg_columns</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Series</span><span class="p">]</span> <span class="o">=</span> <span class="p">[],</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span>
<span class="n">psdf</span><span class="o">=</span><span class="n">psdf</span><span class="p">,</span>
<span class="n">resamplekey</span><span class="o">=</span><span class="n">resamplekey</span><span class="p">,</span>
<span class="n">rule</span><span class="o">=</span><span class="n">rule</span><span class="p">,</span>
<span class="n">closed</span><span class="o">=</span><span class="n">closed</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
<span class="n">agg_columns</span><span class="o">=</span><span class="n">agg_columns</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__getattr__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">MissingPandasLikeDataFrameResampler</span><span class="p">,</span> <span class="n">item</span><span class="p">):</span>
<span class="n">property_or_func</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">MissingPandasLikeDataFrameResampler</span><span class="p">,</span> <span class="n">item</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">property_or_func</span><span class="p">,</span> <span class="nb">property</span><span class="p">):</span>
<span class="k">return</span> <span class="n">property_or_func</span><span class="o">.</span><span class="n">fget</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">partial</span><span class="p">(</span><span class="n">property_or_func</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">DataFrame</span><span class="p">:</span>
<span class="k">return</span> <span class="n">psdf</span>
<span class="k">class</span><span class="w"> </span><span class="nc">SeriesResampler</span><span class="p">(</span><span class="n">Resampler</span><span class="p">[</span><span class="n">Series</span><span class="p">]):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">psser</span><span class="p">:</span> <span class="n">Series</span><span class="p">,</span>
<span class="n">resamplekey</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Series</span><span class="p">],</span>
<span class="n">rule</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">closed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">label</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">agg_columns</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Series</span><span class="p">]</span> <span class="o">=</span> <span class="p">[],</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span>
<span class="n">psdf</span><span class="o">=</span><span class="n">psser</span><span class="o">.</span><span class="n">_psdf</span><span class="p">,</span>
<span class="n">resamplekey</span><span class="o">=</span><span class="n">resamplekey</span><span class="p">,</span>
<span class="n">rule</span><span class="o">=</span><span class="n">rule</span><span class="p">,</span>
<span class="n">closed</span><span class="o">=</span><span class="n">closed</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
<span class="n">agg_columns</span><span class="o">=</span><span class="n">agg_columns</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_psser</span> <span class="o">=</span> <span class="n">psser</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__getattr__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">MissingPandasLikeSeriesResampler</span><span class="p">,</span> <span class="n">item</span><span class="p">):</span>
<span class="n">property_or_func</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">MissingPandasLikeSeriesResampler</span><span class="p">,</span> <span class="n">item</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">property_or_func</span><span class="p">,</span> <span class="nb">property</span><span class="p">):</span>
<span class="k">return</span> <span class="n">property_or_func</span><span class="o">.</span><span class="n">fget</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">partial</span><span class="p">(</span><span class="n">property_or_func</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_handle_output</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">psdf</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Series</span><span class="p">:</span>
<span class="k">return</span> <span class="n">first_series</span><span class="p">(</span><span class="n">psdf</span><span class="p">)</span><span class="o">.</span><span class="n">rename</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_psser</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">os</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">doctest</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">sys</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkSession</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">pyspark.pandas.resample</span>
<span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">&quot;SPARK_HOME&quot;</span><span class="p">])</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">resample</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;ps&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span>
<span class="n">spark</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[4]&quot;</span><span class="p">)</span>
<span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;pyspark.pandas.resample tests&quot;</span><span class="p">)</span>
<span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="p">)</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span>
<span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">resample</span><span class="p">,</span>
<span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span>
<span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>