blob: 83830c3d9021d8f1c065b686ef5f400afa751a24 [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.ml.evaluation &#8212; PySpark 3.5.5 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/evaluation.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
3.5.5
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/ml/evaluation.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.ml.evaluation</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">sys</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">abc</span><span class="w"> </span><span class="kn">import</span> <span class="n">abstractmethod</span><span class="p">,</span> <span class="n">ABCMeta</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark</span><span class="w"> </span><span class="kn">import</span> <span class="n">since</span><span class="p">,</span> <span class="n">keyword_only</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml.wrapper</span><span class="w"> </span><span class="kn">import</span> <span class="n">JavaParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml.param</span><span class="w"> </span><span class="kn">import</span> <span class="n">Param</span><span class="p">,</span> <span class="n">Params</span><span class="p">,</span> <span class="n">TypeConverters</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml.param.shared</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">HasLabelCol</span><span class="p">,</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">HasProbabilityCol</span><span class="p">,</span>
<span class="n">HasRawPredictionCol</span><span class="p">,</span>
<span class="n">HasFeaturesCol</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml.common</span><span class="w"> </span><span class="kn">import</span> <span class="n">inherit_doc</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml.util</span><span class="w"> </span><span class="kn">import</span> <span class="n">JavaMLReadable</span><span class="p">,</span> <span class="n">JavaMLWritable</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql.dataframe</span><span class="w"> </span><span class="kn">import</span> <span class="n">DataFrame</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.ml._typing</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">ParamMap</span><span class="p">,</span>
<span class="n">BinaryClassificationEvaluatorMetricType</span><span class="p">,</span>
<span class="n">ClusteringEvaluatorDistanceMeasureType</span><span class="p">,</span>
<span class="n">ClusteringEvaluatorMetricType</span><span class="p">,</span>
<span class="n">MulticlassClassificationEvaluatorMetricType</span><span class="p">,</span>
<span class="n">MultilabelClassificationEvaluatorMetricType</span><span class="p">,</span>
<span class="n">RankingEvaluatorMetricType</span><span class="p">,</span>
<span class="n">RegressionEvaluatorMetricType</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">&quot;Evaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">,</span>
<span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">,</span>
<span class="p">]</span>
<div class="viewcode-block" id="Evaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">Evaluator</span><span class="p">(</span><span class="n">Params</span><span class="p">,</span> <span class="n">metaclass</span><span class="o">=</span><span class="n">ABCMeta</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Base class for evaluators that compute metrics from predictions.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluates the output.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a dataset that contains labels/observations and predictions</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> float</span>
<span class="sd"> metric</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
<div class="viewcode-block" id="Evaluator.evaluate"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator.evaluate">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="n">params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">&quot;ParamMap&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluates the output with optional parameters.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a dataset that contains labels/observations and predictions</span>
<span class="sd"> params : dict, optional</span>
<span class="sd"> an optional param map that overrides embedded params</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> float</span>
<span class="sd"> metric</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">if</span> <span class="n">params</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">_evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">&quot;Params must be a param map but got </span><span class="si">%s</span><span class="s2">.&quot;</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">params</span><span class="p">))</span></div>
<div class="viewcode-block" id="Evaluator.isLargerBetter"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator.isLargerBetter">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">isLargerBetter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Indicates whether the metric returned by :py:meth:`evaluate` should be maximized</span>
<span class="sd"> (True, default) or minimized (False).</span>
<span class="sd"> A given evaluator may support multiple metrics which may be maximized or minimized.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="kc">True</span></div></div>
<span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">JavaEvaluator</span><span class="p">(</span><span class="n">JavaParams</span><span class="p">,</span> <span class="n">Evaluator</span><span class="p">,</span> <span class="n">metaclass</span><span class="o">=</span><span class="n">ABCMeta</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Base class for :py:class:`Evaluator`s that wrap Java/Scala</span>
<span class="sd"> implementations.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluates the output.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span>
<span class="sd"> a dataset that contains labels/observations and predictions</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> float</span>
<span class="sd"> evaluation metric</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_transfer_params_to_java</span><span class="p">()</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">isLargerBetter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_transfer_params_to_java</span><span class="p">()</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span><span class="o">.</span><span class="n">isLargerBetter</span><span class="p">()</span>
<div class="viewcode-block" id="BinaryClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">BinaryClassificationEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span>
<span class="n">HasLabelCol</span><span class="p">,</span>
<span class="n">HasRawPredictionCol</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">],</span>
<span class="n">JavaMLWritable</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for binary classification, which expects input columns rawPrediction, label</span>
<span class="sd"> and an optional weight column.</span>
<span class="sd"> The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label</span>
<span class="sd"> 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities).</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.ml.linalg import Vectors</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1]),</span>
<span class="sd"> ... [(0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)])</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabels, [&quot;raw&quot;, &quot;label&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = BinaryClassificationEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setRawPredictionCol(&quot;raw&quot;)</span>
<span class="sd"> BinaryClassificationEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.70...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;areaUnderPR&quot;})</span>
<span class="sd"> 0.83...</span>
<span class="sd"> &gt;&gt;&gt; bce_path = temp_path + &quot;/bce&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(bce_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = BinaryClassificationEvaluator.load(bce_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getRawPredictionCol())</span>
<span class="sd"> &#39;raw&#39;</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabelsAndWeight = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1], x[2]),</span>
<span class="sd"> ... [(0.1, 0.0, 1.0), (0.1, 1.0, 0.9), (0.4, 0.0, 0.7), (0.6, 0.0, 0.9),</span>
<span class="sd"> ... (0.6, 1.0, 1.0), (0.6, 1.0, 0.3), (0.8, 1.0, 1.0)])</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabelsAndWeight, [&quot;raw&quot;, &quot;label&quot;, &quot;weight&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = BinaryClassificationEvaluator(rawPredictionCol=&quot;raw&quot;, weightCol=&quot;weight&quot;)</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.70...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;areaUnderPR&quot;})</span>
<span class="sd"> 0.82...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.getNumBins()</span>
<span class="sd"> 1000</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;BinaryClassificationEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="s2">&quot;metric name in evaluation (areaUnderROC|areaUnderPR)&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">numBins</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;numBins&quot;</span><span class="p">,</span>
<span class="s2">&quot;Number of bins to down-sample the curves &quot;</span>
<span class="s2">&quot;(ROC curve, PR curve) in area computation. If 0, no down-sampling will &quot;</span>
<span class="s2">&quot;occur. Must be &gt;= 0.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">rawPredictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;rawPrediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;BinaryClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;areaUnderROC&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">numBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, rawPredictionCol=&quot;rawPrediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;areaUnderROC&quot;, weightCol=None, numBins=1000)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">BinaryClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.BinaryClassificationEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;areaUnderROC&quot;</span><span class="p">,</span> <span class="n">numBins</span><span class="o">=</span><span class="mi">1000</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;BinaryClassificationEvaluatorMetricType&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setNumBins"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setNumBins">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setNumBins</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`numBins`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numBins</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.getNumBins"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.getNumBins">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getNumBins</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of numBins or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numBins</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setLabelCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`labelCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setRawPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setRawPredictionCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setRawPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`rawPredictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">rawPredictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`weightCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="BinaryClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">rawPredictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;rawPrediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;BinaryClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;areaUnderROC&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">numBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;BinaryClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, rawPredictionCol=&quot;rawPrediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;areaUnderROC&quot;, weightCol=None, numBins=1000)</span>
<span class="sd"> Sets params for binary classification evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="RegressionEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">RegressionEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span>
<span class="n">HasLabelCol</span><span class="p">,</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">],</span>
<span class="n">JavaMLWritable</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for Regression, which expects input columns prediction, label</span>
<span class="sd"> and an optional weight column.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5),</span>
<span class="sd"> ... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabels, [&quot;raw&quot;, &quot;label&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = RegressionEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;raw&quot;)</span>
<span class="sd"> RegressionEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 2.842...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;r2&quot;})</span>
<span class="sd"> 0.993...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;mae&quot;})</span>
<span class="sd"> 2.649...</span>
<span class="sd"> &gt;&gt;&gt; re_path = temp_path + &quot;/re&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(re_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = RegressionEvaluator.load(re_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getPredictionCol())</span>
<span class="sd"> &#39;raw&#39;</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabelsAndWeight = [(-28.98343821, -27.0, 1.0), (20.21491975, 21.5, 0.8),</span>
<span class="sd"> ... (-25.98418959, -22.0, 1.0), (30.69731842, 33.0, 0.6), (74.69283752, 71.0, 0.2)]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabelsAndWeight, [&quot;raw&quot;, &quot;label&quot;, &quot;weight&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = RegressionEvaluator(predictionCol=&quot;raw&quot;, weightCol=&quot;weight&quot;)</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 2.740...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.getThroughOrigin()</span>
<span class="sd"> False</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;RegressionEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;metric name in evaluation - one of:</span>
<span class="sd"> rmse - root mean squared error (default)</span>
<span class="sd"> mse - mean squared error</span>
<span class="sd"> r2 - r^2 metric</span>
<span class="sd"> mae - mean absolute error</span>
<span class="sd"> var - explained variance.&quot;&quot;&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">throughOrigin</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;throughOrigin&quot;</span><span class="p">,</span>
<span class="s2">&quot;whether the regression is through the origin.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;RegressionEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;rmse&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">throughOrigin</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;rmse&quot;, weightCol=None, throughOrigin=False)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RegressionEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.RegressionEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;rmse&quot;</span><span class="p">,</span> <span class="n">throughOrigin</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="RegressionEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;RegressionEvaluatorMetricType&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluatorMetricType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.setThroughOrigin"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setThroughOrigin">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setThroughOrigin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`throughOrigin`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">throughOrigin</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.getThroughOrigin"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.getThroughOrigin">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getThroughOrigin</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of throughOrigin or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">throughOrigin</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setLabelCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`labelCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`weightCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RegressionEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;RegressionEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;rmse&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">throughOrigin</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RegressionEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;rmse&quot;, weightCol=None, throughOrigin=False)</span>
<span class="sd"> Sets params for regression evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">MulticlassClassificationEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span>
<span class="n">HasLabelCol</span><span class="p">,</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="n">HasProbabilityCol</span><span class="p">,</span>
<span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">],</span>
<span class="n">JavaMLWritable</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for Multiclass Classification, which expects input</span>
<span class="sd"> columns: prediction, label, weight (optional) and probabilityCol (only for logLoss).</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0),</span>
<span class="sd"> ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabels, [&quot;prediction&quot;, &quot;label&quot;])</span>
<span class="sd"> &gt;&gt;&gt; evaluator = MulticlassClassificationEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;prediction&quot;)</span>
<span class="sd"> MulticlassClassificationEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;accuracy&quot;})</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;truePositiveRateByLabel&quot;,</span>
<span class="sd"> ... evaluator.metricLabel: 1.0})</span>
<span class="sd"> 0.75...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setMetricName(&quot;hammingLoss&quot;)</span>
<span class="sd"> MulticlassClassificationEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.33...</span>
<span class="sd"> &gt;&gt;&gt; mce_path = temp_path + &quot;/mce&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(mce_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = MulticlassClassificationEvaluator.load(mce_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getPredictionCol())</span>
<span class="sd"> &#39;prediction&#39;</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabelsAndWeight = [(0.0, 0.0, 1.0), (0.0, 1.0, 1.0), (0.0, 0.0, 1.0),</span>
<span class="sd"> ... (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0),</span>
<span class="sd"> ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabelsAndWeight, [&quot;prediction&quot;, &quot;label&quot;, &quot;weight&quot;])</span>
<span class="sd"> &gt;&gt;&gt; evaluator = MulticlassClassificationEvaluator(predictionCol=&quot;prediction&quot;,</span>
<span class="sd"> ... weightCol=&quot;weight&quot;)</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;accuracy&quot;})</span>
<span class="sd"> 0.66...</span>
<span class="sd"> &gt;&gt;&gt; predictionAndLabelsWithProbabilities = [</span>
<span class="sd"> ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]),</span>
<span class="sd"> ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(predictionAndLabelsWithProbabilities, [&quot;prediction&quot;,</span>
<span class="sd"> ... &quot;label&quot;, &quot;weight&quot;, &quot;probability&quot;])</span>
<span class="sd"> &gt;&gt;&gt; evaluator = MulticlassClassificationEvaluator(predictionCol=&quot;prediction&quot;,</span>
<span class="sd"> ... probabilityCol=&quot;probability&quot;)</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setMetricName(&quot;logLoss&quot;)</span>
<span class="sd"> MulticlassClassificationEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.9682...</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;MulticlassClassificationEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="s2">&quot;metric name in evaluation &quot;</span>
<span class="s2">&quot;(f1|accuracy|weightedPrecision|weightedRecall|weightedTruePositiveRate| &quot;</span>
<span class="s2">&quot;weightedFalsePositiveRate|weightedFMeasure|truePositiveRateByLabel| &quot;</span>
<span class="s2">&quot;falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel| &quot;</span>
<span class="s2">&quot;logLoss|hammingLoss)&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricLabel&quot;</span><span class="p">,</span>
<span class="s2">&quot;The class whose metric will be computed in truePositiveRateByLabel|&quot;</span>
<span class="s2">&quot;falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel.&quot;</span>
<span class="s2">&quot; Must be &gt;= 0. The default value is 0.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">beta</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;beta&quot;</span><span class="p">,</span>
<span class="s2">&quot;The beta value used in weightedFMeasure|fMeasureByLabel.&quot;</span>
<span class="s2">&quot; Must be &gt; 0. The default value is 1.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">eps</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;eps&quot;</span><span class="p">,</span>
<span class="s2">&quot;log-loss is undefined for p=0 or p=1, so probabilities are clipped to &quot;</span>
<span class="s2">&quot;max(eps, min(1 - eps, p)). &quot;</span>
<span class="s2">&quot;Must be in range (0, 0.5). The default value is 1e-15.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;MulticlassClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;f1&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">beta</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">probabilityCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;probability&quot;</span><span class="p">,</span>
<span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-15</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;f1&quot;, weightCol=None, metricLabel=0.0, beta=1.0, \</span>
<span class="sd"> probabilityCol=&quot;probability&quot;, eps=1e-15)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">MulticlassClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;f1&quot;</span><span class="p">,</span> <span class="n">metricLabel</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;MulticlassClassificationEvaluatorMetricType&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluatorMetricType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricLabel`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricLabel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.getMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricLabel or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricLabel</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setBeta"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setBeta">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setBeta</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`beta`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">beta</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.getBeta"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getBeta">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getBeta</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of beta or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">beta</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setEps"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setEps">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setEps</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`eps`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">eps</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.getEps"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getEps">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getEps</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of eps or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setLabelCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`labelCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setProbabilityCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setProbabilityCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setProbabilityCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`probabilityCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">probabilityCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`weightCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MulticlassClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;MulticlassClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;f1&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">beta</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">probabilityCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;probability&quot;</span><span class="p">,</span>
<span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-15</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MulticlassClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;f1&quot;, weightCol=None, metricLabel=0.0, beta=1.0, \</span>
<span class="sd"> probabilityCol=&quot;probability&quot;, eps=1e-15)</span>
<span class="sd"> Sets params for multiclass classification evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">MultilabelClassificationEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span>
<span class="n">HasLabelCol</span><span class="p">,</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">],</span>
<span class="n">JavaMLWritable</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for Multilabel Classification, which expects two input</span>
<span class="sd"> columns: prediction and label.</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Experimental</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = [([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]),</span>
<span class="sd"> ... ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]),</span>
<span class="sd"> ... ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabels, [&quot;prediction&quot;, &quot;label&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = MultilabelClassificationEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;prediction&quot;)</span>
<span class="sd"> MultilabelClassificationEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.63...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;accuracy&quot;})</span>
<span class="sd"> 0.54...</span>
<span class="sd"> &gt;&gt;&gt; mlce_path = temp_path + &quot;/mlce&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(mlce_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = MultilabelClassificationEvaluator.load(mlce_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getPredictionCol())</span>
<span class="sd"> &#39;prediction&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;MultilabelClassificationEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="s2">&quot;metric name in evaluation &quot;</span>
<span class="s2">&quot;(subsetAccuracy|accuracy|hammingLoss|precision|recall|f1Measure|&quot;</span>
<span class="s2">&quot;precisionByLabel|recallByLabel|f1MeasureByLabel|microPrecision|&quot;</span>
<span class="s2">&quot;microRecall|microF1Measure)&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricLabel&quot;</span><span class="p">,</span>
<span class="s2">&quot;The class whose metric will be computed in precisionByLabel|&quot;</span>
<span class="s2">&quot;recallByLabel|f1MeasureByLabel. &quot;</span>
<span class="s2">&quot;Must be &gt;= 0. The default value is 0.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;MultilabelClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;f1Measure&quot;</span><span class="p">,</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;f1Measure&quot;, metricLabel=0.0)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">MultilabelClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.MultilabelClassificationEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;f1Measure&quot;</span><span class="p">,</span> <span class="n">metricLabel</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;MultilabelClassificationEvaluatorMetricType&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluatorMetricType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.setMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricLabel`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricLabel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.getMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.getMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricLabel or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricLabel</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setLabelCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`labelCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setPredictionCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="MultilabelClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;MultilabelClassificationEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;f1Measure&quot;</span><span class="p">,</span>
<span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;MultilabelClassificationEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;f1Measure&quot;, metricLabel=0.0)</span>
<span class="sd"> Sets params for multilabel classification evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="ClusteringEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">ClusteringEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span>
<span class="n">HasPredictionCol</span><span class="p">,</span>
<span class="n">HasFeaturesCol</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">],</span>
<span class="n">JavaMLWritable</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for Clustering results, which expects two input</span>
<span class="sd"> columns: prediction and features. The metric computes the Silhouette</span>
<span class="sd"> measure using the squared Euclidean distance.</span>
<span class="sd"> The Silhouette is a measure for the validation of the consistency</span>
<span class="sd"> within clusters. It ranges between 1 and -1, where a value close to</span>
<span class="sd"> 1 means that the points in a cluster are close to the other points</span>
<span class="sd"> in the same cluster and far from the points of the other clusters.</span>
<span class="sd"> .. versionadded:: 2.3.0</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; from pyspark.ml.linalg import Vectors</span>
<span class="sd"> &gt;&gt;&gt; featureAndPredictions = map(lambda x: (Vectors.dense(x[0]), x[1]),</span>
<span class="sd"> ... [([0.0, 0.5], 0.0), ([0.5, 0.0], 0.0), ([10.0, 11.0], 1.0),</span>
<span class="sd"> ... ([10.5, 11.5], 1.0), ([1.0, 1.0], 0.0), ([8.0, 6.0], 1.0)])</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(featureAndPredictions, [&quot;features&quot;, &quot;prediction&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = ClusteringEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;prediction&quot;)</span>
<span class="sd"> ClusteringEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.9079...</span>
<span class="sd"> &gt;&gt;&gt; featureAndPredictionsWithWeight = map(lambda x: (Vectors.dense(x[0]), x[1], x[2]),</span>
<span class="sd"> ... [([0.0, 0.5], 0.0, 2.5), ([0.5, 0.0], 0.0, 2.5), ([10.0, 11.0], 1.0, 2.5),</span>
<span class="sd"> ... ([10.5, 11.5], 1.0, 2.5), ([1.0, 1.0], 0.0, 2.5), ([8.0, 6.0], 1.0, 2.5)])</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(</span>
<span class="sd"> ... featureAndPredictionsWithWeight, [&quot;features&quot;, &quot;prediction&quot;, &quot;weight&quot;])</span>
<span class="sd"> &gt;&gt;&gt; evaluator = ClusteringEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;prediction&quot;)</span>
<span class="sd"> ClusteringEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setWeightCol(&quot;weight&quot;)</span>
<span class="sd"> ClusteringEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.9079...</span>
<span class="sd"> &gt;&gt;&gt; ce_path = temp_path + &quot;/ce&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(ce_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = ClusteringEvaluator.load(ce_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getPredictionCol())</span>
<span class="sd"> &#39;prediction&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;ClusteringEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="s2">&quot;metric name in evaluation (silhouette)&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">distanceMeasure</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;ClusteringEvaluatorDistanceMeasureType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;distanceMeasure&quot;</span><span class="p">,</span>
<span class="s2">&quot;The distance measure. &quot;</span> <span class="o">+</span> <span class="s2">&quot;Supported options: &#39;squaredEuclidean&#39; and &#39;cosine&#39;.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">featuresCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;features&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;ClusteringEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;silhouette&quot;</span><span class="p">,</span>
<span class="n">distanceMeasure</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;squaredEuclidean&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, predictionCol=&quot;prediction&quot;, featuresCol=&quot;features&quot;, \</span>
<span class="sd"> metricName=&quot;silhouette&quot;, distanceMeasure=&quot;squaredEuclidean&quot;, weightCol=None)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ClusteringEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.ClusteringEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;silhouette&quot;</span><span class="p">,</span> <span class="n">distanceMeasure</span><span class="o">=</span><span class="s2">&quot;squaredEuclidean&quot;</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="ClusteringEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.3.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">featuresCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;features&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;ClusteringEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;silhouette&quot;</span><span class="p">,</span>
<span class="n">distanceMeasure</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;squaredEuclidean&quot;</span><span class="p">,</span>
<span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, predictionCol=&quot;prediction&quot;, featuresCol=&quot;features&quot;, \</span>
<span class="sd"> metricName=&quot;silhouette&quot;, distanceMeasure=&quot;squaredEuclidean&quot;, weightCol=None)</span>
<span class="sd"> Sets params for clustering evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.3.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;ClusteringEvaluatorMetricType&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.3.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluatorMetricType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.setDistanceMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setDistanceMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setDistanceMeasure</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;ClusteringEvaluatorDistanceMeasureType&quot;</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`distanceMeasure`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">distanceMeasure</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.getDistanceMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.getDistanceMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getDistanceMeasure</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluatorDistanceMeasureType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of `distanceMeasure`</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">distanceMeasure</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.setFeaturesCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setFeaturesCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setFeaturesCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;str&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`featuresCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span><span class="w"> </span><span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="ClusteringEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.1.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;ClusteringEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`weightCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="RankingEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator">[docs]</a><span class="nd">@inherit_doc</span>
<span class="k">class</span><span class="w"> </span><span class="nc">RankingEvaluator</span><span class="p">(</span>
<span class="n">JavaEvaluator</span><span class="p">,</span> <span class="n">HasLabelCol</span><span class="p">,</span> <span class="n">HasPredictionCol</span><span class="p">,</span> <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">],</span> <span class="n">JavaMLWritable</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Evaluator for Ranking, which expects two input</span>
<span class="sd"> columns: prediction and label.</span>
<span class="sd"> .. versionadded:: 3.0.0</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Experimental</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; scoreAndLabels = [([1.0, 6.0, 2.0, 7.0, 8.0, 3.0, 9.0, 10.0, 4.0, 5.0],</span>
<span class="sd"> ... [1.0, 2.0, 3.0, 4.0, 5.0]),</span>
<span class="sd"> ... ([4.0, 1.0, 5.0, 6.0, 2.0, 7.0, 3.0, 8.0, 9.0, 10.0], [1.0, 2.0, 3.0]),</span>
<span class="sd"> ... ([1.0, 2.0, 3.0, 4.0, 5.0], [])]</span>
<span class="sd"> &gt;&gt;&gt; dataset = spark.createDataFrame(scoreAndLabels, [&quot;prediction&quot;, &quot;label&quot;])</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; evaluator = RankingEvaluator()</span>
<span class="sd"> &gt;&gt;&gt; evaluator.setPredictionCol(&quot;prediction&quot;)</span>
<span class="sd"> RankingEvaluator...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset)</span>
<span class="sd"> 0.35...</span>
<span class="sd"> &gt;&gt;&gt; evaluator.evaluate(dataset, {evaluator.metricName: &quot;precisionAtK&quot;, evaluator.k: 2})</span>
<span class="sd"> 0.33...</span>
<span class="sd"> &gt;&gt;&gt; ranke_path = temp_path + &quot;/ranke&quot;</span>
<span class="sd"> &gt;&gt;&gt; evaluator.save(ranke_path)</span>
<span class="sd"> &gt;&gt;&gt; evaluator2 = RankingEvaluator.load(ranke_path)</span>
<span class="sd"> &gt;&gt;&gt; str(evaluator2.getPredictionCol())</span>
<span class="sd"> &#39;prediction&#39;</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">&quot;RankingEvaluatorMetricType&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;metricName&quot;</span><span class="p">,</span>
<span class="s2">&quot;metric name in evaluation &quot;</span>
<span class="s2">&quot;(meanAveragePrecision|meanAveragePrecisionAtK|&quot;</span>
<span class="s2">&quot;precisionAtK|ndcgAtK|recallAtK)&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span>
<span class="p">)</span>
<span class="n">k</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;k&quot;</span><span class="p">,</span>
<span class="s2">&quot;The ranking position value used in meanAveragePrecisionAtK|precisionAtK|&quot;</span>
<span class="s2">&quot;ndcgAtK|recallAtK. Must be &gt; 0. The default value is 10.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span>
<span class="nd">@keyword_only</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;RankingEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;meanAveragePrecision&quot;</span><span class="p">,</span>
<span class="n">k</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> __init__(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;meanAveragePrecision&quot;, k=10)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RankingEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span>
<span class="s2">&quot;org.apache.spark.ml.evaluation.RankingEvaluator&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">&quot;meanAveragePrecision&quot;</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<div class="viewcode-block" id="RankingEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">&quot;RankingEvaluatorMetricType&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`metricName`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluatorMetricType&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of metricName or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.setK"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setK">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setK</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`k`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.getK"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.getK">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">getK</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of k or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setLabelCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`labelCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setPredictionCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`predictionCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="RankingEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">setParams</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;prediction&quot;</span><span class="p">,</span>
<span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;label&quot;</span><span class="p">,</span>
<span class="n">metricName</span><span class="p">:</span> <span class="s2">&quot;RankingEvaluatorMetricType&quot;</span> <span class="o">=</span> <span class="s2">&quot;meanAveragePrecision&quot;</span><span class="p">,</span>
<span class="n">k</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;RankingEvaluator&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> setParams(self, \\*, predictionCol=&quot;prediction&quot;, labelCol=&quot;label&quot;, \</span>
<span class="sd"> metricName=&quot;meanAveragePrecision&quot;, k=10)</span>
<span class="sd"> Sets params for ranking evaluator.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div>
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">doctest</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tempfile</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">pyspark.ml.evaluation</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pyspark.sql</span><span class="w"> </span><span class="kn">import</span> <span class="n">SparkSession</span>
<span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
<span class="c1"># The small batch size here ensures that we see multiple batches,</span>
<span class="c1"># even in these small test examples:</span>
<span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">&quot;local[2]&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">&quot;ml.evaluation tests&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;spark&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span>
<span class="n">temp_path</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span>
<span class="n">globs</span><span class="p">[</span><span class="s2">&quot;temp_path&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">temp_path</span>
<span class="k">try</span><span class="p">:</span>
<span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span>
<span class="k">finally</span><span class="p">:</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">shutil</span><span class="w"> </span><span class="kn">import</span> <span class="n">rmtree</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">rmtree</span><span class="p">(</span><span class="n">temp_path</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">OSError</span><span class="p">:</span>
<span class="k">pass</span>
<span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span>
<span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>