blob: b875f11d5bad244f489df4e9c0d3bf1d8ebfd040 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.mllib.random &#8212; PySpark 3.5.5 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/mllib/random.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
3.5.5
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/mllib/random.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.mllib.random</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Python package for random data generation.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">sys</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">functools</span><span class="w"> </span><span class="kn">import</span> <span class="n">wraps</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Optional</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.mllib.common</span><span class="w"> </span><span class="kn">import</span> <span class="n">callMLlibFunc</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.context</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkContext</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.rdd</span><span class="w"> </span><span class="kn">import</span> <span class="n">RDD</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.mllib.linalg</span><span class="w"> </span><span class="kn">import</span> <span class="n">Vector</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">&quot;RandomRDDs&quot;</span><span class="p">,</span>
<span class="p">]</span>
<span class="k">def</span><span class="w"> </span><span class="nf">toArray</span><span class="p">(</span><span class="n">f</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]])</span> <span class="o">-&gt;</span> <span class="n">Callable</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]]:</span>
<span class="nd">@wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="o">*</span><span class="n">a</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]:</span>
<span class="n">rdd</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">sc</span><span class="p">,</span> <span class="o">*</span><span class="n">a</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="k">return</span> <span class="n">rdd</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">vec</span><span class="p">:</span> <span class="n">vec</span><span class="o">.</span><span class="n">toArray</span><span class="p">())</span>
<span class="k">return</span> <span class="n">func</span>
<div class="viewcode-block" id="RandomRDDs"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs">[docs]</a><span class="k">class</span><span class="w"> </span><span class="nc">RandomRDDs</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generator methods for creating RDDs comprised of i.i.d samples from</span>
<span class="sd"> some distribution.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="RandomRDDs.uniformRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.uniformRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">uniformRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the</span>
<span class="sd"> uniform distribution U(0.0, 1.0).</span>
<span class="sd"> To transform the distribution in the generated RDD from U(0.0, 1.0)</span>
<span class="sd"> to U(a, b), use</span>
<span class="sd"> ``RandomRDDs.uniformRDD(sc, n, p, seed).map(lambda v: a + (b - a) * v)``</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> used to create the RDD.</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ `U(0.0, 1.0)`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.uniformRDD(sc, 100).collect()</span>
<span class="sd"> &gt;&gt;&gt; len(x)</span>
<span class="sd"> 100</span>
<span class="sd"> &gt;&gt;&gt; max(x) &lt;= 1.0 and min(x) &gt;= 0.0</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()</span>
<span class="sd"> 4</span>
<span class="sd"> &gt;&gt;&gt; parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()</span>
<span class="sd"> &gt;&gt;&gt; parts == sc.defaultParallelism</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;uniformRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.normalRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.normalRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">normalRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span> <span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the standard normal</span>
<span class="sd"> distribution.</span>
<span class="sd"> To transform the distribution in the generated RDD from standard normal</span>
<span class="sd"> to some other normal N(mean, sigma^2), use</span>
<span class="sd"> ``RandomRDDs.normal(sc, n, p, seed).map(lambda v: mean + sigma * v)``</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> used to create the RDD.</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.normalRDD(sc, 1000, seed=1)</span>
<span class="sd"> &gt;&gt;&gt; stats = x.stats()</span>
<span class="sd"> &gt;&gt;&gt; stats.count()</span>
<span class="sd"> 1000</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.mean() - 0.0) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.stdev() - 1.0) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;normalRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.logNormalRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.logNormalRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">logNormalRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">std</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the log normal</span>
<span class="sd"> distribution with the input mean and standard distribution.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> mean for the log Normal distribution</span>
<span class="sd"> std : float</span>
<span class="sd"> std for the log Normal distribution</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ log N(mean, std).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt, exp</span>
<span class="sd"> &gt;&gt;&gt; mean = 0.0</span>
<span class="sd"> &gt;&gt;&gt; std = 1.0</span>
<span class="sd"> &gt;&gt;&gt; expMean = exp(mean + 0.5 * std * std)</span>
<span class="sd"> &gt;&gt;&gt; expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2)</span>
<span class="sd"> &gt;&gt;&gt; stats = x.stats()</span>
<span class="sd"> &gt;&gt;&gt; stats.count()</span>
<span class="sd"> 1000</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.mean() - expMean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.stdev() - expStd) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;logNormalRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="n">std</span><span class="p">),</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.poissonRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.poissonRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">poissonRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the Poisson</span>
<span class="sd"> distribution with the input mean.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> Mean, or lambda, for the Poisson distribution.</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ Pois(mean).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; mean = 100.0</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2)</span>
<span class="sd"> &gt;&gt;&gt; stats = x.stats()</span>
<span class="sd"> &gt;&gt;&gt; stats.count()</span>
<span class="sd"> 1000</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.mean() - mean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.stdev() - sqrt(mean)) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;poissonRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.exponentialRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.exponentialRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">exponentialRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the Exponential</span>
<span class="sd"> distribution with the input mean.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> Mean, or 1 / lambda, for the Exponential distribution.</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ Exp(mean).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; mean = 2.0</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2)</span>
<span class="sd"> &gt;&gt;&gt; stats = x.stats()</span>
<span class="sd"> &gt;&gt;&gt; stats.count()</span>
<span class="sd"> 1000</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.mean() - mean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.stdev() - sqrt(mean)) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;exponentialRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.gammaRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.gammaRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">gammaRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">shape</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">scale</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of i.i.d. samples from the Gamma</span>
<span class="sd"> distribution with the input shape and scale.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> shape : float</span>
<span class="sd"> shape (&gt; 0) parameter for the Gamma distribution</span>
<span class="sd"> scale : float</span>
<span class="sd"> scale (&gt; 0) parameter for the Gamma distribution</span>
<span class="sd"> size : int</span>
<span class="sd"> Size of the RDD.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; shape = 1.0</span>
<span class="sd"> &gt;&gt;&gt; scale = 2.0</span>
<span class="sd"> &gt;&gt;&gt; expMean = shape * scale</span>
<span class="sd"> &gt;&gt;&gt; expStd = sqrt(shape * scale * scale)</span>
<span class="sd"> &gt;&gt;&gt; x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2)</span>
<span class="sd"> &gt;&gt;&gt; stats = x.stats()</span>
<span class="sd"> &gt;&gt;&gt; stats.count()</span>
<span class="sd"> 1000</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.mean() - expMean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; abs(stats.stdev() - expStd) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;gammaRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">shape</span><span class="p">),</span> <span class="nb">float</span><span class="p">(</span><span class="n">scale</span><span class="p">),</span> <span class="n">size</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.uniformVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.uniformVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">uniformVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the uniform distribution U(0.0, 1.0).</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> numRows : int</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD.</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Seed for the RNG that generates the seed for the generator in each partition.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d samples ~ `U(0.0, 1.0)`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (10, 10)</span>
<span class="sd"> &gt;&gt;&gt; mat.max() &lt;= 1.0 and mat.min() &gt;= 0.0</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()</span>
<span class="sd"> 4</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;uniformVectorRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="n">numRows</span><span class="p">,</span> <span class="n">numCols</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.normalVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.normalVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">normalVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the standard normal distribution.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> numRows : int</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect())</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (100, 100)</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.mean() - 0.0) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.std() - 1.0) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span><span class="s2">&quot;normalVectorRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="n">numRows</span><span class="p">,</span> <span class="n">numCols</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span><span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.logNormalVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.logNormalVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">logNormalVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">std</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the log normal distribution.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> Mean of the log normal distribution</span>
<span class="sd"> std : float</span>
<span class="sd"> Standard Deviation of the log normal distribution</span>
<span class="sd"> numRows : int</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt, exp</span>
<span class="sd"> &gt;&gt;&gt; mean = 0.0</span>
<span class="sd"> &gt;&gt;&gt; std = 1.0</span>
<span class="sd"> &gt;&gt;&gt; expMean = exp(mean + 0.5 * std * std)</span>
<span class="sd"> &gt;&gt;&gt; expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))</span>
<span class="sd"> &gt;&gt;&gt; m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect()</span>
<span class="sd"> &gt;&gt;&gt; mat = np.matrix(m)</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (100, 100)</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.mean() - expMean) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.std() - expStd) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;logNormalVectorRDD&quot;</span><span class="p">,</span>
<span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">std</span><span class="p">),</span>
<span class="n">numRows</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.poissonVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.poissonVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">poissonVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the Poisson distribution with the input mean.</span>
<span class="sd"> .. versionadded:: 1.1.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> Mean, or lambda, for the Poisson distribution.</span>
<span class="sd"> numRows : float</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`)</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; mean = 100.0</span>
<span class="sd"> &gt;&gt;&gt; rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1)</span>
<span class="sd"> &gt;&gt;&gt; mat = np.mat(rdd.collect())</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (100, 100)</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.mean() - mean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.std() - sqrt(mean)) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;poissonVectorRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="n">numRows</span><span class="p">,</span> <span class="n">numCols</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.exponentialVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.exponentialVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">exponentialVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">mean</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the Exponential distribution with the input mean.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> mean : float</span>
<span class="sd"> Mean, or 1 / lambda, for the Exponential distribution.</span>
<span class="sd"> numRows : int</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`)</span>
<span class="sd"> seed : int, optional</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; mean = 0.5</span>
<span class="sd"> &gt;&gt;&gt; rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1)</span>
<span class="sd"> &gt;&gt;&gt; mat = np.mat(rdd.collect())</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (100, 100)</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.mean() - mean) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.std() - sqrt(mean)) &lt; 0.5</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;exponentialVectorRDD&quot;</span><span class="p">,</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="n">numRows</span><span class="p">,</span> <span class="n">numCols</span><span class="p">,</span> <span class="n">numPartitions</span><span class="p">,</span> <span class="n">seed</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="RandomRDDs.gammaVectorRDD"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.random.RandomRDDs.html#pyspark.mllib.random.RandomRDDs.gammaVectorRDD">[docs]</a> <span class="nd">@staticmethod</span>
<span class="nd">@toArray</span>
<span class="k">def</span><span class="w"> </span><span class="nf">gammaVectorRDD</span><span class="p">(</span>
<span class="n">sc</span><span class="p">:</span> <span class="n">SparkContext</span><span class="p">,</span>
<span class="n">shape</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">scale</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">numRows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RDD</span><span class="p">[</span><span class="n">Vector</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates an RDD comprised of vectors containing i.i.d. samples drawn</span>
<span class="sd"> from the Gamma distribution.</span>
<span class="sd"> .. versionadded:: 1.3.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sc : :py:class:`pyspark.SparkContext`</span>
<span class="sd"> SparkContext used to create the RDD.</span>
<span class="sd"> shape : float</span>
<span class="sd"> Shape (&gt; 0) of the Gamma distribution</span>
<span class="sd"> scale : float</span>
<span class="sd"> Scale (&gt; 0) of the Gamma distribution</span>
<span class="sd"> numRows : int</span>
<span class="sd"> Number of Vectors in the RDD.</span>
<span class="sd"> numCols : int</span>
<span class="sd"> Number of elements in each Vector.</span>
<span class="sd"> numPartitions : int, optional</span>
<span class="sd"> Number of partitions in the RDD (default: `sc.defaultParallelism`).</span>
<span class="sd"> seed : int, optional,</span>
<span class="sd"> Random seed (default: a random long integer).</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> :py:class:`pyspark.RDD`</span>
<span class="sd"> RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale).</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import numpy as np</span>
<span class="sd"> &gt;&gt;&gt; from math import sqrt</span>
<span class="sd"> &gt;&gt;&gt; shape = 1.0</span>
<span class="sd"> &gt;&gt;&gt; scale = 2.0</span>
<span class="sd"> &gt;&gt;&gt; expMean = shape * scale</span>
<span class="sd"> &gt;&gt;&gt; expStd = sqrt(shape * scale * scale)</span>
<span class="sd"> &gt;&gt;&gt; mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect())</span>
<span class="sd"> &gt;&gt;&gt; mat.shape</span>
<span class="sd"> (100, 100)</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.mean() - expMean) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &gt;&gt;&gt; abs(mat.std() - expStd) &lt; 0.1</span>
<span class="sd"> True</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">callMLlibFunc</span><span class="p">(</span>
<span class="s2">&quot;gammaVectorRDD&quot;</span><span class="p">,</span>
<span class="n">sc</span><span class="o">.</span><span class="n">_jsc</span><span class="p">,</span>
<span class="nb">float</span><span class="p">(</span><span class="n">shape</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">scale</span><span class="p">),</span>
<span class="n">numRows</span><span class="p">,</span>
<span class="n">numCols</span><span class="p">,</span>
<span class="n">numPartitions</span><span class="p">,</span>
<span class="n">seed</span><span class="p">,</span>
<span class="p">)</span></div></div>
<span class="k">def</span><span class="w"> </span><span class="nf">_test</span><span class="p">()</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">doctest</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">globs</span> <span class="o">=</span> <span class="nb">globals</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="c1"># The small batch size here ensures that we see multiple batches,</span>
<span class="c1"># even in these small test examples:</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[2]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;mllib.random tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;sc&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">_test</span><span class="p">()</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>