| |
| <!DOCTYPE html> |
| |
| <html> |
| <head> |
| <meta charset="utf-8" /> |
| <title>pyspark.pandas.extensions — PySpark 3.5.5 documentation</title> |
| |
| <link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| |
| |
| <link rel="stylesheet" |
| href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" /> |
| <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"> |
| |
| <script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/language_data.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script> |
| <script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/pandas/extensions.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Google Analytics --> |
| |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <div class="container-fluid" id="banner"></div> |
| |
| |
| <nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl"> |
| |
| <div id="navbar-start"> |
| |
| |
| |
| <a class="navbar-brand" href="../../../index.html"> |
| <img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo"> |
| </a> |
| |
| |
| |
| </div> |
| |
| <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| |
| <div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse"> |
| <div id="navbar-center" class="mr-auto"> |
| |
| <div class="navbar-center-item"> |
| <ul id="navbar-main-elements" class="navbar-nav"> |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| <li class="toctree-l1 nav-item"> |
| <a class="reference internal nav-link" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| |
| </ul> |
| </div> |
| |
| </div> |
| |
| <div id="navbar-end"> |
| |
| <div class="navbar-end-item"> |
| <!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 3.5.5 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/pandas/extensions.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script> |
| </div> |
| |
| </div> |
| </div> |
| </div> |
| </nav> |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| |
| <!-- Only show if we have sidebars configured, else just a small margin --> |
| <div class="col-12 col-md-3 bd-sidebar"> |
| <div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| <div class="bd-toc-item active"> |
| |
| </div> |
| </nav> |
| </div> |
| <div class="sidebar-end-items"> |
| </div> |
| </div> |
| |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| </div> |
| |
| |
| |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <h1>Source code for pyspark.pandas.extensions</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Generic</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Type</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">warnings</span> |
| |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas._typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">T</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.frame</span><span class="w"> </span><span class="kn">import</span> <span class="n">DataFrame</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.indexes</span><span class="w"> </span><span class="kn">import</span> <span class="n">Index</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas.series</span><span class="w"> </span><span class="kn">import</span> <span class="n">Series</span> |
| |
| |
| <span class="k">class</span><span class="w"> </span><span class="nc">CachedAccessor</span><span class="p">(</span><span class="n">Generic</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Custom property-like object.</span> |
| |
| <span class="sd"> A descriptor for caching accessors:</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> Namespace that accessor methods, properties, etc will be accessed under, e.g. "foo" for a</span> |
| <span class="sd"> dataframe accessor yields the accessor ``df.foo``</span> |
| <span class="sd"> accessor: cls</span> |
| <span class="sd"> Class with the extension methods.</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> For accessor, the class's __init__ method assumes that you are registering an accessor for one</span> |
| <span class="sd"> of ``Series``, ``DataFrame``, or ``Index``.</span> |
| |
| <span class="sd"> This object is not meant to be instantiated directly. Instead, use register_dataframe_accessor,</span> |
| <span class="sd"> register_series_accessor, or register_index_accessor.</span> |
| |
| <span class="sd"> The pandas-on-Spark accessor is modified based on pandas.core.accessor.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">accessor</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_accessor</span> <span class="o">=</span> <span class="n">accessor</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="fm">__get__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">obj</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="s2">"DataFrame"</span><span class="p">,</span> <span class="s2">"Series"</span><span class="p">,</span> <span class="s2">"Index"</span><span class="p">]],</span> <span class="bp">cls</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">Union</span><span class="p">[</span><span class="n">T</span><span class="p">,</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="k">if</span> <span class="n">obj</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_accessor</span> |
| <span class="n">accessor_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_accessor</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span> <span class="c1"># type: ignore[call-arg]</span> |
| <span class="nb">object</span><span class="o">.</span><span class="fm">__setattr__</span><span class="p">(</span><span class="n">obj</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_name</span><span class="p">,</span> <span class="n">accessor_obj</span><span class="p">)</span> |
| <span class="k">return</span> <span class="n">accessor_obj</span> |
| |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">_register_accessor</span><span class="p">(</span> |
| <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="bp">cls</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Type</span><span class="p">[</span><span class="s2">"DataFrame"</span><span class="p">],</span> <span class="n">Type</span><span class="p">[</span><span class="s2">"Series"</span><span class="p">],</span> <span class="n">Type</span><span class="p">[</span><span class="s2">"Index"</span><span class="p">]]</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Register a custom accessor on {klass} objects.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> Name under which the accessor should be registered. A warning is issued if this name</span> |
| <span class="sd"> conflicts with a preexisting attribute.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> callable</span> |
| <span class="sd"> A class decorator.</span> |
| |
| <span class="sd"> See Also</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> register_dataframe_accessor: Register a custom accessor on DataFrame objects</span> |
| <span class="sd"> register_series_accessor: Register a custom accessor on Series objects</span> |
| <span class="sd"> register_index_accessor: Register a custom accessor on Index objects</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> When accessed, your accessor will be initialized with the pandas-on-Spark object the user</span> |
| <span class="sd"> is interacting with. The code signature must be:</span> |
| |
| <span class="sd"> .. code-block:: python</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> # constructor logic</span> |
| <span class="sd"> ...</span> |
| |
| <span class="sd"> In the pandas API, if data passed to your accessor has an incorrect dtype, it's recommended to</span> |
| <span class="sd"> raise an ``AttributeError`` for consistency purposes. In pandas-on-Spark, ``ValueError`` is more</span> |
| <span class="sd"> frequently used to annotate when a value's datatype is unexpected for a given method/function.</span> |
| |
| <span class="sd"> Ultimately, you can structure this however you like, but pandas-on-Spark would likely do</span> |
| <span class="sd"> something like this:</span> |
| |
| <span class="sd"> >>> ps.Series(['a', 'b']).dt</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> Traceback (most recent call last):</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> ValueError: Cannot call DatetimeMethods on type StringType()</span> |
| |
| <span class="sd"> Note: This function is not meant to be used directly - instead, use register_dataframe_accessor,</span> |
| <span class="sd"> register_series_accessor, or register_index_accessor.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">decorator</span><span class="p">(</span><span class="n">accessor</span><span class="p">:</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]:</span> |
| <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">name</span><span class="p">):</span> |
| <span class="n">msg</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="s2">"registration of accessor </span><span class="si">{0}</span><span class="s2"> under name '</span><span class="si">{1}</span><span class="s2">' for type </span><span class="si">{2}</span><span class="s2"> is overriding "</span> |
| <span class="s2">"a preexisting attribute with the same name."</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">accessor</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="p">)</span> |
| <span class="p">)</span> |
| |
| <span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span> |
| <span class="n">msg</span><span class="p">,</span> |
| <span class="ne">UserWarning</span><span class="p">,</span> |
| <span class="n">stacklevel</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="nb">setattr</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">CachedAccessor</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">accessor</span><span class="p">))</span> |
| <span class="k">return</span> <span class="n">accessor</span> |
| |
| <span class="k">return</span> <span class="n">decorator</span> |
| |
| |
| <div class="viewcode-block" id="register_dataframe_accessor"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.extensions.register_dataframe_accessor.html#pyspark.pandas.extensions.register_dataframe_accessor">[docs]</a><span class="k">def</span><span class="w"> </span><span class="nf">register_dataframe_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Register a custom accessor with a DataFrame</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> name used when calling the accessor after its registered</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> callable</span> |
| <span class="sd"> A class decorator.</span> |
| |
| <span class="sd"> See Also</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> register_series_accessor: Register a custom accessor on Series objects</span> |
| <span class="sd"> register_index_accessor: Register a custom accessor on Index objects</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> When accessed, your accessor will be initialized with the pandas-on-Spark object the user</span> |
| <span class="sd"> is interacting with. The accessor's init method should always ingest the object being accessed.</span> |
| <span class="sd"> See the examples for the init signature.</span> |
| |
| <span class="sd"> In the pandas API, if data passed to your accessor has an incorrect dtype, it's recommended to</span> |
| <span class="sd"> raise an ``AttributeError`` for consistency purposes. In pandas-on-Spark, ``ValueError`` is more</span> |
| <span class="sd"> frequently used to annotate when a value's datatype is unexpected for a given method/function.</span> |
| |
| <span class="sd"> Ultimately, you can structure this however you like, but pandas-on-Spark would likely do</span> |
| <span class="sd"> something like this:</span> |
| |
| <span class="sd"> >>> ps.Series(['a', 'b']).dt</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> Traceback (most recent call last):</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> ValueError: Cannot call DatetimeMethods on type StringType()</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> In your library code::</span> |
| |
| <span class="sd"> from pyspark.pandas.extensions import register_dataframe_accessor</span> |
| |
| <span class="sd"> @register_dataframe_accessor("geo")</span> |
| <span class="sd"> class GeoAccessor:</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> self._obj = pandas_on_spark_obj</span> |
| <span class="sd"> # other constructor logic</span> |
| |
| <span class="sd"> @property</span> |
| <span class="sd"> def center(self):</span> |
| <span class="sd"> # return the geographic center point of this DataFrame</span> |
| <span class="sd"> lat = self._obj.latitude</span> |
| <span class="sd"> lon = self._obj.longitude</span> |
| <span class="sd"> return (float(lon.mean()), float(lat.mean()))</span> |
| |
| <span class="sd"> def plot(self):</span> |
| <span class="sd"> # plot this array's data on a map</span> |
| <span class="sd"> pass</span> |
| |
| <span class="sd"> Then, in an ipython session::</span> |
| |
| <span class="sd"> >>> ## Import if the accessor is in the other file.</span> |
| <span class="sd"> >>> # from my_ext_lib import GeoAccessor</span> |
| <span class="sd"> >>> psdf = ps.DataFrame({"longitude": np.linspace(0,10),</span> |
| <span class="sd"> ... "latitude": np.linspace(0, 20)})</span> |
| <span class="sd"> >>> psdf.geo.center # doctest: +SKIP</span> |
| <span class="sd"> (5.0, 10.0)</span> |
| |
| <span class="sd"> >>> psdf.geo.plot() # doctest: +SKIP</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas</span><span class="w"> </span><span class="kn">import</span> <span class="n">DataFrame</span> |
| |
| <span class="k">return</span> <span class="n">_register_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">)</span></div> |
| |
| |
| <div class="viewcode-block" id="register_series_accessor"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.extensions.register_series_accessor.html#pyspark.pandas.extensions.register_series_accessor">[docs]</a><span class="k">def</span><span class="w"> </span><span class="nf">register_series_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Register a custom accessor with a Series object</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> name used when calling the accessor after its registered</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> callable</span> |
| <span class="sd"> A class decorator.</span> |
| |
| <span class="sd"> See Also</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> register_dataframe_accessor: Register a custom accessor on DataFrame objects</span> |
| <span class="sd"> register_index_accessor: Register a custom accessor on Index objects</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> When accessed, your accessor will be initialized with the pandas-on-Spark object the user is</span> |
| <span class="sd"> interacting with. The code signature must be::</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> # constructor logic</span> |
| <span class="sd"> ...</span> |
| |
| <span class="sd"> In the pandas API, if data passed to your accessor has an incorrect dtype, it's recommended to</span> |
| <span class="sd"> raise an ``AttributeError`` for consistency purposes. In pandas-on-Spark, ``ValueError`` is more</span> |
| <span class="sd"> frequently used to annotate when a value's datatype is unexpected for a given method/function.</span> |
| |
| <span class="sd"> Ultimately, you can structure this however you like, but pandas-on-Spark would likely do</span> |
| <span class="sd"> something like this:</span> |
| |
| <span class="sd"> >>> ps.Series(['a', 'b']).dt</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> Traceback (most recent call last):</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> ValueError: Cannot call DatetimeMethods on type StringType()</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> In your library code::</span> |
| |
| <span class="sd"> from pyspark.pandas.extensions import register_series_accessor</span> |
| |
| <span class="sd"> @register_series_accessor("geo")</span> |
| <span class="sd"> class GeoAccessor:</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> self._obj = pandas_on_spark_obj</span> |
| |
| <span class="sd"> @property</span> |
| <span class="sd"> def is_valid(self):</span> |
| <span class="sd"> # boolean check to see if series contains valid geometry</span> |
| <span class="sd"> return True</span> |
| |
| <span class="sd"> Then, in an ipython session::</span> |
| |
| <span class="sd"> >>> ## Import if the accessor is in the other file.</span> |
| <span class="sd"> >>> # from my_ext_lib import GeoAccessor</span> |
| <span class="sd"> >>> psdf = ps.DataFrame({"longitude": np.linspace(0,10),</span> |
| <span class="sd"> ... "latitude": np.linspace(0, 20)})</span> |
| <span class="sd"> >>> psdf.longitude.geo.is_valid # doctest: +SKIP</span> |
| <span class="sd"> True</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas</span><span class="w"> </span><span class="kn">import</span> <span class="n">Series</span> |
| |
| <span class="k">return</span> <span class="n">_register_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">Series</span><span class="p">)</span></div> |
| |
| |
| <div class="viewcode-block" id="register_index_accessor"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.extensions.register_index_accessor.html#pyspark.pandas.extensions.register_index_accessor">[docs]</a><span class="k">def</span><span class="w"> </span><span class="nf">register_index_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="n">Callable</span><span class="p">[[</span><span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]],</span> <span class="n">Type</span><span class="p">[</span><span class="n">T</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Register a custom accessor with an Index</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> name : str</span> |
| <span class="sd"> name used when calling the accessor after its registered</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> callable</span> |
| <span class="sd"> A class decorator.</span> |
| |
| <span class="sd"> See Also</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> register_dataframe_accessor: Register a custom accessor on DataFrame objects</span> |
| <span class="sd"> register_series_accessor: Register a custom accessor on Series objects</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> When accessed, your accessor will be initialized with the pandas-on-Spark object the user is</span> |
| <span class="sd"> interacting with. The code signature must be::</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> # constructor logic</span> |
| <span class="sd"> ...</span> |
| |
| <span class="sd"> In the pandas API, if data passed to your accessor has an incorrect dtype, it's recommended to</span> |
| <span class="sd"> raise an ``AttributeError`` for consistency purposes. In pandas-on-Spark, ``ValueError`` is more</span> |
| <span class="sd"> frequently used to annotate when a value's datatype is unexpected for a given method/function.</span> |
| |
| <span class="sd"> Ultimately, you can structure this however you like, but pandas-on-Spark would likely do</span> |
| <span class="sd"> something like this:</span> |
| |
| <span class="sd"> >>> ps.Series(['a', 'b']).dt</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> Traceback (most recent call last):</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> ValueError: Cannot call DatetimeMethods on type StringType()</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> In your library code::</span> |
| |
| <span class="sd"> from pyspark.pandas.extensions import register_index_accessor</span> |
| |
| <span class="sd"> @register_index_accessor("foo")</span> |
| <span class="sd"> class CustomAccessor:</span> |
| |
| <span class="sd"> def __init__(self, pandas_on_spark_obj):</span> |
| <span class="sd"> self._obj = pandas_on_spark_obj</span> |
| <span class="sd"> self.item = "baz"</span> |
| |
| <span class="sd"> @property</span> |
| <span class="sd"> def bar(self):</span> |
| <span class="sd"> # return item value</span> |
| <span class="sd"> return self.item</span> |
| |
| <span class="sd"> Then, in an ipython session::</span> |
| |
| <span class="sd"> >>> ## Import if the accessor is in the other file.</span> |
| <span class="sd"> >>> # from my_ext_lib import CustomAccessor</span> |
| <span class="sd"> >>> psdf = ps.DataFrame({"longitude": np.linspace(0,10),</span> |
| <span class="sd"> ... "latitude": np.linspace(0, 20)})</span> |
| <span class="sd"> >>> psdf.index.foo.bar # doctest: +SKIP</span> |
| <span class="sd"> 'baz'</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.pandas</span><span class="w"> </span><span class="kn">import</span> <span class="n">Index</span> |
| |
| <span class="k">return</span> <span class="n">_register_accessor</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">Index</span><span class="p">)</span></div> |
| |
| |
| <span class="k">def</span><span class="w"> </span><span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">os</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">doctest</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">sys</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span> |
| <span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span><span class="w"> </span><span class="nn">pyspark.pandas.extensions</span> |
| |
| <span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"SPARK_HOME"</span><span class="p">])</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">extensions</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"np"</span><span class="p">]</span> <span class="o">=</span> <span class="n">numpy</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"ps"</span><span class="p">]</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span> |
| <span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"pyspark.pandas.extensions tests"</span><span class="p">)</span> |
| <span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="p">)</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">extensions</span><span class="p">,</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> |
| <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </div> |
| |
| |
| <!-- Previous / next buttons --> |
| <div class='prev-next-area'> |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script> |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| |
| <div class="footer-item"> |
| <p class="copyright"> |
| © Copyright .<br> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br> |
| </p> |
| </div> |
| |
| </div> |
| </footer> |
| </body> |
| </html> |